Evolutionary consequences of multidriver environmental change in an aquatic primary producer

Georgina L. Brennan*, Nick Colegrave*, and Sinéad Collins*

*Ashworth Laboratories, University of Edinburgh, Edinburgh, EH9 3FL, United Kingdom; and Molecular Ecology and Fisheries Genetics Laboratory, School of Biological Sciences, Bangor University, Bangor LL57 2UW, United Kingdom

Edited by David M. Karl, University of Hawaii, Honolulu, HI, and approved July 28, 2017 (received for review February 27, 2017)

Climate change is altering aquatic environments in a complex way, and simultaneous shifts in many properties will drive evolutionary responses in primary producers at the base of both freshwater and marine ecosystems. So far, evolutionary studies have shown how changes in environmental drivers, either alone or in pairs, affect the evolution of growth and other traits in primary producers. Here, we evolve a primary producer in 96 unique environments with different combinations of between one and eight environmental drivers to understand how evolutionary responses to environmental change depend on the identity and number of drivers. Even in multidriver environments, only a few dominant drivers explain most of the evolutionary changes in population growth rates. Most populations converge on the same growth rate by the end of the evolution experiment. However, populations adapt more when these dominant drivers occur in the presence of other drivers. This is due to an increase in the intensity of selection in environments with more drivers, which are more likely to include dominant drivers. Concurrently, many of the trait changes that occur during the initial short-term response to both single and multidriver environmental change revert after about 450 generations of evolution. In future aquatic environments, populations will encounter differing combinations of drivers and intensities of selection, which will alter the adaptive potential of primary producers. Accurately gauging the intensity of selection on key primary producers will help in predicting population size and trait evolution at the base of aquatic food webs.

multiple environmental drivers | adaptation | microbial evolution | Chlamydomonas | ocean global change biology

A growing body of evidence from experiments shows that functional traits in aquatic primary producers can be altered by evolution in the face of global change, which has to date been explored in terms of drivers such as temperature (1, 2) or CO₂ levels (3). These studies investigate the responses of primary producers to single aspects of global change (4), and the results are often used to understand how changes to the biological component of nutrient cycling, including air–water carbon exchange, will be impacted (5, 6). Recent short-term studies show that in multidriver environments, the majority of the organismal response is often explained by one or two drivers (7, 8). We call these dominant drivers (7). This study investigates how the evolutionary responses to dominant environmental drivers depend on the other drivers present. This helps link patterns of complex (multidriver) environmental change to the evolutionary potential of primary producers and informs the design of future experiments. We do this using an evolution experiment that disentangles the effects of driver number and identity on trait evolution in multidriver environments in a single-celled alga.

A small number of experiments have investigated the plastic and evolutionary responses to multiple drivers thus far (7, 9–12). These studies consistently show that both plastic and evolutionary responses to pairs of drivers differ from responses to either single driver. In the short term, the effect of multidriver environments on plastic responses (changes in phenotype in response to an environmental cue that does not require change in the genetic composition of the population) can be understood through the mode of interaction of the drivers (7, 13). However, we previously showed that when more than three drivers co-occur, average plastic responses in growth are explained by dominant drivers (7), because of either small interactions between nondominant or zero-sum interactions between drivers.

Aquatic primary producers will evolve under global change, due to their rapid cell division rates, and high standing genetic variation and ability to generate genetic variation (4, 14, 15). We do not currently have an empirically supported, general understanding of how natural selection differs between single- and multidriver environments. However, complex environmental change will be common in aquatic environments, with combinations and intensities of drivers having significant regional variation (8), so it is vital that we understand the joint contributions of the identity, number, and intensity of drivers to trait evolution in primary producers. Two nonexclusive mechanisms could cause natural selection to act differently in cases of complex (multidriver) versus simple (single driver) environmental change. First, if the number of independent traits under selection increases as the number of drivers in the environment increases, pleiotropic interactions could limit adaptation in complex environments more than in simple ones (16). Second, if selection intensity increases as the number of drivers increases, then the probability of population extinction increases with the number of drivers, but surviving populations will adapt more and more rapidly in environments with more drivers. These two mechanisms have different ecological consequences. If differences in evolutionary responses are mainly due to differences in pleiotropy...
under multidriver change, we expect that shifts in communities result mainly from changes in interactions between groups, with less trait evolution within groups than predicted based on single-driver experiments. In contrast, if the intensity of selection increases with the number of drivers, we expect that in addition to shifts in the taxonomic composition of communities, there will be changes in functional trait values within groups (17). Trait evolution in primary producers can in turn affect how food webs and aquatic nutrient cycles are impacted (18). Finally, if there are increased pleiotropic limitations as well as stronger selection in multidriver environments, then we expect more local extinctions and less trait evolution in surviving populations in multidriver relative to single-driver environments.

We use experimental evolution to measure how the number and identity of environmental drivers affect evolution in an initially isogenic population. Using many driver combinations allows us to disentangle the effects of driver number and identity on trait evolution, though some driver combinations are unrealistic (19, 20). The strength of this approach is that it builds a general understanding of how natural selection acts in multi-driver environments. However, the model system and environments suitable for this experimental design mean that our findings cannot be applied directly to the immediate debate on how marine life will respond to global change; the fundamental insights gained here must be translated to the appropriate systems and environments, which can be done in smaller targeted studies. Replicate clonal populations of Chlamydomonas reinhardtii were grown in 96 unique environments (each unique environment is referred to as a regime) with up to eight simultaneous drivers including elevated temperature, elevated CO2, periodic UVB exposure, reduced light intensity, reduced phosphate, acidification, reduced nutrients, and the addition of herbicide, for ~450 asexual generations. See Fig. 1 for a schematic and SI Appendix, Table S1 for drivers in each regime. See SI Appendix for a discussion of drivers and driver intensities. Discussions of plastic responses to single drivers were previously published in ref. 7. Because the populations were initially isogenic, genetic variation in the evolved populations is from novel mutations or other heritable changes (epigenetic mutations or transgenerational plasticity). Since the role of primary producers in aquatic systems is determined not only by their population growth rates but also by their trait values (21, 22), we measured evolutionary change in cell size and a commonly used proxy for primary production (chlorophyll) (23). Cell size is a “master trait” that constrains several organismal characteristics and biotic interactions for single-celled organisms, such as growth and metabolic rates (17), nutrient affinity (17), light absorption affinity (24), and predation (25).

