Characterization of cytopathic factors through genome-wide analysis of the Zika viral proteins in fission yeast

Ge Li, Melissa Poulsen, Csaba Fenyvesvolgyi, Yoko Yashiro, Minoru Yoshida, J. Marc Simard, Robert C. Gallo, and Richard Y. Zhao

The Zika virus (ZIKV) causes microcephaly and the Guillain-Barré syndrome. Little is known about how ZIKV causes these conditions or which ZIKV viral protein(s) is responsible for the observed cytopathic effects. The Zika virus genome is translated into a single polyprotein, which is cleaved by viral and host proteases into six structural proteins [membrane-anchored capsid protein (anA), membrane protein (M), envelope protein (E), and nonstructural protein 4A (NS4A)] and two nonstructural proteins (NS2B, NS2A). The expression of the pre-membrane protein (prM) resulted in cell-cycle arrest, while membrane-anchored capsid protein (anaC) induced hypertrophy and growth restriction. Seven ZIKV proteins conferred various cytopathic effects in cells. A genome-wide analysis of ZIKV proteins and peptides was conducted using fission yeast as a surrogate host. The objective of this study was to identify ZIKV factors responsible for the observed cytopathic effects in cells.

Zika genome | Zika proteins | fission yeast | Schizosaccharomyces pombe | cytopathic factors

The recent ZIKV outbreak was surprising in its rapidity and alarming in its association with microcephaly in newborns and Guillain-Barré syndrome in adults. Little is known about ZIKV pathogenicity. ZIKV infects various neuronal cells and affects brain neurogenesis by reducing cellular proliferation and inducing cell-cycle abnormalities, cell death/apoptosis, and autophagy. The ER is a complex network of continuous sheets and tubules extending from the nuclear envelope to the plasma membrane and a secretory sorting apparatus that transports newly synthesized ZIKV proteins through fusion of the viral and cell membranes. After virus–host cell fusion, the viral genome is released into the cytoplasm where viral RNA is translated into a single polyprotein, which is subsequently processed by viral and host proteases into 14 proteins.

Significance

The Zika virus (ZIKV) causes various neurologic defects including microcephaly and the Guillain-Barré syndrome. However, little is known about how ZIKV causes these diseases or which viral protein(s) is responsible for the observed cytopathic effects in cells. A genome-wide analysis of ZIKV proteins and peptides was conducted using fission yeast as a surrogate host. The authors declare no conflict of interest. Freely available online through the PNAS open access option.

Author contributions: R.Y.Z. designed research; G.L., M.P., and C.F. performed research; Y.Y., M.Y., and J.M.S. contributed new reagents/analytic tools; Y.Y., J.M.S., and R.Y.Z. analyzed data; and J.M.S., R.C.G., and R.Y.Z. wrote the paper.

Significance

The Zika virus (ZIKV) causes various neurologic defects including microcephaly and the Guillain-Barré syndrome. However, little is known about how ZIKV causes these diseases or which viral protein(s) is responsible for the observed cytopathic effects in cells. A genome-wide analysis of ZIKV proteins and peptides was conducted using fission yeast as a surrogate host. Seven ZIKV proteins conferred various cytopathic effects in which NS4A-induced cellular hypertrophy and growth restriction were mediated through the target of rapamycin (TOR) cell stress-response pathway. These findings provide a foundation for identifying viral pathogenicity factors associated with the ZIKV diseases.
or short peptides. Viral genome replication typically occurs on virus-associated intracellular membranes, primarily in the ER network (19). Thus, based on the protein structures, most of the ZIKV proteins are expected to be membrane-associated proteins, with the possible exception of mature Pr, NS1, NS3, 2K, and NS5 (Fig. 1A) (17). Virus assembly takes place on the surface

![Diagram of ZIKV genome and protein structures](image)

Fig. 1. Genome-wide analysis of intracellular localizations of ZIKV proteins. (A) Schematic structure of the ZIKV genome with the predicted association of each ZIKV protein with the intracellular membrane. The ZIKV genome shown is based on the MR766 viral genome (GenBank accession number: Ay632535). Each of the viral proteins is drawn based on the relative orientation in the entire RNA genome. The ZIKV viral protease, host protease, and Furin protease are indicated by arrows. Each arrow points to the specific protease cleavage site. The numbers shown above each protein product indicate the start/end position. NS5 encodes methyltransferase at its N-terminal end and RNA-dependent RNA polymerase at its C-terminal end. ZIKV protein products information based on Kuno et al. (16). The protein membrane-associated structure and processing information from Assenberg et al. (17). (B) The primary intracellular localizations of ZIKV proteins. All GFP-ZIKV proteins were produced at low gene-expression levels and observed within 20 h of GI. (a) An empty vector control (Vec). (b) Structural ZIKV proteins. (c) Nonstructural ZIKV proteins. (Scale bars, 10 μm.) (C) Comparison of ZIKV protein localization with cellular proteins that are known to localize in ER (Gpi1-YFP), Golgi (Ynd1-YFP), and cytoplasmic puncta (Atg1-YFP) (1). (b) Colocalization of GFP-NS1 with Atg1-YFP under nitrogen starvation. Note that both GFP and YFP were detectable under the GFP/YFP filter. However, only the GFP signal was detectable under the CFP filter. Arrows indicate where Atg1-YFP signals are missing from the CFP filter. (Scale bar, 10 μm.) The interpretation of the specific subcellular localization of each ZIKV protein is summarized in Table 1. A comparison of subcellular localization patterns of each ZIKV protein at low and high expression levels is presented in Fig. S2.
of the ER where the structural proteins (C, prM, and E) and newly synthesized viral RNA bud into the lumen of the ER and form immature viral particles (23, 24). In DENV, E protein forms a heterodimer with prM and affects viral particle formation and secretion (25). The resultant noninfectious and immature viral particles are transported through the TGN, where prM is cleaved by a host protease Furin, resulting in mature infectious particles (26, 27). The transition from prM to M via the cleavage of host protease Furin is required for viral infectivity (11, 12). Mature virions are subsequently released from the host cell by exocytosis.

One of the major challenges in understanding ZIKV activities and viral pathogenicity is that ZIKV infects a wide range of neural and other cell types, including skin fibroblasts, astroglia, neurons, and neuronal progenitor cells (7, 18). Also, a wide variety of geographically and genetically distinct viral variants have been associated with the known ZIKV diseases. Given the number of host cells and viral variants, it has been difficult to identify pathogenic factors and to generate a consensus on ZIKV protein functionality. To meet this challenge, in the present study, we used fission yeast (Schizosaccharomyces pombe) as a surrogate system to characterize the activities of the ZIKV genome. Fission yeast is a single-cell eukaryote that has been used extensively as a model organism to study human cell biology (28–31) and virology (32–35). Importantly, fission yeast is a well-tested model for studying highly conserved cellular activities (36, 37) such as those affected by ZIKV, including cellular growth, cell-cycle regulation, cell death, and autophagy (6–8, 18, 38). The study of ZIKV effects on these vital cellular activities in fission yeast is expected to be functionally and clinically relevant for understanding the ZIKV-associated diseases. Here, using this approach, we report on the results of cloning and functional characterization of all 14 proteins and small peptides of the ZIKV genome.

