Charge-altering releasable transporters (CARTs) for the delivery and release of mRNA in living animals

Colin J. McKinlay*1, Jessica R. Vargas*1, Timothy R. Blake*, Jonathan W. Hardy*, Masamitsu Kanada*, Christopher H. Contag*1,2, Paul A. Wender*1,9,2, and Robert M. Waymouth*1,2

*Department of Chemistry, Stanford University, Stanford, CA 94305; 1Department of Pediatrics, Stanford University, Stanford, CA 94305; 2Molecular Imaging Program at Stanford, Stanford University, Stanford, CA 94305; 3Department of Microbiology & Immunology, Stanford University, Stanford, CA 94305; 4Department of Bioengineering, Stanford University, Stanford, CA 94305; 5Department of Radiology, Stanford University, Stanford, CA 94305; and 6Department of Chemical and Systems Biology, Stanford University, Stanford, CA 94305

Edited by Daniel G. Anderson, Massachusetts Institute of Technology, Cambridge, MA, and accepted by Editorial Board Member David A. Tirrell December 13, 2016 (received for review August 26, 2016)

Functional delivery of mRNA to tissues in the body is key to implementing fundamentally new and potentially transformative strategies for vaccination, protein replacement therapy, and genome editing, collectively affecting approaches for the prevention, detection, and treatment of disease. Broadly applicable tools for the efficient delivery of mRNA into cultured cells would advance many areas of research, and effective and safe in vivo mRNA delivery could fundamentally transform clinical practice. Here we report the step-economical synthesis and evaluation of a tunable and effective class of synthetic biodegradable materials: charge-altering releasable transporters (CARTs) for mRNA delivery into cells. CARTs are structurally unique and operate through an unprecedented mechanism, serving initially as oligo(κ-amino ester) cations that complex, protect, and deliver mRNA and then change physical properties through a degradative, charge-neutralizing intramolecular rearrangement, leading to intracellular release of functional mRNA and highly efficient protein translation. With demonstrated utility in both cultured cells and animals, this mRNA delivery technology should be broadly applicable to numerous research and therapeutic applications.


The authors declare no conflict of interest.

This article is a PNAS Direct Submission. D.G.A. is a Guest Editor invited by the Editorial Board.

1C.J.M. and J.R.V. contributed equally to this work.

2To whom correspondence may be addressed. Email: ccontag@stanford.edu, wenderp@stanford.edu, or waymouth@stanford.edu.

This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10.1073/pnas.1614193114/-/DCSupplemental.

**Significance**

Protein expression using mRNA has the potential to transform many areas of life science research and affect the prevention, detection, and treatment of disease. However, realizing this potential requires the development of readily accessible, efficacious, and safe delivery systems that can functionally deliver mRNA to cells in culture and in vivo. A class of materials developed for mRNA delivery is described that operates through an unprecedented self-immolation mechanism. These materials are accessed in two steps through an organocatalytic oligomerization. They noncovalently complex, protect, deliver, and release mRNA with >99% transfection efficiency in cultured cells and with robust protein expression in mice using multiple routes of administration. This mRNA delivery technology should be broadly applicable to numerous research and therapeutic applications.

**Abstract**

Messenger RNA (mRNA) is the template for the synthesis of proteins. Tools for effective transfer of exogenous mRNA into cells in the body would advance a rapidly emerging class of gene therapy drugs with the potential to transform the treatment of illnesses as diverse as cancer, genetic disorders, and infectious diseases (1, 2). Delivery and subsequent expression of mRNA into its encoded protein can be leveraged for a wide range of research, imaging, and therapeutic applications including protein replacement or augmentation therapy and new vaccine strategies either for prophylactic or immunotherapeutic approaches (3–7). Although gene transfer studies of other oligonucleotides such as plasmid DNA and siRNA have dominated the gene delivery field for some time (8–13), the use of mRNA to generate therapeutic proteins has received attention only recently (1, 14–16).

The key challenge associated with the use of therapeutic mRNA is an inability to efficiently deliver functionally intact mRNA into cells. Like all nucleic acid-based drugs, mRNA is a large polyanion and thus it does not readily cross nonpolar cellular and tissue barriers. Moreover, it is also susceptible to rapid degradation by nucleases and so it must be protected during the delivery process (17). Finally, after cell entry, its rapid release in the cytosol and appropriate association with the protein synthesis apparatus is required for translation; each of these is a potential point of failure for functional mRNA delivery (2). In addition to the challenges associated with complexation, protection, delivery, and release, an ideal delivery system would also need to be synthetically accessible, readily tunable for optimal efficacy, and safe.