Results

Following ~450 generations of evolution in 96 regimes, we compared the endpoints of evolution by measuring the growth rates of the evolved populations. Populations evolved in multidriver environments all reached similar growth rates by the end of the experiment. However, the small amount of variation in evolved growth rate was explained by a few individual drivers, regardless of which other drivers were present. These dominant drivers were elevated CO2 (Fig. 2C; $F_1, 77 = 5.454, P = 0.022$), elevated temperature (Fig. 2D; $F_1, 78 = 10.042, P = 0.002$), reduced phosphate (Fig. 2E; $F_1, 77 = 20.686, P < 0.0001$), and herbicide (Fig. 2F; $F_1, 77 = 22.036, P < 0.0001$). Here, CO2 increased growth rates, while the other dominant drivers decreased growth (SI Appendix, Fig. S4). The selection regimes themselves explained only 5% of the variation in growth rates of populations in their selection regimes. Thus, the dominant drivers drive growth selection. The overall effect of the number of environmental drivers in a selection regime on evolved population growth rate is not significant (Fig. 2B, white boxplots; $F_1, 71 = 0.043, P = 0.837$), and the small amount present was explained by variation among evolved replicate populations within regimes (43%). Thus, increasing the number of drivers in multidriver environments does not constrain the endpoint of evolution on average, at least in terms of population growth rates.

Evolved populations have undergone ~450 generations of evolution in their selection regimes (Fig. 1, time C). The direct response to selection compares the population growth rate of a population evolved in a given regime with the plastic response of a control population to that same regime. This measures the difference in plastic and evolutionary responses to an environment and estimates net adaptive change over the experiment. A positive response to selection indicates that evolution increases growth rates beyond the plastic response, and a negative direct response to selection indicates that evolution slows growth relative to the plastic response.

While populations converge on similar growth rates, the direct response to selection is larger when there are more drivers in selection regimes, so that populations in environments with more drivers evolve more to arrive at the same endpoint. This is because in environments with more drivers, populations tend to have lower initial growth rates (Fig. 2 B–F), which indicates stronger selection. This is consistent with extinctions occurring in seven and eight driver environments (Fig. 2B and SI Appendix, Fig. S1). Across all regimes, variation in the initial drop in growth rate explains variation in the direct response to selection, regardless of the number of drivers (Fig. 2A; effect of plastic response on direct response, $F_1, 341 = 69.356, P < 0.0001$). The larger direct response to selection in regimes with more drivers is thus attributable to stronger selection in these regimes. Intermediate timepoints were not characterized, so we cannot draw conclusions about the timing of adaptation. In addition to the average size of the direct response increasing with the number of drivers, a higher proportion of regimes contained populations with a positive direct response to selection when more drivers were present (SI Appendix, Fig. S2). This is unsurprising, because regimes with more drivers are more likely to contain a dominant driver, such that selection is strong enough to drive adaptation (7) (Fig. 2 B–F, gray boxplots and SI Appendix, Fig. S3). Rather than constraining evolution, as predicted by the pleiotropy hypothesis, increasing the number of drivers in an environment
leads to more adaptation due to stronger selection. Pleiotropic constraints may be present but do not override the effects of stronger selection here.

A few dominant drivers affected the direct response to selection. These were reduced phosphate ($F_1, 329 = 26.197, P < 0.0001$), herbicide ($F_1, 334 = 7.862, P = 0.005$), and elevated CO$_2$ ($F_1, 346 = 7.83, P = 0.005$) (see SI Appendix, Table S1 for regimes). The number of drivers in regimes explained less than 2% of the variation in cell size of the evolved populations, while variation among evolved populations within regimes (28%) and the identity of the environmental drivers (13%) explained most of the variation in cell size. Similarly, the positive relationship between

Before evolution, the trait values for cell size and chlorophyll content showed a large plastic response to the multidriver environments, but the plastic response was fully or nearly reversed by the end of the evolution experiment. Because traits converged on similar values across regimes after ~450 generations, the majority of variation must be explained by variation between replicate populations. This variation, though statistically significant, is extremely low.

Following evolution, there was little variation in cell size when populations were grown in their own regimes (Fig. 3A, triangles; 15.5 µm ± 0.41 µm; mean ± SD over all environments). The number of drivers in regimes explained less than 2% of the variation in cell size of the evolved populations, while variation among evolved populations within regimes (28%) and the identity of the environmental drivers (15%) explained most of the variation in cell size. Similarly, the positive relationship between

![Fig. 2.](image1.png) **Fig. 2.** The response of evolved populations under increasing numbers of drivers. Boxes show the (A) direct response to selection measured as the average number of cell divisions (d^{-1}) relative to control populations assayed in the same regime. Open circles show the average of evolved populations within each regime. The dashed line indicates that there is no difference between the growth rate of the evolved control and the multidriver-evolved populations, in the same selection regime. Average cell divisions (d^{-1}) of evolved populations assayed in (B) all regimes, (C) regimes with elevated CO$_2$, (D) regimes with elevated temperature, (E) regimes with reduced phosphate, and (F) regimes with herbicide. White symbols show multidriver populations assayed in their selection regimes, and gray symbols show control populations assayed in the same regimes. The dashed line (B–F) shows the average growth rate of control populations in the control environment.