Results

Subcellular Localizations of ZIKV Proteins. The ER is the primary subcellular reservoir for ZIKV replication and propagation (18). However, little is known about the subcellular localization of ZIKV proteins. The presumed associations of ZIKV proteins with specific intracellular membranes are based largely on protein sequence structures and on known associations in other flaviviruses (Fig. 1A) (17). In our initial experiment, we examined the subcellular localization of each of the ZIKV proteins.

Each ZIKV protein sequence was fused with N-terminal GFP on a gene-expression vector pYZ3N with an inducible nmt1 (no message in the thiamine) promoter (Fig. S1) (39). GFP-ZIKV proteins were expressed in a wild-type fission yeast strain, SP223 (40, 41). The subcellular localization of each GFP-ZIKV protein was determined using fluorescence microscopy. Fission yeast cells that expressed GFP from an otherwise empty pYZ3N vector were used as a control (39). The results of this experiment are summarized in Table 1. The primary subcellular localization of each ZIKV viral protein is shown in Fig. 1B.

In fission yeast cells that expressed a vector control plasmid, the expression of GFP protein alone showed no preference for subcellular localization, and GFP dispersed uniformly throughout the cells (Fig. 1 B, a) (39). In contrast, individual ZIKV proteins appeared to localize primarily to a particular subcellular location.

Specific subcellular locations of structural and nonstructural proteins are shown in Fig. 1 B, b and c. ZIKV proteins could be divided into membrane-associated and non–membrane-associated proteins. Membrane-associated proteins associated primarily with the ER network, including the nuclear membrane, ER, and Golgi. Both anaC and C localized predominantly to the nuclear membrane, although both also were observed in the cytoplasm. prM, M, E, NS2B, NS4A, and NS4B were associated primarily with the ER network, which was easily recognized by its association with the nuclear membrane and the cytoplasmic membrane (the “double circles” phenotype) (42). NS2A was localized primarily in the Golgi compartment, with a low level of association with the ER. In contrast to the membrane-associated proteins, five proteins, Pr, NS1, NS3, 2K, and NS5, showed no intracellular membrane association. NS1 formed unique and compact cytoplasmic specks that mimicked cytoplasmic puncta (42). The other four non–membrane-associated ZIKV proteins showed no apparent structure within cells. The ER, Golgi, or cytoplasmic puncta-associated subcellular location of ZIKV proteins was confirmed by

Table 1. Summary of primary subcellular localizations of ZIKV proteins

<table>
<thead>
<tr>
<th>ZIKV proteins</th>
<th>cDNA, bp</th>
<th>No. amino acids</th>
<th>Predicted intracellular membrane association*</th>
<th>Intracellular membrane association</th>
<th>Predominant subcellular location</th>
<th>Additional protein features*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Structural proteins</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>anaC</td>
<td>366</td>
<td>122</td>
<td>Yes</td>
<td>Yes</td>
<td>Nuclear membrane</td>
<td>Nuclear localization signals</td>
</tr>
<tr>
<td>C</td>
<td>312</td>
<td>104</td>
<td>Yes</td>
<td>Yes</td>
<td>Nuclear membrane</td>
<td>Nuclear localization signals</td>
</tr>
<tr>
<td>prM</td>
<td>504</td>
<td>168</td>
<td>Yes</td>
<td>Yes</td>
<td>ER with speck appearance on</td>
<td>N-glycosylation</td>
</tr>
<tr>
<td>M</td>
<td>225</td>
<td>75</td>
<td>Yes</td>
<td>Yes</td>
<td>ER</td>
<td></td>
</tr>
<tr>
<td>Pr</td>
<td>279</td>
<td>93</td>
<td>No</td>
<td>No</td>
<td>Uniformly distributed with stronger</td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>1,512</td>
<td>504</td>
<td>Yes</td>
<td>Yes</td>
<td>ER with cytoplasmic specks</td>
<td>Transmembrane helix</td>
</tr>
<tr>
<td>Nonstructural proteins</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NS1</td>
<td>1,056</td>
<td>352</td>
<td>No</td>
<td>No</td>
<td>Cytoplasmic puncta</td>
<td></td>
</tr>
<tr>
<td>NS2A</td>
<td>678</td>
<td>226</td>
<td>Yes</td>
<td>Yes</td>
<td>Golgi and low in ER</td>
<td></td>
</tr>
<tr>
<td>NS2B</td>
<td>390</td>
<td>130</td>
<td>Yes</td>
<td>Yes</td>
<td>ER</td>
<td>Cofactor of protease</td>
</tr>
<tr>
<td>NS3</td>
<td>1,851</td>
<td>617</td>
<td>No</td>
<td>No</td>
<td>Uniformly distributed</td>
<td>Protease</td>
</tr>
<tr>
<td>NS4A</td>
<td>381</td>
<td>127</td>
<td>Yes</td>
<td>Yes</td>
<td>ER</td>
<td></td>
</tr>
<tr>
<td>2K</td>
<td>69</td>
<td>23</td>
<td>No</td>
<td>No</td>
<td>Uniformly distributed</td>
<td></td>
</tr>
<tr>
<td>NS4B</td>
<td>753</td>
<td>251</td>
<td>Yes</td>
<td>Yes</td>
<td>ER</td>
<td>Methyl transferase; RNA-directed</td>
</tr>
<tr>
<td>NS5</td>
<td>2,709</td>
<td>903</td>
<td>No</td>
<td>No</td>
<td>Uniformly distributed</td>
<td>RNA polymerase</td>
</tr>
</tbody>
</table>

Some ZIKV proteins were very mobile within cells. This table summarizes only the predominant subcellular location observed for each ZIKV protein.

*This information was based on refs. 16 and 17.
measured as cell concentration by spectrophotometry (optical cells were grown under the gene-off and gene-on conditions in growth kinetics of these ZIKV-carrying yeast cells. Fission yeast seven ZIKV proteins affected cell proliferation, we measured the small colonies were seen under ZIKV gene-inducing conditions. E, NS2B, and NS4A) showed various levels of inhibitory effects yeast strains expressing seven ZIKV proteins (anaC, C, prM, M, E, NS2B, and NS4A) showed different levels of delayed proliferation (Fig. 2A, c). During the first 24 h after GI, the ZIKV gene-off and gene-on cells grew at about the same rate. When the ZIKV genes were fully expressed 24 h after GI, the growth of cells producing the seven ZIKV proteins became slower than that of cells without gene expression. Among the cells expressing ZIKV proteins, those expressing prM and NS2B showed nearly complete inhibition of cellular growth, whereas those expressing anaC, C, M, E, and NS4A showed reduced growth (Fig. 2A, c).