Despite this being a rapidly emerging subject of intense interest, relatively few classes of materials have been evaluated as mRNA delivery vehicles (14, 18). Those that have emerged are largely inspired by or directly repurposed from DNA and siRNA delivery methods. However, multiple groups have observed that directly adapting DNA or siRNA vehicles to mRNA delivery can be ineffective, and in those cases it has been suggested that insufficient mRNA release from the carrier likely contributes to the observed failed or inefficient delivery (19–23). Nonetheless, there have been encouraging preliminary results of recent and ongoing clinical trials using mRNA, underscoring the rapidly emerging importance of mRNA therapeutics in the treatment or prevention of a range of diseases. To date, naked, chemically modified, or proteamine-complexed mRNA have shown promise in phase I/II cancer trials (24–26). Recently, preclinical development of materials specific for mRNA delivery has resulted in cationic polymers such as polyethylenamines (27–29), poly(aspartamides) (30, 31), and polypeptides (32), as well as multicomponent cationic lipid or lipid-like formulations (21, 33–36). In many of these examples, however, transfection efficiencies can be quite low, ranging 20–80% in cells (18), with likely much lower efficiencies in vivo, which requires either high mRNA doses or hydrodynamic injections (32, 37).

Here, we report a highly effective mRNA delivery system comprising charge-altering releasable transporters (CARTs),
which specifically address the delivery challenges posed by the mRNA cargo. These dynamic materials, specifically oligo(carbonate-b-α-amino ester)s, function initially as polycations that noncovalently complex, protect, and deliver polyamionic mRNA and then subsequently lose their cationic charge through a controlled self-immolative degradation to a neutral small molecule (Fig. 1). Our hypothesis is that this charge alteration reduces or eliminates the chelative electrostatic anion-binding ability of the originally cationic material, thereby facilitating endosomal escape and enabling free mRNA release into the cytosol for translation. We demonstrate the efficacy of these materials to complex, deliver, and release mRNA in multiple lines of cultured cells including primary mesenchymal stem cells and in animal models, via both i.m. and i.v. routes of administration, resulting in robust gene expression.

Results and Discussion

Design, Synthesis, and Characterization. Organocatalytic ring-opening polymerization (OROP) is an excellent method for the preparation of functionalized biomaterials. OROP provides expedient access to oligomers of low dispersity, avoids metal contaminants associated with some polymerization methods, provides precise control over chain length by varying the ratio of initiator to monomer, and allows for the incorporation of multiple monomer functionalities through coooligomerization (38–41). We have previously reported the synthesis of poly(α-amino ester)s (Fig. 2, A) by the OROP of N-protected morpholin-2-ones (41), which are readily generated through cooligomerization (38). Chain length by varying the ratio of initiator to monomer, and with some polymerization methods, provides precise control over functionalized biomaterials. OROP provides expedient access to the synthesis of poly(α-amino ester)s, function initially as polycations that noncovalently complex, protect, and deliver polyamionic mRNA and then subsequently lose their cationic charge through a controlled self-immolative degradation to a neutral small molecule (Fig. 1). Our hypothesis is that this charge alteration reduces or eliminates the chelative electrostatic anion-binding ability of the originally cationic material, thereby facilitating endosomal escape and enabling free mRNA release into the cytosol for translation. We demonstrate the efficacy of these materials to complex, deliver, and release mRNA in multiple lines of cultured cells including primary mesenchymal stem cells and in animal models, via both i.m. and i.v. routes of administration, resulting in robust gene expression.