![Fig. 3.](image2.png) **Fig. 3.** Trait values of *C. reinhardtii* before and after evolution in multidriver environments. Changes in (A) cell size, (B) proportion of chlorophyll-positive cells, and (C) chlorophyll autofluorescence per cell volume (1/µm3) in populations of *C. reinhardtii*. In all panels, black symbols show the response (±SD) for a given number of drivers, and gray symbols show control populations assayed in the same regimes. Circles represent the plastic response and triangles represent the evolved response.
cell size and population growth rates before evolution (SI Appendix, Fig. S5A; $r^2 = 0.33$, $P < 0.0001$) broke down after evolution (SI Appendix, Fig. S5B; $r^2 = 0.02$, $P = 0.006$). This suggests that the minimal variation in evolved cell size is neutral or near-neutral in terms of growth.

In this experiment, a proportion of the population often reversibly bleached (had no detectable chlorophyll autofluorescence using a flow cytometer) as a plastic response to regimes that reduced population growth rates. Before evolution, the proportion of chlorophyll-positive cells (chlorophyll autofluorescence detectable using a flow cytometer) in populations decreased as the number of drivers in an environment increased (Fig. 3B, circles; $F_4, 93 = 7.945$, $P = 0.0058$). In contrast, the number of drivers in an environment failed to explain variation in the proportion of chlorophyll-positive cells after ~450 generations (Fig. 3B, triangles; $F_3, 58 = 0.800$, $P = 0.375$). This is probably adaptive, as populations with higher proportions of chlorophyll-positive cells had higher population growth rates (SI Appendix, Fig. S6A; $r^2 = 0.47$, $P < 0.0001$; SI Appendix, Fig. S6B; $r = 0.24$, $P < 0.0001$), and photosynthesis is essential for rapid growth in media with no carbon additions (26). While reversible cell bleaching itself requires further study, the restoration of the capacity for photosynthesis is obviously adaptive here.

Before evolution, the chlorophyll concentration in cells depended on the number of drivers in the environment (Fig. 3C, circles; $F_4, 93 = 24.676$, $P < 0.0001$). This trend is absent after evolution (Fig. 3C, triangles; $F_3, 54 = 0.058$, $P = 0.811$), and chlorophyll autofluorescence per cell volume in evolved populations in their own regimes did not differ from that of evolved control populations in the control environment (12.15 ± 3.07 1/μm²; mean ± SD). This is consistent with populations having adapted to their environments, as they no longer show a standard sign of stress (27–29).

Discussion
To understand how the evolutionary response of primary producers depends on the identity and number of drivers in multidriver environments, we evolved microbial populations in 96 unique single- and multidriver environments. Both the absolute growth rate of the evolved populations and the direct response to selection (the amount of evolution needed to reach that growth rate) were explained by the presence of a few dominant environmental drivers. Surprisingly, the multidriver context in which dominant drivers occurred had little effect on the growth rate of evolved populations on average. However, populations had a larger direct response to selection in environments that contained more drivers, indicating that primary producers evolve more in response to dominant drivers when they occur in multidriver environments than when they occur singly. This is largely because, on average, selection is stronger in multidriver environments. Thus, populations evolving in multidriver environments adapt more but arrive at the same final growth rates as populations evolving in single-driver environments with the same dominant drivers.

We were initially surprised by these results. We had hypothesized that pleiotropic constraints would be more important in populations evolving in environments with more drivers because more traits would be under selection (30). Instead, the response to selection increases with the number of environmental drivers. Above a threshold number of drivers (seven, in this experiment), rapid adaptation was not possible, and populations went extinct. These results suggest that the number of traits under selection does not scale with the number of environmental drivers. This makes sense given that evolutionary responses are driven by a few dominant drivers (CO_2, low phosphate, temperature, and herbicide), so that the traits under selection may be more or less constant over the regimes containing a given dominant driver. As the number of drivers increases, dominant drivers are more likely to be present. The identity of dominant drivers in each regime partially explains the small differences in the response to selection in multidriver environments. The overriding effect of the dominant drivers is consistent with the acclimation response to these regimes (7), scenario-based experiments (8), and many physiological responses of microalgae to pairs of drivers (31–35). Our data are consistent with either small effects of driver interactions relative to the effects of dominant drivers or (nearly) zero-sum interactions among drivers.

Our findings highlight the importance of accurately gauging the intensity of selection for understanding the evolutionary potential of primary producers. Predicting the intensity of selection that a population is likely to experience requires knowing, first, which drivers are present locally and, second, the organismal responses to the dominant drivers. Since populations experience their local environment rather than a global average, this requires using regional rather than global patterns of multidriver change (5). The regimes in this experiment did not reflect realistic environments, nor were they intended to—the experiment was carried out using a laboratory model system and 96 different environments, with the goal of disentangling the roles of the number and identity of environmental drivers on evolution over hundreds of generations. In addition, functional groups (e.g., calcifiers, silicifiers, nitrogen fixers) of primary producers respond differently to dominant drivers (4, 36, 37). Our results also suggest that it could also be useful, when considering how primary producers may evolve under different climate change clusters (5), to group drivers based on their effects on growth (positive, negative, neutral) for different taxa when assessing whether or not we expect climate change clusters to drive evolution.

Our approach complements scenario-based studies. For example, Boyd et al. (5) modeled regional changes to multidriver regimes and used measured shifts in phytoplankton physiology to make qualitative predictions about shifts in biogeography. They detail the responses of coccolithophores (calcifiers) and diatoms (silicifiers) in two high latitude ocean provinces to shifts in temperature, CO₂, photosynthetically active radiation (PAR), iron, silicate, nitrate, and phosphate, as well as interactions between driver pairs. Based on plastic responses, they suggest that elevated temperature is likely to cause a poleward shift in coccolithophores, and high PAR, low phosphate, and low silicate are likely to favor coccolithophores over diatoms. A decrease in calcification is predicted for coccolithophores and a decrease in silification for diatoms. Our study suggests that, in addition, selection to increase both calcification and silification could drive evolution in multidriver environments. We also expect that evolution reverses some of the trait change predicted based on Boyd et al. (5). Adaptation could also result in (positive and negative) changes in growth rates eventually attenuating, based on data from single-driver evolution experiments (1, 2). This illustrates how we can use an understanding of how natural selection acts to refine predictions of trait change in multidriver environments.