ZIKV Proteins Induce Cell Elongation and Hypertrophy. An early study reported that ZIKV infection induces hypertrophy (gross cell enlargement) of mouse astroglial cells (18). To determine which ZIKV protein produces this effect, we examined the morphology of cells producing ZIKV proteins using bright-field microscopy (Fig. S3). Fission yeast cells carrying the control vector pYZ1N appeared normal (36), with a typical rod-shaped morphology measuring 3–4 μm in diameter and 7–14 μm in length (Fig. 2B, a) (36). Interestingly, the same seven ZIKV proteins (anaC, C, prM, M, E, NS2B, and NS4A) that reduced the yeast colony-forming ability (Fig. 2A, b) and cellular growth (Fig. 2A, c and Fig. S2) also affected cell morphology (Fig. 2B, a). Some of the cells producing ZIKV proteins clearly showed elongation and reduction in the ZIKV gene expression. About 5–20% of the cells expressing prM, NS2B, or NS4A appeared to be greatly enlarged (Fig. 2B, a and b). Some of the cells expressing NS4A appeared balloon-like, suggesting induction of cell hypertrophy (Fig. 2B, b, arrow).

To measure the overall changes in cell morphology induced by ZIKV proteins, cells expressing ZIKV proteins were analyzed by forward-scatter analysis using flow cytometry. Both the forward-scattered light (FSC) and side-scattered light (SSC) were measured for each cell population (Fig. S3). The SSC is proportional to the cell-surface area and thus measures cell size. The SSC is proportional to cell granularity and thus determines intracellular complexity. Correlated measurements of FSC and SSC allowed the differentiation of cell shapes in a heterogeneous cell population. As shown in Fig. 2B, b, no significant difference of overall cell architecture was found between control (vector-carrying) yeast cells grown in the gene-inducing and gene-repressing conditions. In contrast, marked differences were observed among the cells expressing prM, E, NS2B, and NS4A (Fig. 2B, b, arrows).

Together, our findings showed that seven of the ZIKV proteins (anaC, C, prM, E, NS2B, and NS4A) caused elongation of cells. The prM, NS2B, and NS4A proteins also induced cell hypertrophy.

ZIKV Proteins Cause Nuclear Fragmentation and Cell-Cycle Dysregulation. Early studies showed that ZIKV infection induces hyperchromatic nuclear debris and cell-cycle dysregulation in mouse astrocytes and human progenitor stem cells (7, 8, 18). To test whether the hyperchromatic debris results from chromosomal aberrations, we examined the nuclear morphology of all ZIKV proteins using Hoechst DNA-staining fluorescent dye (41). Results of the seven ZIKV proteins tested above are shown in Fig. 2A, a, and data on all the ZIKV proteins are provided in Fig. S4. A normal, round, compact nuclear morphology was seen in vector-carrying control cells. As in controls, no nuclear morphological abnormality was observed in M-expressing cells. In contrast, fragmented nuclei were observed in cells expressing anaC, prM, E, NS2B, and NS4A. These abnormal nuclear morphologies were particularly evident in elongated cells with abnormal cellular morphology (Fig. 2C, a, arrows). In C-expressing cells, although most of the nuclei appeared to be normal, some of the dividing cells were either missing a nucleus or had two nuclei (Fig. 2C, b, a, arrows).

Elongated fission yeast cells are indicative of cell-cycle dysfunction. Next, we tested whether the expression of the ZIKV proteins affected cell-cycle phase distributions by measuring the overall cellular DNA content using flow cytometric analysis. In
the standard growth EMM medium, fission yeast cells reside predominantly in the G2 phase of the cell cycle (Fig. 2 C, b, Upper) (49). If a ZIKV protein induces cell-cycle G1 delay, we would expect a shift from a predominantly G2 cell population to a G1 population after GI. Similarly, ZIKV-induced cell-cycle G2 delay would be detected by first synchronizing cells in the G1 phase of the cell cycle (Fig. 2 C, c, Top) and then turning on the ZIKV gene expression to measure the ZIKV effect (Fig. 2 C, c).

As shown in Fig. 2 C, b, the cell-cycle profile was essentially the same in control (vector-carrying) cells in the gene-inducing and gene-suppressing conditions. However, expression of prM resulted in an ~20% increase in the G1 cell population (Fig. 2 C, b). Similarly, in the G1-synchronized cells (Fig. 2 C, c), the percent of G2 cells was essentially the same in control cells in the gene-inducing and gene-suppressing conditions. However, 23.3, 37.8, 52.3, and 40.3% increases in the G2 cell populations were observed in the cells expressing anaC, M, E, and NS4A, respectively. A pairwise statistical t test suggested that the observed differences were significant (P < 0.01). Therefore, the seven ZIKV proteins, with the exception of the C protein, affected cell-cycle regulation.