Our initial mechanistic investigations of this degradation are consistent with the partial deprotonation of the initial ammonium cations, leading to an intramolecular cyclization of the resulting amine into the backbone ester through a five-membered transition state (Fig. 2A). The nitrogen of the adjacent monomer unit then engages in a second cyclization through a six-membered transition state to form diketopiperazine 2, the dimer of a known metabolite (hydroxyethyl glycine) of the Maillard reaction (44). Although slow at low pH, this rearrangement is exceptionally fast and efficient at pH 7.4; homooligomers degrade with a half-life of 2 min (SI Appendix, Fig. S1). The unique reactivity of this system can be explained by complementary activation of the backbone ester carbonyl by inductive and hydrogen-bonding interactions that proceed concurrently with carbonyl-assisted deprotonation of the amine cation to produce the required nucleophilic amine. This could involve a stepwise process or it could be concerted with addition to the proximate carbonyl, resulting in either case in an initial ammonium (charged) to amide (neutral) functional group transformation. The resultant hydroxyethylamide is then positioned to engage in a facile six-membered ring cyclization to form diketopiperazine 2. The unique physical property change (from charged amine to neutral amide) associated with this system represents a potentially broadly exploitable concept for polyanionic drug and probe delivery because charge-altering, -reversing, or -neutralizing systems offer a broad range of concepts for polyanion complexation and delivery with release dictated by a change in physical properties.

Previous work on nucleic acid delivery has highlighted the importance of lipophilic domains on delivery vehicles to facilitate cargo binding and membrane interaction leading to cellular internalization (46–48). This requirement is readily addressed with our living OROP approach, because both lipophilic and charged blocks can be incorporated without additional synthetic steps. For this study, dansyl alcohol initiator 3 was first reacted with dodecyl ester carbonate monomer 5, and the resulting oligomer, without isolation, was then used to initiate reaction with N-Boc morpholinone monomer 6, providing amphiphatic diblock oligomers consisting of a lipidated oligocarbonate block and a cationic, self-immolative α-amino ester block after deprotection.

An attractive aspect of this technology is that the performance of the cooligomer construct can be tuned using different monomers and block lengths. A small series of oligomeric CARTs of varying lengths and compositions was synthesized by ring opening of dodecyl carbonate 5, followed by addition and oligomerization of morpholine 6 (Fig. 2B and SI Appendix, Fig. S2). CART cooligomers containing an average of 13 lipid units and 11 cationic units (D13:A11 7), 18 lipid and 17 cationic units (D18:A17 8), and a homooligomer of 13 cationic units (A13 9) were synthesized using this strategy. Importantly, each new transporter was prepared in only two steps (oligomerization and deprotection), a combined process requiring only a few hours.

The charge-altering degradation of oligo(carbonate-b-α-amino ester)s was analyzed by gel permeation chromatography (GPC). To verify that the rearrangement reaction affects only the cationic domain of amphiphatic CARTs while leaving the lipophilic domain intact, two model oligomers were synthesized using pyrenebutanol 4 as a UV-active initiator. Homooligomer pyrene-D15 10 was synthesized and used as a macroinitiator to prepare diblock pyrene-D15:A12 11a, which was subsequently deprotected to 11b (Fig. 3A). Diblock 11b was treated with pH 7.4 PBS to effect rearrangement. After 1 h, the solution was concentrated and analyzed by GPC (Fig. 3B). The GPC trace of the resultant oligomer 11c (black) was then compared with protected diblock 11a (red) and homooligomer 10 (blue). As expected, the GPC traces of the protected 11a (red, 6.4 kDa) show higher molecular weight than homooligomer 10 (blue, 4.6 kDa). GPC analysis of cationic diblock 11b after exposure to pH 7.4 PBS showed a diminished molecular weight (4.3 kDa) that was nearly identical to the homooligomer 10 (4.6 kDa), suggesting, in line with the
proposed mechanism, that at physiological pH the cationic portion of the CART degrades whereas the lipophilic block remains intact.