Despite some populations having a large direct response to selection, evolution reversed plastic changes in several traits. This suggests that as populations adapt to multidriver environments, the function of evolving groups may change less than expected based on plastic responses to multidriver environments (plastic responses are circles in Fig. 3). Population growth rates, however, are not restored to control values in all regimes. Since the populations in this experiment are propagated by batch culture and were not allowed to reach carrying capacity, overall selection was to increase cell division rates (20). The lower growth rates in some regimes may be the result of physiological constraints, since resources can limit growth rates even after adaptation. For example, growth rates are lower in low-phosphate regimes than in phosphate-replete ones regardless of driver number (SI Appendix, Fig. S4). Despite this, the proportion of cells showing signs of stress (chlorophyll-negative and/or small cells) in evolved populations in the low-phosphate and low-nutrient environments returned to control values (Fig. 3). In contrast, populations evolved in the control environment produce
small cells and high proportions of chlorophyll-negative cells when grown in low-nutrient environments. Both the proportion of chlorophyll-positive cells and cell size are correlated with population growth rates, but this correlation is much weaker in evolved populations, largely because those traits have converged. This indicates that cells adapted to tolerate the low nutrient multidriver environments, even if they lack the resources to increase growth rates. Similarly, in environments with seven drivers, populations have low growth rates but normal chlorophyll content and cell sizes. This is in line with other studies that demonstrated that in poor-quality environments populations invest in maintaining cell condition (38, 39). In C. reinhardtii, cell size is related to population growth through its effect on cell division, as a critical size must be reached before cells divide (40–42). This trend of phenotypic reversion during adaptive evolution has also been seen in high-CO2 environments (43), indicating that some phenotypic reversion may be a common outcome of evolution (44).

We did not examine the molecular basis of trait reversion here but offer two nonexclusive explanations. First, our results are consistent with compensatory mutations affecting trait evolution in multidriver environments. Following a large drop in population fitness, the first beneficial mutation fixed often has a large effect (45) and can change several traits simultaneously. This may be followed by compensatory mutations that increase fitness by reversing the effect of the initial mutation on traits where change was not adaptive (46–48). Second, heritable epigenetic mutations or transgenerational plasticity can contribute to early adaptation (7) but eventually be replaced by genetic mutations (49–52). Understanding how trait reversion is linked to adaptation presents an opportunity to improve our predictions of functional trait values in primary producers in aquatic environments.

Laboratory evolution experiments use simplified environments and populations to gain insights into the fundamental action of natural selection. Applying the results of this experiment to natural phytoplankton population requires taking into account how population size and diversity (among other factors, such as recombination rates) affect adaptation (53). Previous work has shown that higher standing genetic variation can allow adapting populations to evolve faster (54–57). Similarly, recombination and plasticity (1, 58) can both speed up adaptation (59). The power of simplified laboratory experiments lies in providing insights into how natural selection works; applying these insights requires accounting for other processes that can modify evolution, and for the specific biology of wild populations.

Conclusions

We show that populations adapt more in response to dominant drivers when those drivers occur in a multidriver context, until environments deteriorate enough to cause extinctions. Alongside this, adaptation can result in the reversion of the initial changes to trait values in multidriver environments. While we expect the result of evolution being driven primarily by a few dominant drivers in multidriver environments to be general, the identity of dominant drivers will be organism- and context-dependent, such that a variety of approaches (large factorial experiments like this one, scenario-based models and experiments, taxa-specific physiological, and evolution studies) are needed to understand how primary producers will respond to multiple environmental drivers. In addition, the evolutionary potential of populations will depend on demography, existing genetic variation, and the rate at which new variation can be generated by recombination, migration, and the availability of spatial and temporal refugia. Our results emphasize the importance of gauging the intensity of selection on populations under global change (60) by linking complex environmental change to organismal fitness. This informs our understanding of the extent to which primary producers evolve in multidriver environments. A second challenge is understanding the evolutionary reversion of plastic responses in functional traits, as this will determine the function of primary producers under complex environmental change.

Methods and Materials

Selection Experiment. All populations were founded from one colony originating from a single cell of C. reinhardtii (CC-2931, mt-; Chlamydomonas Resource Center, University of Minnesota), grown in sterile Sueoka’s high salt medium with Tris-HCl (pH 5.5), ref. 61 (SI Appendix, Tables S2 and S3). The ancestral population was split into 576 populations (Fig. 1 and SI Appendix, Table S1). A single founder colony ensures that population evolution uses de novo variation. Environmental changes occurred in one step at the beginning of the experiment (control level in brackets): increased CO2 to 2,000 ppm (420 ppm), temperature to 26 °C (25 °C), decreased pH to 6.5 (7.2 pH), light levels to 18 μmol m−2 s−1 (32 μmol m−2 s−1), reduced phosphate to 1.69 mM (13.56 mM), nutrient depletion to 25% (100% nutrients SI Appendix, Table S3), and 0.5 μM of atrazine (no herbicide). Regimes with UV were dosed with 8.1 KJ m−2 UVB twice a week (SI Appendix, Table S4). Populations evolved in environments with at least one driver are multidriver-evolved populations. Populations evolved in the control environment are control populations. All populations were propagated by batch culture. See SI Appendix for details.

Assays of Population Growth Rates. An acclimation period of one transfer cycle was used for all assays (SI Appendix).