Fig. 2. The cytopathic effects of ZIKV proteins. (A) The effects on cell proliferation. (a) Expression of ZIKV mRNA transcripts measured 24 h after GI by RT-PCR. The order of proteins from 1–14: anaC, C, PR, M, prM, E, 2K, NS1, NS2A, NS2B, NS3, NS4A, NS4B, and NS5. M, molecular marker. (b) Effect of ZIKV expression on fission yeast colony formation. Agar plates are numbered as in a. An empty pY1 vector was used as a control and designated as zero. ZIKV-carrying cells grown on selective EMM agar plates were incubated at 30 °C for 4–5 d before the images were captured. Off, gene-suppressed; On, gene-induced. (c) Growth curve analysis was used to quantify growth inhibition by ZIKV proteins. Only the effect of ZIKV proteins (anaC, C, E, prM, M, NS2B, and NS4A) that affected yeast colony-forming abilities as demonstrated in b are shown. Cell growth was measured spectrophotometrically at OD650 over the indicated time period. The experiment was repeated at least three times, and the SEs of each time point were calculated. ●, gene-on, the ZIKV gene was induced; ○, gene-off, the ZIKV gene was suppressed. (B) The effects on cell morphology. Only ZIKV proteins that affected cell proliferation as demonstrated in A, are shown. The effects of all ZIKV proteins on fission yeast nuclear morphology are included in Fig. S3. (a) Individual cell morphology. Each image was taken 45 h after GI using bright-field microscopy. Note cell hypertrophy (arrow) in the NS4A-expressing cells. Vec, empty vector. (b) Overall cell morphology as shown by the FSC analysis. Ten thousand cells were measured 48 h after GI. The FSC measures the distribution of all cell sizes. The SSC determines intracellular complexity. (c) Effects on nuclear morphology and cell-cycle regulation. (a) Nuclear morphology. Cells were stained with Hoechst blue fluorescent DNA dye. All cell and nuclear morphologies were examined 45 h after GI. (Scale bar, 10 μm.) Effects of all ZIKV proteins on fission yeast nuclear morphology are included in Fig. S4. (b) The effect of ZIKV protein on cell-cycle G1 regulation. Cells were grown in regular EMM medium in which cells normally reside in the G2/M phase of the cell cycle. (c) Effect of ZIKV proteins on cell-cycle G2/M regulation. Cells were grown in a low-nitrogen EMM medium that enriches cells in the G1 phase of the cell cycle, as described previously (1, 2). Cell-cycle profiles were measured by DNA content using flow cytometric analysis 48 h after GI. Average and SD values were calculated based on the results of three independent experiments. A pairwise Student t test was conducted to compare the DNA content values of each ZIKV protein with and without GI. *P < 0.01. Arrows indicate the location of differences (C, b and d) or where the abnormal cells reside (B, b and c, a).
Mathematical models and simulations are used to predict the spread of diseases, evaluate the effectiveness of interventions, and inform public health policy decisions. These models often incorporate factors such as population demographics, transmission rates, and interventions like vaccination campaigns. By understanding the dynamics of disease transmission, decision-makers can develop targeted strategies to control outbreaks and prevent future pandemics.
other six ZIKV proteins exert the same effect as NS4A on the TOR pathway is yet to be determined.

Two types of ZIKV proteins were identified in this study, membrane-associated and non–membrane-associated proteins (Table 1). Consistent with the idea that the ER is the major ZIKV subcellular “viral factory” in which ZIKV proliferates (18, 20, 59), membrane-associated ZIKV proteins were found to associate mostly with the ER network (Fig. 1B). The mature C protein is derived from anaC, and both were found predominantly on nuclear membranes. Notably, in DENV, three nuclear localization signals are embedded in these two proteins (60). The prM and M proteins also are related structurally. The transition of prM to M by Furin cleavage is crucial for viral maturation and infectivity in flaviviruses (26, 27). It thus was of interest to note the subtle differences in the localization of these three proteins: Both prM and M localized primarily on the ER, but M localized almost exclusively on the ER, whereas prM also accumulated along cytoplasmic membranes (Fig. 1B). Moreover, prM appeared to enhanced the G1 phase of the cell cycle (Fig. 3 B, a), whereas M enriched the G2/M phase of the cell cycle (Fig. 3 B, b). The Pr peptide, which is generated after the cleavage of prM to form M, showed relatively strong presence in nuclei but also was dispersed throughout the cell.

Interestingly, even at low levels of expression, the expression of NS1 formed unique, compact cytoplasmic protein specks within cells (Fig. 1B, c). Similar protein specs and patterns also were observed in a number of highly expressed ZIKV proteins, including prM-, M-, NS2A-, and NS4A (Fig. S2). Because viral infection of cells could produce both low and high levels of proteins, depending on the degree of viremia, the formation of these accumulated protein specks potentially could be relevant to the severity of ZIKV infection. The nature of these ZIKV protein accumulations in such a unique pattern is unclear at present. However, some of these cytoplasmic protein specks mimic the appearance of cytoplasmic puncta, which often are an indication of autophagy. Autophagy is part of the cellular response to cellular stress such as nitrogen starvation or oxidative stress (43, 44). Consistent with this role, activation of cellular autophagy, which is part of the host innate immune response to eliminate invading intracellular pathogens, is a hallmark of flavivirus infection (59). Autophagy is activated in part following its interruptive association with intracellular membranes and the accumulation of viral factors within ER (59). However, which viral protein triggers cellular autophagy is not fully understood. In fission yeast, the activation of autophagy can be recognized by the formation of random single or multiple cytoplasmic puncta caused by the accumulation of Atg proteins (61). As with cytoplasmic puncta of autophagy (61), the ZIKV-induced puncta-like structures also were seen as either single random protein specs or multiple specs, suggesting that these ZIKV proteins might mimic the actions of the Atg proteins (Fig. 1 C, a). Indeed, under nitrogen-starvation conditions, specific protein specs appeared in cells and showed a distribution pattern similar to that of Atg1 (Fig. 1 C, b). Further detailed study of ZIKV proteins is needed to determine whether they activate autophagy.

Several studies have demonstrated that a number of ZIKV-induced cytopathic effects may contribute to microcephaly, including the inhibition of neuronal cell proliferation, disturbance of host cell-cycle regulation, and the induction of cell death or apoptosis (3, 7, 8, 62). However, the ZIKV protein(s) responsible for these cytopathic effects was unknown. We demonstrate here that five structural ZIKV proteins (anaC, C, prM, M, and E) and two nonstructural ZIKV proteins (NS2B and NS4A) contribute, at least in part, to ZIKV-induced cytopathic effects, including growth restriction (Fig. 2A), cell hypertrophy (Fig. 2B), cell-cycle dysfunction (Fig. 2C), and the induction of cell death (Fig. 3). Interestingly, all the structural ZIKV proteins, with the exception of the Pr signal peptide, conferred cytopathic activities. Because anaC or prM are essentially the same protein present in different forms at different phases of the viral life cycle, it would be interesting to examine their differences and delineate their potential roles in interacting with host cells.

The E protein is a major viral surface protein involved in various steps of the viral life cycle (63). Early sequence and structural comparisons of the ZIKV E protein with that of other flaviviruses suggest that overall the ZIKV E protein is unique among flaviviruses, although parts of it resemble its homologs in WNV, JEV, or DENV (64, 65). During flaviviral assembly, E interacts with prM to form the prM–E heterodimers that protrude from the viral surface in the noninfectious and immature viral particles (25). It also is involved in fusing the viral membrane with the host endosome membrane. Therefore, it potentially could be a useful antigen for the development of vaccines (66, 67). In addition, we demonstrated
here that the ZIKV E protein has strong cytotoxic effects, including cell death. Thus, it may be an attractive viral target for weakening ZIKV-induced cytopathic effects.