CART-Mediated mRNA Delivery to Cultured Cells. To evaluate the efficacy of CARTs as mRNA delivery vehicles, mRNA encoding EGFP was selected as an optical reporter gene. Flow cytometry analysis of EGFP fluorescence following mRNA delivery allows for simultaneous quantification of the mean protein expression as well as the fraction of cells exhibiting above-baseline levels of fluorescence (percent transfection). Gene expression following treatment of cells with CART/mRNA complexes was compared with expression obtained with EGFP mRNA complexes made with the commercial agent Lipofectamine 2000 (Lipo), as well as two guanidinium-containing compounds known to be effective for siRNA delivery (D4:G4 and D13:G12) (46). When HeLa cells were treated with mRNA formulated with Lipo, modest levels of EGFP expression were observed (Fig. 4A), but only ∼50% of the cells exhibited fluorescence (Fig. 4B). In stark contrast, the oligo(carbonate-b-α-amino ester) CART, D13:A11, afforded excellent EGFP expression with >99% transfection efficiency and high mean fluorescent intensity. A second CART with longer block lengths (D18:A17) provided high transfection efficiency (>90%) but lower mean transfection values. Complexes formed with α-amino ester homooligomer A13 induced no EGFP expression, consistent with our prior work on amphipathic oligocarbonates for which a hydrophobic domain was necessary for siRNA delivery (46). Contrasting their efficacy in delivering siRNA, complexes formed with guanidinium-functionalized oligocarbonates D12:G8 and D13:G12 resulted in no detectable EGFP expression. Relative to the rapid self-immolative rearrangement (t_{1/2} = 2 min) of CARTs, oligocarbonates 12 and 13 degrade slowly by passive hydrolysis (t_{1/2} = 8–12 h) (46, 49), establishing a strong correlation between transporter degradation rate and mRNA expression. Collectively, the exceptional performance of the CARTs is consistent with our initial hypothesis that endosomal escape and cytosolic mRNA release can be attributed to the rapid charge-altering transformation of cationic amines to neutral amides.

To study the influence of charge ratios on CART performance, the ratio of cationic oligomer to anionic mRNA was varied from 1:1–50:1 (cation:anion) and the resulting EGFP fluorescence determined (Fig. 4C). Values are reported as the theoretical charge ratio of ammonium cations to phosphate anions. EGFP mRNA expression showed a roughly parabolic dependence on charge ratio with maximum EGFP fluorescence resulting from complexes formed at a 10:1 charge ratio. All subsequent experiments were conducted using this optimized ratio. HeLa cells treated with CART/mRNA complexes under these conditions showed no significant decrease in viability (SI Appendix, Fig. S3). Additionally, diketopiperazine rearrangement product 2 did not affect cellular viability at concentrations up to 500 μM, well above the 9 μM maximum concentration achieved through self-immolative rearrangement of CART complexes (SI Appendix, Fig. S3). Epifluorescence microscopy corroborates flow cytometry.
transfection, dynamic light scattering (DLS) was used to analyze formation. Under analogous conditions to those used for cellular delivery could be general, working with a variety of mRNA sizes. CART/mRNA polyplexes exhibited EGFP fluorescence, whereas mRNA, a Lipo/mRNA complex, and mRNA complexes of transporters 7–13. Representative flow cytometry histograms of EGFP fluorescence showing percent transfection in HeLa cells treated with EGFP mRNA complexes. (C) The effect of theoretical cation:anion charge ratio on EGFP expression using D13:A13, 7 complexes. (D) Epifluorescence microscopy images showing EGFP fluorescence alone and a bright-field overlay of HeLa cells treated with mRNA either alone, complexed with Lipo, or complexed with 7. All data shown are for HeLa cells treated with mRNA concentrations of 125 ng per well in 24-well plates for 8 h. All error bars expressed as ± SD, n = 3.

Characterization of CART Complexes. A series of experiments was conducted to understand how the immolative rearrangement of oligo(carbonate-b-α-amino ester) CARTs affects mRNA polyplex formation. Under analogous conditions to those used for cellular transfection, dynamic light scattering (DLS) was used to analyze CART D13:A13, 7 and polyelectrolyte complexes formed between 7 and EGFP mRNA. At pH 5.5, the hydrodynamic diameter of the resulting polyplexes was 254 ± 10 nm (SI Appendix, Fig. S4A). When these polyplexes were added to cell media a change in hydrodynamic diameter from 254 nm to 512 nm occurred over 2 h. In line with our studies on CART rearrangement, the observed increase in size reflects degradative rearrangement of a fraction of the cationic α-amino ester blocks of 7 to the diketopiperazine 2 and the neutral oligocarbonate lipid domain, consistent with aggregation of these segments. When the CART/mRNA polyplexes are added to unbuffered water, sizes remain at 257 ± 24 nm over the full 2-h experiment (SI Appendix, Fig. S4A), consistent with previous observations that α-amino ester homooligomers do not rearrange under these conditions (41). Zeta potential measurements are in line with particle size data, with surface charge starting at +33 ± 7 mV and evolving to −30 ± 3 mV over 2 h (SI Appendix, Fig. S4B). This is again consistent with the cationic ammoniums rearranging to neutral amides, leaving the surface predominantly anionic due to the associated oligocarbonate. Interestingly, the differences in rates of rearrangement for the homooligomers (minutes) and the mRNA polyplexes (hours) reflect a complexation-dependent increase in stability of the α-amino ester materials in buffered aqueous environments, putatively by decreasing the rate of deprotonation and thus rearrangement. This enables CART/mRNA complexes to remain stable over therapeutically relevant timescales at pH 7.4 before intracellular degradation.