The average rate of cell division per day was calculated over a single batch culture-length time using Eq. 1 (7). See SI Appendix for details.

\[\text{Rate of Division (day}^{-1}) = \frac{\log_2(N_f/N_0)}{(t_f - t_0)} \]

\[N_f \text{ is the cell density (cells per mL) at time } t_0 \text{ (hours)} \text{ and } N_f \text{ is the cell density at time } t_f \text{.} \]

The direct response to selection was measured by comparing the growth of a multidriver-evolved population and a control population in the same multidriver regime (Fig. 1). The direct response to selection was calculated using Eq. 2 and scaled to the number of divisions (d−1) of the control population in the relevant regime. See SI Appendix for details.

\[s = \frac{(E - C)}{C} \]

\[E \text{ is the number of divisions (d−1) of multidriver-evolved populations in their regimes, and } C \text{ is the number of divisions (d−1) of evolved control populations in the same regimes.} \]

Flow Cytometric Analysis of Physiological Parameters. An acclimation period of one transfer cycle was used for all assays, as above. A FACSCANTO was used to determine red autofluorescence (chlorophyll a and b), event number (cell density), and forward scatter (cell size) (1, 62). See SI Appendix.

Statistical Analysis. The effects of (i) driver identity and (ii) the plastic response on the response to selection were analyzed with a mixed model in R (63), using the packages lme4 and lmerTest. The plastic response and the presence/absence of drivers are fixed factors. The effects of (i) the number of drivers and the (ii) identity of the drivers on evolved growth rate were also analyzed using a mixed model. The number of drivers (0–7) and driver identity (e.g., CO2) are fixed factors. Regime identity (SI Appendix, Table S1), batch number, and replicate populations within regime are random factors (see SI Appendix for details).

The contribution of fixed factors was estimated using Eq. 3 (as described in ref. 7):

\[\text{percentage of Fixed Effect Variance} = \left(\frac{\sigma^2 \times (b^2 - b^2_{\text{res}})}{\sigma^2} \right) \times 100, \]

where \(\sigma^2 \) is the variance of the fixed effect, b is the slope of the fixed effect, se is the SE of the fixed effect, and \(\sigma^2 \text{res} \) is the variance of the response variable.

ACKNOWLEDGMENTS. We thank A. Phillimore and J. Hadfield for discussion on statistics and H. Kuehne and M. Waterfall for technical and flow cytometry assistance. This work was supported by the European Research Council (FP7 Grant 260266) and a Royal Society (UK) University Research Fellowship (to S.C.). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

SI Appendix for

Evolutionary consequences of multidriver environmental change in an aquatic primary producer

Georgina Brennan, Nick Colegrave, Sinéad Collins
Correspondence to: s.collins@ed.ac.uk

This file includes:

Supplementary Methods & Materials
Figures S1 to S8
Tables S1 to S5

Supplementary Methods & Materials

Divers used in multidriver environments

Details of how individual drivers were manipulated and our reasoning behind specific manipulations are below. Driver intensities were kept in line with future climate change scenarios where possible (1–3), however, some adjustments were made so that a) the drivers could be easily manipulated in the lab; b) each driver had an effect on growth rate so that changes in fitness could be quantified; and c) single drivers environments did not cause extinctions during the initial response. With the exception of CO$_2$/pH (Tris HCl was added to prevent pH of the media fluctuating with changing CO$_2$), we did not attempt to control chemical interactions between drivers as these interactions may contribute to organismal responses and to subsequent patterns of how response scales with the number of drivers.

Temperature: A conductive heat-mat (Exo Terra heat wave substrate heat mat) was placed under experimental plates to increase the temperature of the culture media to 26°C. This did not affect the control temperature set within the incubator and was controlled using a thermostat (Rootit heat mat thermostat). Our reasoning is that a 1°C rise in temperature a) could be produced without affecting the overall temperature of the incubator or causing condensation on the culture vessel lid, b) falls within the range of predicted temperature rises for aquatic ecosystems (2) and c) produces a change in growth rate in _C. reinhardtii_ and can thus act as a driver, but does not cause mortality (we wanted to avoid large numbers of extinctions during the experiment).

CO$_2$: Sterile breathable films (AeraSeal breathable sealing film) were used instead of the of the 96-well plate lids that came with the plates. This allows increased CO$_2$ diffusion into the media. While we did not quantify the precise level of CO$_2$ in the media, growth in the high-CO$_2$ conditions was stimulated, indicating that it was acting as a driver, which is all that was needed for the purpose of this study. CO$_2$ levels in the test environments were chosen based on projected CO$_2$ levels, and are in line with other experiments investigating microalgal responses to CO$_2$ enrichment.

pH: The pH of the culture media was altered by adding 2% HCl. This required one to two drops per litre of HSMT, so the concentration of nutrients was not altered by
changes in volume. The pH was measured with a pH meter (Thermo Orion Star A121 pH Portable Meter) and buffered by adding Tris-HCL. Even though this drop in pH (0.7 units) is large relative to changes expected in marine ecosystems (2) it is well within those experienced in freshwater systems (4). Based on pilot work, this drop reliably affects growth in the *C. reinhardtii* in our laboratory cultures.

UV: A UV lamp (UVM-57) was used in order to provide a dose of UV radiation twice weekly (Table S4). The breathable films were removed from the culture plates under sterile conditions during UV radiation. The lamp was mounted 5.1 cm from the surface of the culture plates providing an irradiative force of 33.75 W.cm$^{-2}$. Populations were irradiated for 4 mins and this corresponds to a UV dose of 8.1 KJ.m$^{-2}$.

Light intensity: Overall light intensity was reduced by approximately 40% using a neutral density light filter (0.15 Neutral Density filter), designed to reduce the light intensity across all wavelengths equally and attenuate light by absorption with minimal reflection. The filter was secured to the top of the experimental plates allowing sufficient room for CO$_2$ to circulate. Our rationale for decreasing light was pragmatic; it is possible to put a filter on some of the culture vessels, but difficult to selectively increase light levels reliably for only a few populations during an experiment of this size.

Herbicide: Atrazine was used at a concentration of 0.5µM in HSMT. Atrazine was then added to the culture media used for this treatment freshly whenever populations were transferred into fresh media. Based on pilot work, this concentration of atrazine reliably affects growth in the *C. reinhardtii* genotype used.