Two nonstructural proteins, NS2B and NS4A, also displayed cytopathic effects similar to those of the structural proteins. Like the structural proteins, both NS2B and NS4A are membrane-associated proteins that localized primarily to the ER (Fig. 1 B, c). The lethal effect of NS2B is interesting because it encodes a co-factor of viral protease that is required for enhancing enzymatic activity and substrate specificity (68, 69). Coexpression of the NS2B-NS3 protease induces cell death and apoptosis in DENV, WNV, and JEV (70–72). It is not known whether the ZIKV NS2B-NS3 protease also induces apoptosis. Conceivably, the observed ZIKV-induced cytopathic effects also could be caused by combinations of different ZIKV proteins. As a result, it is possible that proteins that are nontoxic by themselves may become toxic when they form a complex, and vice versa.

The ER is the virus factory in ZIKV-infected neuronal cells in the newborn mouse brain (18). Examination of ZIKV-infected neurons, astrocytes, and pyriform cells by electron microscopy suggested that the most striking changes were hypertrophy of astrocytes and hyperchromatic nuclear debris in pyriform cells (18). Here we demonstrated that the NS4A protein localized specifically to the ER of fission yeast cells, where it induced hypertrophy and nuclear fragmentation (Figs. 1B, c, and 2B and C, a).

Our genetic and mechanistic studies of the molecular actions of NS4A revealed that NS4A-induced growth retardation and cytopathic effects were mediated specifically through Tor1 and Tip41 of the TOR cellular stress-response pathway (Fig. 4). In particular, we showed that deletion of Tor1 essentially blocked NS4A-induced cell hypertrophy, inhibition of colony formation, and growth delay (Fig. 4), suggesting that Tor1 was primarily responsible for these effects. These findings are consistent with the role of Tor1 in regulating cellular growth and cell size control (55, 56). Our data further suggest that the NS4A effects also were mediated, at least in part, via inhibition of Tip41 activity. The expression of NS4A protein in the ΔTip41 cells worsened the NS4A-induced growth delay (Fig. 4 D, Bottom). Moreover, it intensified NS4A-induced cell hypertrophy (Fig. 4 A, a, Bottom Right) by producing a spherical phenotype (Fig. 4 A, a, Bottom Right). Most interestingly, this spherical phenotype mimicked the reduced cell growth induced by ΔTor1 cells. The action of NS4A seemed to be at least in part like that of Tip41 protein. This premise is supported by the fact that Tip41 is a negative regulator of Tor1 (57, 58). Additional experiments are needed to verify this possibility.

The TOR signaling pathway is a highly conserved regulatory system across the evolutionary span from yeast to humans (73, 74). It is a central cellular sensor system that is responsible for the reaction and adjustment to cellular stress such as oxidative stress, nitrogen starvation, and flaviviral infections (75, 76). The fine balance between autophagy and programmed cell death following viral infection is controlled in part by the TOR pathway (77). Our findings on the actions of NS4A indicate that NS4A plays a functional role in manipulating this regulatory signaling network. Notably, during the preparation of this manuscript, a report was published showing that NS4A and NS4B proteins induce autophagy and inhibit neurogenesis through deregulation of Akt-mTOR signaling in human fetal neural stem cells (38). Our results described here are largely in agreement with that report. In addition, we showed that NS4A confers its cytopathic effects specifically through Tor1 and Tip41, which are the human equivalents of Tsc1 and Tip41 proteins (58, 78). It would be interesting to examine further whether the other six ZIKV proteins exert an effect similar to that of NS4A.

In summary, we characterized all the ZIKV proteins and small peptides in the fission yeast model system. In searching for the viral factors that are responsible for inhibiting cell proliferation, disturbance of cell-cycle, and induction of cell death during ZIKV infection, we discovered that five structural ZIKV proteins and two nonstructural ZIKV proteins conferred effects similar to those observed in ZIKV-infected mouse or human neuronal cells (1, 3, 7, 8). The results of our mechanistic studies suggest that those cytopathic effects likely resulted from cellular oxidative stress and the activation of cellular autophagy. In particular, we showed that NS4A causes cytopathic effects by modulating the TOR signaling pathway through coordinated and counterbalancing actions on Tor1 and Tip41. The results presented here provide a primary reference for future studies validating these effects in mammalian cells.

Materials and Methods

Cell and Growth Media. A wild-type fission yeast SP223 strain (h, ade6-216, leu1-32, ura4-294) was used in this study (36, 41). The Tor1-deletion mutant strain MA99 (h, tor1Δura4- leu1-32, ura4-Δ18, ade6-M216) and the Tip41-deletion mutant strain 13-24 (h, vsp24Δura4- leu1-32, ura4-294, ade6-M216) were described previously (55, 58). Standard yeast extract with supplements (YES) complete medium or minimal EMM selective medium supplemented with adenine, uracil, leucine, or thiamine (20 μM) was used to grow fission yeast cells or to select for plasmid-carrying cells, respectively. LB medium supplemented with Ampicillin (100 μg/ml) was used for growing Escherichia coli Top 10 or DH5α cells and for DNA transformation. All reagents used to prepare for the yeast and bacterial culture media, including thiamine, were purchased from Sigma-Aldrich.

Plasmids. A fission yeast gene-expression vector system, which includes pYZ1N and pYZ3N gene-expression vectors, was used as previously described (39). The pYZ1N vector was used to test ZIKV gene functions. The pYZ3N vector was used to visualize the intracellular location of each viral protein, with a GFP tag at the N′ end of the protein. These plasmids carry an nmt1 promoter. Under this inducible gene-expression system, viral gene expression can be either repressed or induced in the presence or absence of thiamine, respectively (48, 79). These vectors carry a LEU2 gene as a selection marker.

Molecular Cloning of ZIKV Proteins in Fission Yeast. ZIKV MR766 viral genomic cDNA was generated by reverse transcription of ZIKV genomic viral RNA. It was derived from a viral extract that was isolated from ZIKV-infected Vero cells (a gift from H. Tang, Florida State University, Tallahassee, FL). The ZIKV reference strain MR766 was used for this study because it was the first ZIKV strain isolated from the Zika forest of Uganda (80). It is highly neurotropic and is virulent in young mice, and its replication in mouse brain causes death (81). It also causes a number of cytopathic effects including cell-cycle abnormalities and cell death in human neuronal progenitor cells (7), and it induces a microcephaly-like phenotype in a human BRSOs model (2, 7).