The size of the formulated polyplexes was not cargo-dependent. When polyplexes were formed with luciferase (Fluc) mRNA, which is approximately twice the length of EGFP (Fluc = 1929 nt vs. EGFP = 996 nt), and added to cell media at pH 7.4, the polyplexes exhibited the same behavior as those formed with EGFP mRNA, suggesting that CART-enabled delivery could be general, working with a variety of mRNA sizes. When these polyplexes were added to cell media a change in resulting polyplexes was 254 ± 33 mV and evolving to 7 mV and 3 mV over 2 h. This is again consistent with the cationic ammoniums in the α-amino ester monomers evolving to ammonium guanidinium cations. Rather, the specific, controlled loss of cation type by comparing the cellular uptake and mRNA expression using CART 7/mRNA polyplexes is predominantly endocytic by comparing cellular uptake at 4 °C, a condition known to inhibit endocytotic processes, to normal uptake at 37 °C. Consistent with the expected endocytotic mechanism for ~250-nm particles, HeLa cells displayed a significant (85%) reduction in Cy5 fluorescence at 4 °C (Fig. 5A).

Cellular uptake and mRNA translation following treatment with CART/mRNA polyplexes were then directly compared with polyplexes formed with nonimmolative oligomers. By delivering a mixture of EGFP mRNA and Cy5-labeled EGFP mRNA, analysis of mRNA internalization and expression can be decoupled and simultaneously quantified; Cy5 fluorescence indicates internalized mRNA, irrespective of localization, and EGFP fluorescence denotes cytosolic release and subsequent expression of mRNA. We used this method to explore the effect of backbone structure and cation type by comparing the cellular uptake and mRNA expression of two oligomers to CART D13:A13, 7: nonimmolative, guanidinium-containing D13:G12, 13 and nonimmolative, ammonium-containing D13:Pip13, 14.

Cy5-mRNA polyplexes formed with 7, 13, or 14 were added to HeLa cells and evaluated by flow cytometry. Although all oligomers afford similar levels of mRNA uptake, as quantified by Cy5 fluorescence (Fig. 5B), only charge-altering D13:A13, 7 induces detectable EGFP mRNA expression. These data indicate that all three mRNA polyplexes are internalized by cells efficiently, but without a rapidly degrading backbone the nonimmolative polyplexes derived from 13 and 14 either never escaped the endosome or did not release mRNA on a timescale necessary to enable detectable levels of translation. The lack of EGFP expression by complexes formed with ammonium-containing D13:Pip13, 14 further suggests that the efficacy of 7 is not simply due to the difference in electrostatic binding affinity of ammonium vs. guanidinium cations. Rather, the specific, controlled loss of cationic charge through rearrangement is crucial for efficacy. The efficiency of release is likely responsible for differences in mRNA expression using CART 7 and CART 8, because these CARTs also result in similar uptake of an optically tagged Cy5 mRNA (SI Appendix, Fig. S5).
In addition to the loss of electrostatic mRNA binding due to the charge-altering, self-immolation mechanism we reasoned that the simultaneous release of the small molecule 2 is also likely to facilitate endosomal escape. To examine this, HeLa cells were cotreated with CART/EGFP mRNA complexes and two compounds known to influence the endosomal microenvironment: concanamycin A (Con A) and chloroquine (Chl). Con A is a specific V-ATPase inhibitor that prevents endosomal acidification (50). Other reports of cationic ammonium-containing materials such as cationic lipid nanoparticles (51, 52) and polyethyleneimine (PEI) (53) have shown 10- to 200-fold decreases in gene delivery when treated with V-ATPase inhibitors due to decreased endosomal buffering and osmotic rupture by the presumed proton sponge effect (54). However, the fluorescence intensity of HeLa cells treated with polyplexes derived from α-amino ester CART 7 is nearly unaffected by treatment with Con A (Fig. 5C, 21% decrease, \( P = 0.177 \)), indicating that endosomal acidification and buffering is not necessary to achieve endosomal escape or gene expression with CARTs. Chl is a lysosomotropic agent that has been used to improve gene delivery by increasing endosomal buffering and rupture (55). Others have shown that gene delivery materials without buffering functionality, such as methylated PEI, show substantial increases in gene expression when cotreated with Chl (two- to threefold), whereas buffering vectors such as unmodified PEI are unaffected (53). HeLa cells treated with CART/mRNA polyplexes and Chl showed only a slight decrease in fluorescence (22% decrease, \( P = 0.469 \)), suggesting that endosomal escape is not a limiting factor in mRNA delivery by oligo(carbonate-b-α-amino ester) CARTs. This is additionally consistent with the proposed escape mechanism through osmotic rupture that already occurs as a result of immolation of 7 and formation of 2.