Nutrients: All nutrients within Hunter’s trace elements (HTE) were reduced equally to 25% relative to the control concentration (see Table S2 for concentration of each nutrient within HTE). Since laboratory strains are used to growing in rich media such as HSMT, increasing trace nutrients has no measurable effect on growth. The reduction in nutrients needed to act as a driver in this experiment was determined empirically during pilot studies.

Phosphate: Phosphate was reduced to 1.69 mM, a concentration factor of 0.125 relative to the control concentration (13.56mM) (4). Salts lost by the removal of dipotassium phosphate (K$_2$HPO$_4$) and monopotassium phosphate (KH$_2$PO$_4$) were replaced with potassium chloride (KCl). The level of phosphate needed to act as a driver was based on pilot work and previous studies by (5).

Batch culture transfers

All populations were grown in 96-well plates and propagated by batch culture (50 µL of growing cells transferred every 3-4 days into 200 µL of fresh media), for 95 transfers (~450 asexual generations). Sterile breathable films (AeraSeal) were used to allow equal air diffusion across plates. Some populations went extinct during the selection experiment; all populations went extinct in the single driver herbicide and the eight driver environments. After the extinction of all populations in the eight driver environment at transfer four, populations were rescued by increasing the
transfer volume by 100%. Populations from the 8-driver environment were excluded from statistical analyses but are included in figures for comparison.

Acclimation periods

So long as the genetic composition of the population does not have time to change during the acclimation period, evolution will not contribute substantially to the measure of acclimation. Initially the starting populations are essentially lacking any genetic variation, a dozen or so generations is not enough time for a mutation to rise in frequency to a point where it affects average population trait values, if the mutation starts from an initial frequency of $1/(\text{population size})$ in a population with $\sim 10^5$ individuals. Evolved populations may be more variable, though genetic variation in adapting populations under strong selection (as is the case here), should be very low. In practice, we cannot completely exclude the possibility that changes in genotype frequencies had a small effect on our acclimation measurements in the evolved populations, or that some small amount of backselection occurred when evolved populations were transferred back to the control selection environment. In both cases, this would result in our slightly underestimating the magnitude of evolutionary responses.

Growth rate and response to selection measurement details

For calculations of the rate of cell division (d^{-1}), the initial drop in growth rate and the direct response to selection, populations were acclimated to the assay environment and then transferred to fresh medium at equal cell density ($\sim 41,000 \text{ cells/ml}$). Cell counts were performed after 0 and 72 hours of growth using a BD FACSCanto II (BD Biosciences, Oxford, UK) flow cytometer calibrated with CS&T beads. The data were acquired with the BD FACSDiva v6 software. Due to the size of the assays, cell counts were performed in batches which are included in the statistical analysis.

For calculations of the direct response to selection, the initial drop in population growth rate was measured by comparing the growth rate of the evolved control populations in each regime with the growth rate the control population in the control environment. The initial drop in growth rate is analogous to the plastic response, and is a good indicator of the strength of selection. Using the evolved control populations (Figure 1) accounts for the effects of adaptation to general culturing and laboratory conditions.

Flow cytometric analysis of physiological parameters

A FACS CANTO, calibrated with CS&T beads, was used to measure trait values. Relative chlorophyll autofluorescence intensity was detected in the PerCP-Cy5.5 channel (Ex-Max 488 nm/Em-Max long pass (LP) 670 – 725 nm). Samples were run from 96 well plates, at flow rates of 1µl/second. Contaminants do not affect cell counts (see supplementary methods for details of fungal contamination). In addition, outside the range of normal cell size (6, 7) we classified as dead and excluded from analyses. Forward scatter (FSC) is correlated with cell size (6, 8, 9). FSC was calibrated with size calibration beads (Bang Laboratories, Inc.; (10) (Fig. S8). Chlorophyll autofluorescence per cell volume (1/µm3) was calculated assuming spherical cells (11).
Fungal contamination

Populations were initially sterile but became contaminated with a fungus by transfer
number 95. Since the culture media had no carbon source, fungal growth was limited
and we found no significant effect of contamination on the number of divisions per
day between populations with and without a fungal contaminant (Fig. S7A; $t = -1.703$,
df = 1.432, $P = 0.277$). In addition, there is no difference between the final cell
density of populations with and without a fungal contaminant (Fig. S7B; $t = 2.4995$,
df = 1.89, $P = 0.137$) (fungal contaminant = 3.5x106 cells per ml ± 4.0x105 cells per ml;
Mean ± SD and no contaminant = 4.4x106 cells per ml ± 3.1x105 cells per ml; Mean ±
SD).

Fungal spores were identified using a light microscope at 40x magnification and the
number of cells per ml of C. reinhardtii cultures were determined by counting cells
using a haemocytometer (Fig. S7). To quantify the effect of fungal contaminants on
the growth rate of the C. reinhardtii populations, our measure of population fitness,
we measured the number of cell divisions per day (equation 2). A two sample t-test (R
base package) was used to detect any differences in the number of divisions per day
and final cell densities between populations growing with and without fungal spores
in the culture media. In addition, growth curves showing the average number of cells
per ml of two populations with and two populations without fungal contamination,
over 72 h, are shown in Fig. S7B.

Mixed model analysis of direct response to selection

The effect of the identity of the environmental drivers, the plastic response and
number of drivers on the direct response to selection was analysed using a mixed
model in R (12), using the packages lme4 and lmerTest. The plastic response, number
of drivers and the identity of the environmental drivers are fixed effects and batch and
identity of evolved populations are random effects in the mixed model. However, the
model cannot run when all eight environmental drivers and number of drivers are
used to explain variation in the direct response, and this is because the model is
overparametrised. We found that no additional variation in the direct response was
explained by the inclusion of number of drivers and the environmental driver UV, and
the majority of the variation in the direct response was explained by the plastic
response (Table S4). For this reason, number of drivers was removed from the model
and we have included all eight environmental drivers so that we can measure how
much of the variation in the direct response is explained by each environmental driver
and the strength of selection (Fig. 2) (see methods and materials in the main text).