A total of 14 known MR766 ZIKV viral protein cDNA gene products were shotgun-cloned into a fission yeast gene-expression vector system that we developed for large-scale cloning (39, 82). All gene cloning was done in a unidirectional fashion with positive identification of the gene insertions, based on α-complementation of X-Gal (Sigma) in E. coli. An inducible gene transcriptional nmt1 promoter (39, 48) was used to allow the measurement of gene-specific effects. Molecular cloning of the ZIKV proteins into the pYZ3N GFP expression vector generated GFP-tagged ZIKV viral gene products. The ZIKV viral gene inserts in the pYZ1N gene-expression vector are without tags. All the primers that contained specific restriction enzymes for molecular cloning and were used to clone the 14 ZIKV viral protein-encoding nucleotides into pYZ1N and pYZ3N vectors are shown in Tables S1 and S2. The PCR DNA fragments that were amplified with specific primers for cloning into the pYZ1N and pYZ3N vectors are shown on agarose gels (Fig. S1 A, a, and B, a). The ZIKV viral gene inserts cloned into the pYZ1N and pYZ3N vectors were verified by restriction digests (all restriction endonucleases were purchased from New England Biolabs) (Fig. S1 A, a, and B, b) and by Sanger sequencing. Recombinant DNA Transformation and Inducible ZIKV Gene Expression. The ZIKV gene-carrying pYZ plasmids were transformed into the wild-type fission yeast SP223 strain by electroporation (39, 82). Successful transformation of the respective ZIKV-containing plasmids was verified by single-colony PCR (Fig. S1 A, a, and B, c) as described previously (82). The transformants were selected for leucine on a minimal selective medium. To measure ZIKV gene-specific activities, a single yeast colony, which carries a specific ZIKV gene-containing plasmid, was grown to log phase on the special EMM liquid medium supplemented with 20 μM of thiamine. Cells then were harvested and resuspended three times with cold water to remove thiamine. Finally, 1 × 10^6 cells/ml were reincubated into fresh specific EMM liquid medium without thiamine to induce gene expression (gene-on condition) or with thiamine to suppress gene expression (gene-off condition, used as controls). The cell suspensions...
were incubated at 30 °C with constant shaking before observation (48, 79). Successful expression of the respective ZIKV mRNA transcripts was verified by RT-PCR using the SuperScript III One-Step RT-PCR System with Platinum Taq High Fidelity (catalog no. 12574-030; Invitrogen).

Determination of Subcellular Localization. The ZIKV viral proteins fused to GFP at their 5’ ends were produced in fission yeast cells from the pY2ZN gene-expression vector. To avoid artifacts caused by high-level expression of the ZIKV proteins, 10 nM of thiamine was added to the EMM medium to reduce the level of ZIKV protein expression (42, 82). The subcellular localization of each ZIKV protein was visualized, typically within 20 h after GI, by fluorescent microscopy. To verify the specific subcellular location of ZIKV protein, fission yeast cellular proteins that were known to locate specifically in ER (Gp116), Golgi (Ynd1), and cytoplasmic puncta (Atg1) were used for comparison. These proteins were tagged at the C-terminal ends with YFP and were previously described by Matsuyama et al. (42). A Leica DMR fluorescence microscope equipped with a high-performance charge-coupled device camera (Hamamatsu) and OpenLab software (Improvision, Inc.) were used for all image analyses. For the observation of GFP alone, a Leica L5 filter, which has an excitation of 480/40 nm and emission of 527/30 nm, was used. For the colocalization of GFP- and YFP-tagged proteins, a Leica S Green (YPFGP) filter, which has an excitation of 500/20 nm and emission of 555/30 nm, was used. This filter was used for the observation of both GFP and YFP. YFP cannot be excited under the CFP filter, which has an excitation of 480/40 nm and emission of 527/30 nm, no YFP signal is detected under the CFP filter. Thus, that filter was used to distinguish the signal of YFP from that of GFP.

Because ZIKV infection could have high viremia resulting in high levels of ZIKV proteins, each ZIKV protein also was expressed over time with the full strength of the nmt1 promoter without thiamine. The effect of high-level ZIKV protein expression on the subcellular localization of each protein also was documented with the GFP alone as a control and was compared with the localization of each ZIKV protein at low levels of expression.

Measurement of Cell Proliferation and Cell-Cycle Profiling. To identify which ZIKV protein is responsible for ZIKV-associated growth inhibition, we used the colocalization assay and comparison of proliferation and viability (46, 47) and the cellular growth kinetics to quantify cellular growth, as described previously (41, 83). Briefly, the fission yeast culture was prepared as described above. About 100 μL of liquid culture was spread onto the selective EMM agar plates with and without thiamine. The agar plates were incubated at 30 °C for 4–6 d to observe the presence or absence and, when present, the size of the forming colonies. The absence of colonies on the agar plates indicated a possible cell-killing effect. Colony sizes smaller than the control typically suggest reduced cellular growth.

For quantitative measurements of growth kinetics, liquid cell cultures were grown in a 96-well microtiter plate containing the selective EMM medium. Cell cultures were grown at 30 °C in an incubator with moisture. Cellular growth was measured at OD_{600} over the indicated time period using a spectrophotometer.

Cell-cycle profiles of the cells expressing ZIKV proteins were obtained by measuring DNA content using flow cytometry, as described previously (41, 82). To measure the effect of ZIKV protein on the G1 phase of the cell cycle, the fission yeast cells were cultured in the regular EMM medium, in which fission yeast cells are mostly in the G2/M phase of the cell cycle. To measure the effect on the G2/M phase of the cell cycle, fission yeast cells were first prepared in low-nitrogen medium, in which fission yeast cells are enriched in the G1 phase of the cell cycle (41). The DNA content was analyzed on a FACS-Canto II flow cytometer (Becton Dickinson) using FACS DIVA 6.3 software (Becton Dickinson). Ten thousand events were collected, and the DNA content corresponding to cells in G1 and G2 phases was determined as the FL-2 parameter. FL-2 measures the amount of propidium iodide fluorescence emitted through a 585-nm band-pass filter.

Measurement of Cell Hypertrophy, Nuclear Morphology, and Cell Death. The effects of ZIKV protein expression on fission yeast cell and nuclear morphology were examined 45 h after GI. Cell morphology was observed using bright-field microscopy. The overall cell morphology was evaluated by flow cytometry using FSC analysis (41). Ten thousand cells were collected, and the FSC and SSC were measured for each cell population. The FSC is proportional to the cell surface area and thus measures cell size. The SSC determines intracellular complexity because it is proportional to cell granularity. Correlated measurements of FSC and SSC allow the differentiation of cell shapes in a heterogeneously cell population.

The nuclear morphology was observed with Hoechst stain, a blue fluorescent dye that specifically stains double-stranded DNA. Stained cells were observed with a Leica A4 filter with an excitation of 360/40 nm and emission of 470/40 nm. Cell viability was evaluated by Trypan blue staining (50) and by a commercial live/dead yeast viability assay (Invitrogen) (47, 51). Trypan blue is a dazoy dye that stains only dead cells; live cells with intact cell membranes are not stained. The live/dead yeast viability assay measures cell viability by monitoring intracellular metabolic activities with FUN-1 staining (Molecular Probes) using a Leica DM fluorescence microscope with an 1000/2× long-path Chroma filter cube. Metabolically active cells convert yellow-green fluorescent intracellular FUN-1 into red-orange intravacuolar structures, which emit at 590 nm. Metabolically inert or dead cells exhibit bright, diffuse, green-yellow fluorescence at ~540 nm. FUN-1–stained cell images were collected using an S Green filter for green and an N2.1 filter (emission: LPS90lexcitation: 515–560 nm) for red fluorescence. Final images were generated by fluorescence merging.