Mixed model analysis of growth rates of C. reinhardtii under multidriver
environments

The effect of the number of drivers and the identity of the drivers on absolute growth
rate after evolution was analysed using a mixed model. Number of drivers (0-7) and
the identity of the environmental drivers are fixed factors, however this model is
overparameterised when all eight environmental drivers are used, and since UV
explains none of the variation in the growth rate, UV was removed from the mixed
The identity of each regime, batch number and evolved populations within each regime were taken as random factors the mixed model analysis.

Fig. S1. The proportion of populations of C. reinhardtii that went extinct under increasing number of drivers. (A) Six replicate populations were evolved in one of 96 regimes (see Table S1). Open circles show the average (± SE) proportion of extinct populations over all regimes for each driver number category. As the number of drivers increases to seven and eight, the proportion of extinct populations within each regime increases significantly (F,94 = 5.91, P = 0.017). (B) All populations within evolved with eight drivers went extinct at transfer number four, approximately 12 generations. The majority of populations evolved under regimes with seven drivers went extinct between transfer number 24 and transfer number 46 (approximately 50 – 100 generations), however two populations, one in regime CO2/P/LI/Herb/ND/pH/Temp and a second in regime CO2/Herb/UV/ND/pH/P/Temp, went extinct at transfer number 67 (approximately 150 generations).
Fig. S2. The proportion significant positive direct responses to selection in multidriver environments. (A) As the number of drivers increases the proportion of regimes where the multidriver-evolved populations have a significant direct response to selection initially increases with the number of drivers when few drivers are present (1-3 drivers). There is no effect of the number of drivers for intermediate numbers of drivers (3-5 drivers). The proportion of environments with direct responses to selection is highest in the 6 driver environment, and then falls off sharply in the 7 driver environments. (B) The direct response of *C. reinhardtii* populations within each regime under increasing number of drivers (see Fig. 3); open circles indicate regimes that have a significant direct response to selection which is greater than the median direct response of regimes with a single driver. Filled circles indicate regimes that fall below the median direct response of regimes with a single driver. Note all populations growth in regimes with eight drivers went extinct.
Fig. S3. There is a positive relationship between the initial drop in growth rate and the direct response to selection under increasing number of drivers for populations that persist. The initial drop in growth rate is measured as the difference between the average rate of cell division between the evolved control in the control environment and the average rate of cell division of the evolved control in the multidriver environments. Data points show the average response of populations within each regime and the number of drivers (1 to 8) is indicated by the shape of the data points. Solid line shows the results of the linear regression, and the dashed line indicates that there is no difference between the growth rate of the evolved control and the multidriver-evolved populations, in the same selection environment.
Fig. S4. Nutritional availability determines the average rate of cell division (d\(^{-1}\)) of multidriver-evolved populations. Each panel label indicates the nutritional quality of the environment; top left, general nutrient replete and phosphate (P) replete; top right, low nutrients and P replete; bottom left, general nutrients replete and low P; bottom left, low nutrients and low P. Dashed line indicates the growth rate of the evolved control population in the control environment.
Fig. S5 Correlation between cell size and the rate of cell division (d⁻¹) before and after evolution. Filled circles show the rate of cell division (d⁻¹) and cell size (µm) of replicate populations within each regime (A) before and (B) after evolution. The number of drivers of each regime is indicated by the colour of filled circles. Solid line shows the results of the linear regression.
Fig. S6. Correlation between proportion of chlorophyll positive cells and the rate of cell division (d⁻¹) before and after evolution. Filled circles show the rate of cell division (d⁻¹) and cell size (µm) of replicate populations within each regime (A) before and (B) after evolution. The number of drivers of each regime is indicated by the colour of filled circles. Solid line shows the results of the linear regression.
Fig. S7. Fungal contamination has no effect on the growth rate of *C. reinhardtii* populations. (A) Data points show the average number of divisions (d$^{-1}$) of *C. reinhardtii* (±SD), with and without a fungal contaminant. (B) Growth curves show the average number of cells per ml (±SD) of *C. reinhardtii*, measured every 24 h between 0 h to 72 h. Open circles show the average number of cells per ml (±SD) of *C. reinhardtii* growing with a fungal contaminant and open squares show the average number of cells per ml (±SD) of *C. reinhardtii* growing without a fungal contaminant.
Fig. S8. Calibration of mean forward scatter (a.u.) to cell size (µm). Standard curve of mean forward scatter (a.u.) of calibration beads and size (µm) of calibration beads, measured using a FACS Canto. Solid line shows the results of the linear regression.

\[R^2 = 0.998 \]
\[y = -1.102812 + 0.000160734x \]
\[P = 0.03 \]
Table S1 Environmental drivers and their combinations in each unique regime environment.

<table>
<thead>
<tr>
<th>Number of Environmental Drivers</th>
<th>Regimes</th>
<th>No. of Regimes</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Control</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>CO₂, Temp</td>
<td>8</td>
</tr>
<tr>
<td>2</td>
<td>CO₂/Temp, CO₂/ LI</td>
<td>15</td>
</tr>
<tr>
<td>3</td>
<td>CO₂/ Temp/ pH, CO₂/ Temp/ LI</td>
<td>16</td>
</tr>
<tr>
<td>4</td>
<td>CO₂/ Temp/ pH/ LI, CO₂/ Temp/ LI/ Herb</td>
<td>16</td>
</tr>
<tr>
<td>5</td>
<td>CO₂/ Temp/ pH/ LI/ UV, CO₂/ Temp/ LI/ Herb/ pH</td>
<td>16</td>
</tr>
<tr>
<td>6</td>
<td>CO₂/ Temp/ pH/ LI/ UV/ ND, CO₂/ Temp/ LI/ Herb/ pH/ UV</td>
<td>15</td>
</tr>
<tr>
<td>7</td>
<td>CO₂/ Temp/ pH/ LI/ UV/ ND/ Herb, CO₂/ Temp/ LI/ Herb/ pH/ UV/ P</td>
<td>8</td>
</tr>
<tr>
<td>8</td>
<td>CO₂/ Temp/ pH/ LI/ UV/ ND/ Herb/ P</td>
<td>1</td>
</tr>
</tbody>
</table>

Eight single environmental drivers were used in combinations of 1-8 drivers. Drivers were: CO₂, CO₂ enrichment; Temp, elevated temperature; LI, reduced light intensity; pH, reduced pH; P, phosphate starvation; Herb, herbicide; ND, general nutrient depletion; UV, UV radiation.
Table S2 A comparison of the control environment and the environmental drivers used in the test environments.

<table>
<thead>
<tr>
<th>Environmental drivers</th>
<th>Control</th>
<th>Treatment</th>
<th>pH of Culture Media</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO₂ (ppm)</td>
<td>420</td>
<td>2000</td>
<td>7.2</td>
</tr>
<tr>
<td>pH</td>
<td>7.2</td>
<td>6.5</td>
<td>6.5</td>
</tr>
<tr>
<td>Temperature (°C)</td>
<td>25</td>
<td>26</td>
<td>7.2</td>
</tr>
<tr>
<td>Phosphorus (mM)</td>
<td>13.56</td>
<td>1.69</td>
<td>7.2</td>
</tr>
<tr>
<td>Nutrients (%)*</td>
<td>100</td>
<td>25</td>
<td>7.2</td>
</tr>
<tr>
<td>Herbicide (µM)**</td>
<td>0</td>
<td>0.5</td>
<td>7.2</td>
</tr>
<tr>
<td>UVB dose (KJ.m⁻²)</td>
<td>0</td>
<td>8.1</td>
<td>7.2</td>
</tr>
<tr>
<td>Light intensity (µmol m⁻² s⁻¹)</td>
<td>32</td>
<td>18</td>
<td>7.2</td>
</tr>
</tbody>
</table>

* see Table S2 for concentration of all nutrients.

** Atrazine was stored as stock solutions of 10mM in ethanol. Further dilutions were made in HSM media to achieve a working solution of 50µM.
Table S3 A comparison of the concentration of Hutner’s Trace Elements in 1 liter of HSMT culture media in control and treatment (nutrient depletion) environments.

<table>
<thead>
<tr>
<th>Hutner's Trace Elements</th>
<th>Control (mM)</th>
<th>Treatment (mM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Na$_2$EDTA· 2H$_2$O</td>
<td>0.134</td>
<td>0.034</td>
</tr>
<tr>
<td>ZnSO$_4$· 7H$_2$O</td>
<td>0.077</td>
<td>0.019</td>
</tr>
<tr>
<td>H$_3$BO$_3$</td>
<td>0.184</td>
<td>0.046</td>
</tr>
<tr>
<td>MnCl$_2$· 4H$_2$O</td>
<td>0.026</td>
<td>0.006</td>
</tr>
<tr>
<td>FeSO$_4$· 7H$_2$O</td>
<td>0.013</td>
<td>0.003</td>
</tr>
<tr>
<td>CoCl$_2$· 6H$_2$O</td>
<td>0.007</td>
<td>0.002</td>
</tr>
<tr>
<td>CuSO$_4$· 5H$_2$O</td>
<td>0.006</td>
<td>0.002</td>
</tr>
<tr>
<td>(NH$_4$)$_6$Mo7O${24}$· 4H$_2$O</td>
<td>0.890</td>
<td>0.222</td>
</tr>
</tbody>
</table>
Table S4 Specifications of UVB lamp.

<table>
<thead>
<tr>
<th>Lamp specification: 15W.cm⁻² @ 7.32cm</th>
<th>Treatment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Irradiative force (W.cm⁻²)</td>
<td>33.75</td>
</tr>
<tr>
<td>Distance from plate (cm)</td>
<td>5.08</td>
</tr>
<tr>
<td>Time (min)</td>
<td>4</td>
</tr>
<tr>
<td>UVB dose (KJ.m⁻²)</td>
<td>8.1</td>
</tr>
</tbody>
</table>
Table S5 percentage variation that each part of the mixed model explains on the **direct response** to selection. Including, all environmental drivers apart from UV and number of drivers.

<table>
<thead>
<tr>
<th>Source</th>
<th>Groups</th>
<th>% variation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of drivers</td>
<td>fixed</td>
<td>0.29</td>
</tr>
<tr>
<td>Strength of selection</td>
<td>fixed</td>
<td>25.81</td>
</tr>
<tr>
<td>P</td>
<td>fixed</td>
<td>6.24</td>
</tr>
<tr>
<td>Herb</td>
<td>fixed</td>
<td>3.23</td>
</tr>
<tr>
<td>Temp</td>
<td>fixed</td>
<td>0.26</td>
</tr>
<tr>
<td>CO$_2$</td>
<td>fixed</td>
<td>1.95</td>
</tr>
<tr>
<td>pH</td>
<td>fixed</td>
<td>0.01</td>
</tr>
<tr>
<td>LI</td>
<td>fixed</td>
<td>0.33</td>
</tr>
<tr>
<td>ND</td>
<td>fixed</td>
<td>0.43</td>
</tr>
<tr>
<td>Evolved population</td>
<td>random</td>
<td>38.99</td>
</tr>
<tr>
<td>Batch</td>
<td>random</td>
<td>7.62</td>
</tr>
<tr>
<td>Error within evolved populations</td>
<td></td>
<td>14.85</td>
</tr>
</tbody>
</table>

Seven single environmental drivers were used in combinations of 1-8 drivers; CO$_2$, CO$_2$ enrichment; Temp, elevated temperature; LI, reduced light intensity; pH, reduced pH; P, phosphate starvation; Herb, herbicide; ND, general nutrient depletion.

References