The induction of cellular oxidative stress by ZIKV proteins was measured as the expression of ROS, which was detected by a ROS-specific dye, DHE (Sigma), that produces red fluorescence in the presence of ROS, as described previously (82, 84, 85). Cells were grown as described above; 48 h after GI, DHE was added to a final concentration of 5 μM, and ROS were detected by fluorescent microscopy.

Statistical Analysis. We used a pairwise Student t test (Microsoft Excel 2010) for the described statistical analysis.

ACKNOWLEDGMENTS. We thank Dr. Hongli Tang, Florida State University, for providing the ZIKV MR766 viral extract and Dr. Volodymyr Gerzanich, University of Maryland, for assistance with fluorescence microscopy. This work was supported in part by funding from the University of Maryland Medical Center (R.Y.Z.).

Ikai N, Nakazawa N, Hayashi T, Yanagida M (2011) The reverse, but coordinated, roles of Tor2 (TORC1) and Tor1 (TORC2) kinases for growth, cell cycle and separase-mediated mitosis in Schizosaccharomyces pombe. Open Biol 1(1):i10007.

Fig. S1. Confirmation of molecular cloning of the ZIKV MR766 viral genome into the fission yeast gene-expression pYZ1N and pYZ3N system. (A) Molecular cloning into the pYZ1N gene expression vector. (a) Results of PCR-amplified products of each ZIKV ORF-encoding DNA sequence from ZIKV viral cDNA. (b) Endonuclease restriction digestions of the ZIKV ORF-encoding DNA inserts that were cloned into the pYZ1N. Plasmid DNAs were propagated and isolated from E. coli. (c) Results of yeast colony PCR showing correct inserts of respective ZIKV ORF-carrying plasmids from transformed fission yeast SP223 cells. (B, a–c) Gels for molecular cloning of the ZIKV genome into the pYZ3N vector are shown as in A. The order of ORFs from 1–14: anaC, C, PR, M, prM, E, 2K, NS1, NS2A, NS2B, NS3, NS4A, NS4B, and NS5. M, molecular marker.

Fig. S2. Comparison of intracellular localization patterns of ZIKV proteins under high and low levels of protein expression. Only ZIKV proteins that showed differences in localization patterns and possible cytoplasmic puncta are shown here. All GFP-ZIKV proteins were expressed from the pYZ3N gene-expression vector through the inducible nmt1 promoter. The high level of ZIKV protein was produced with full induction of the nmt1 promoter by complete removal of thiamine from the growth medium. The subcellular localizations of each ZIKV protein were observed between 24 and 48 h after GI. The low level of ZIKV protein was produced with partial induction of the nmt1 promoter using 10 nM thiamine in the growth medium (14, 51). The subcellular localizations of each ZIKV protein were observed within 20 h after GI.
Fig. S3. Effect of ZIKV protein production on fission yeast cell morphology. (A) Individual cell morphology. (a) Structural ZIKV proteins. (b) Nonstructural ZIKV proteins. Each image was obtained 45 h after GI using bright-field microscopy. (B) Overall cell morphology as shown by FSC analysis. Ten thousands cells were measured 48 h after GI. The FSC measures the distribution of all cell sizes. The SSC determines intracellular complexity. (a) Structural ZIKV proteins. (b) Nonstructural ZIKV proteins.
Fig. S4. Effects of ZIKV proteins on nuclear morphology and cell-cycle regulation. (A) Nuclear morphology. Cells were stained with Hoechst blue fluorescent DNA dye. All cell and nuclear morphologies were examined 45 h after GI. (a) An empty pYZ1N vector control. (b) Structural ZIKV proteins. (c) Nonstructural ZIKV proteins. (B) Cell-cycle profiling with starting cells predominantly in the G2 phase of the cell cycle. All cells were grown in regular EMM medium. The effect of ZIKV protein on the cell cycle was measured by flow cytometry 48 h after GI. (a) Structural ZIKV proteins. (b) Nonstructural ZIKV proteins. (C) Cell-cycle profiling with starting cells predominantly in the G1 phase of the cell cycle. All cells were grown in the low-nitrogen EMM medium to enrich G1 cells [6]. The effect of ZIKV protein on cell cycle was measured by flow cytometry 48 h after GI. (a) Structural ZIKV proteins. (b) Nonstructural ZIKV proteins.
Table S1. Primers used to clone the Zika genes into the pYZ1N fission yeast expression vector

<table>
<thead>
<tr>
<th>Gene</th>
<th>Size, bp</th>
<th>5' primer</th>
<th>3' primer</th>
<th>Cloning sites</th>
</tr>
</thead>
<tbody>
<tr>
<td>anaC</td>
<td>366</td>
<td>CTCG CATATG AAAAACAAAAGAAGAATAACG</td>
<td>CTCG GGATCC TTA GCCATGGTGGTGGATCAGG</td>
<td>NdeI/BamHI</td>
</tr>
<tr>
<td>C</td>
<td>312</td>
<td>CTCG CATATG AAAAACAAAAGAAGAATAACG</td>
<td>CTCG GGATCC TTA AGCTCTCTCTCTCTCTCTTACG</td>
<td>NdeI/BamHI</td>
</tr>
<tr>
<td>Pr</td>
<td>279</td>
<td>CTCG CATATG GCCAGATCACATGACAGCGGG</td>
<td>CTCG GGATCC TTA TCTTCATAGGAGGCTGGGTTC</td>
<td>NdeI/BamHI</td>
</tr>
<tr>
<td>M</td>
<td>225</td>
<td>CTCG CATATG GCGGATCTCTCTCTCT</td>
<td>CTCG GGATCC TTA ACTGATAGCGGACAAATC</td>
<td>NdeI/BamHI</td>
</tr>
<tr>
<td>prM</td>
<td>504</td>
<td>CTCG CATATG GCAGATGACTAGAGCAGGG</td>
<td>CTCG GGATCC TTA AGCTATAGCGGACAAATC</td>
<td>NdeI/BamHI</td>
</tr>
<tr>
<td>E</td>
<td>1,512</td>
<td>CTCG CATATG GCTCCCCAAGAATAACGAG</td>
<td>CTCG GGATCC TTA TCAATGATACATGACAGG</td>
<td>NdeI/BamHI</td>
</tr>
<tr>
<td>2K</td>
<td>69</td>
<td>CTCG CATATG TGCTCCCCAAGAATAACGAG</td>
<td>CTCG GGATCC TTA TCAATGATACATGACAGG</td>
<td>NdeI/BamHI</td>
</tr>
<tr>
<td>NS1</td>
<td>1,056</td>
<td>CTCG CATATG AACGAACTTGGATGGTGGA</td>
<td>CTCG GGATCC TTA AGCTATAGCGGACAAATC</td>
<td>NdeI/BamHI</td>
</tr>
<tr>
<td>NS2A</td>
<td>678</td>
<td>CTCG CATATG GCCAGATCACATGACAGCGGG</td>
<td>CTCG GGATCC TTA TCTTCATAGGAGGCTGGGTTC</td>
<td>NdeI/BamHI</td>
</tr>
<tr>
<td>NS2B</td>
<td>390</td>
<td>CTCG CATATG GCAGAGATCACTAGACGCGGG</td>
<td>CTCG GGATCC TTA AGCTATAGCGGACAAATC</td>
<td>NdeI/BamHI</td>
</tr>
<tr>
<td>NS3</td>
<td>1,851</td>
<td>CTCG CATATG GGAGCGGCTTTGGGAGTAAT</td>
<td>CTCG GGATCC TTA AGCTATAGCGGACAAATC</td>
<td>NdeI/BamHI</td>
</tr>
<tr>
<td>NS4A</td>
<td>381</td>
<td>CTCG CATATG GCGGCCGCTGTCGATGAC</td>
<td>CTCG GGATCC TTA AGCTATAGCGGACAAATC</td>
<td>NdeI/BamHI</td>
</tr>
<tr>
<td>NS4B</td>
<td>753</td>
<td>CTCG CATATG GGAGCGGCTTTGGGAGTAAT</td>
<td>CTCG GGATCC TTA AGCTATAGCGGACAAATC</td>
<td>NdeI/BamHI</td>
</tr>
<tr>
<td>NS5</td>
<td>2,709</td>
<td>CTCG CATATG GCCAGATCACATGACAGCGGG</td>
<td>CTCG GGATCC TTA AGCTATAGCGGACAAATC</td>
<td>NdeI/BamHI</td>
</tr>
</tbody>
</table>

Restriction enzymatic sites are underlined.

Table S2. Primers used to clone the Zika genes into the pYZ3N fission yeast expression vector for the construction of GFP-fusion proteins

<table>
<thead>
<tr>
<th>Gene</th>
<th>Size, bp</th>
<th>5' primer</th>
<th>3' primer</th>
<th>Cloning sites</th>
</tr>
</thead>
<tbody>
<tr>
<td>anaC</td>
<td>366</td>
<td>CTCG CATATG AAAAACAAAAGAAGAATAACG</td>
<td>CTCG GGATCC TTA GCCATGGTGGTGGATCAGG</td>
<td>NotI/BamHI</td>
</tr>
<tr>
<td>C</td>
<td>312</td>
<td>CTCG CATATG AAAAACAAAAGAAGAATAACG</td>
<td>CTCG GGATCC TTA AGCTCTCTCTCTCTCTCTTACG</td>
<td>NotI/BamHI</td>
</tr>
<tr>
<td>Pr</td>
<td>279</td>
<td>CTCG CATATG GCCAGATCACATGACAGCGGG</td>
<td>CTCG GGATCC TTA TCTTCATAGGAGGCTGGGTTC</td>
<td>NotI/BamHI</td>
</tr>
<tr>
<td>M</td>
<td>225</td>
<td>CTCG CATATG GCGGATCTCTCTCTCT</td>
<td>CTCG GGATCC TTA ACTGATAGCGGACAAATC</td>
<td>NotI/BamHI</td>
</tr>
<tr>
<td>prM</td>
<td>504</td>
<td>CTCG CATATG GCAGATGACTAGAGCAGGG</td>
<td>CTCG GGATCC TTA AGCTATAGCGGACAAATC</td>
<td>NotI/BamHI</td>
</tr>
<tr>
<td>E</td>
<td>1,512</td>
<td>CTCG CATATG GCTCCCCAAGAATAACGAG</td>
<td>CTCG GGATCC TTA TCAATGATACATGACAGG</td>
<td>NotI/BamHI</td>
</tr>
<tr>
<td>2K</td>
<td>69</td>
<td>CTCG CATATG TGCTCCCCAAGAATAACGAG</td>
<td>CTCG GGATCC TTA TCAATGATACATGACAGG</td>
<td>NotI/BamHI</td>
</tr>
<tr>
<td>NS1</td>
<td>1,056</td>
<td>CTCG CATATG AACGAACTTGGATGGTGGA</td>
<td>CTCG GGATCC TTA AGCTATAGCGGACAAATC</td>
<td>NotI/BamHI</td>
</tr>
<tr>
<td>NS2A</td>
<td>678</td>
<td>CTCG CATATG GCCAGATCACATGACAGCGGG</td>
<td>CTCG GGATCC TTA TCTTCATAGGAGGCTGGGTTC</td>
<td>NotI/BamHI</td>
</tr>
<tr>
<td>NS2B</td>
<td>390</td>
<td>CTCG CATATG GCAGAGATCACTAGACGCGGG</td>
<td>CTCG GGATCC TTA AGCTATAGCGGACAAATC</td>
<td>NotI/BamHI</td>
</tr>
<tr>
<td>NS3</td>
<td>1,851</td>
<td>CTCG CATATG GGAGCGGCTTTGGGAGTAAT</td>
<td>CTCG GGATCC TTA AGCTATAGCGGACAAATC</td>
<td>NotI/BamHI</td>
</tr>
<tr>
<td>NS4A</td>
<td>381</td>
<td>CTCG CATATG GCGGCCGCTGTCGATGAC</td>
<td>CTCG GGATCC TTA AGCTATAGCGGACAAATC</td>
<td>NotI/BamHI</td>
</tr>
<tr>
<td>NS4B</td>
<td>753</td>
<td>CTCG CATATG GGAGCGGCTTTGGGAGTAAT</td>
<td>CTCG GGATCC TTA AGCTATAGCGGACAAATC</td>
<td>NotI/BamHI</td>
</tr>
<tr>
<td>NS5</td>
<td>2,709</td>
<td>CTCG CATATG GCCAGATCACATGACAGCGGG</td>
<td>CTCG GGATCC TTA AGCTATAGCGGACAAATC</td>
<td>NotI/SalI</td>
</tr>
</tbody>
</table>

Restriction enzymatic sites are underlined.