The importance of CART-mediated mRNA release and endosomal escape compared with an ineffective transporter \( \text{D}_{13}: \text{G}_{12} \) was further confirmed by confocal microscopy with detection of dansylated transporter, Cy5-mRNA, and tetramethylrhodamine (TRITC)-Dextran4400, a stain for endosomal compartments. When cells were imaged 4 h after treatment with CART 7/Cy5-mRNA complexes diffuse fluorescence was observed for both the Cy5 and dansyl fluorophores, indicating that those materials successfully escaped the endosome and dissociated from the polyplexes (Fig. 5D, i). The two observed puncta in the dansyl signal (Fig. 5D, ii) likely arise from some intracellular aggregation of the dansyl-labeled lipidated oligocarbonate blocks, resulting from self-immolative degradation of the cationic segments of CART 7. Diffuse fluorescence from (TRITC)-Dextran4400 is also observed, which can be attributed to endosomal rupture and release of the entrapped dextran. However, when cells are treated with nonimmolative \( \text{Cy5}-\text{mRNA} \) complexes, both the Cy5 and dansyl fluorescence remain punctate and colocalized (Fig. 5D, iii). These signals also strongly overlap with punctate TRITC-Dextran44000, indicative of endosomal entrapment. Taken together, these data strongly suggest that the charge-altering behavior of CART 7 enables endosomal rupture and mRNA release, contributing to the high performance of these materials for mRNA delivery.

### Applications and Animal Experiments

Oligo(carbonate-b-α-amino ester) \( \text{D}_{13}: \text{A}_{11} \) was evaluated in additional applications to explore the versatility of CART-mediated mRNA delivery. EGFP mRNA expression following delivery by CART 7 was assayed in a panel of cell lines, including those typically considered to be difficult to transfect (56). In addition to HeLa cells, mRNA expression was compared with that of Lipo in murine macrophage (J774), human embryonic kidney (HEK-293), CHO, and human hepatocellular carcinoma (HepG2) cells by treating with CART complexes formed with EGFP mRNA (Fig. 6A). In all cell lines tested the percentage of cells expressing EGFP using the CART 7 was >90%, whereas treatment with Lipo induced expression in only 22–55% of the cells. Importantly, this suggests that this delivery system is general for a variety of human and nonhuman cell types. In addition to immortalized cell lines, mRNA expression was also observed in primary CD1 mouse-derived mesenchymal stem cells (MSCs) with high transfection efficiency.
Not only is the efficiency of CART-mediated delivery consistent across different cell types, but the consistency is also observed using mRNA of different lengths, because we observed that 7 also effectively delivers the larger firefly luciferase (Fluc) mRNA, substantially outperforming Lipo (Fig. 6B). Analogous to trends observed with EGFP mRNA, a 10:1 (cation:anion) ratio resulted in the highest level of Fluc bioluminescence, despite the difference in mRNA lengths, indicating that delivery efficiency is largely independent of cargo size. Simultaneous expression of multiple mRNA transcripts was demonstrated by coformulating CART 7/mRNA complexes with binary mixtures of EGFP and Fluc mRNA (SI Appendix, Fig. S6). These polyplexes induce expression of two unique proteins at levels proportional to the mass percent of that transcript in the formulation.

In vivo bioluminescence imaging (BLI) enables localization and quantification of expression following mRNA delivery in living animals (57). To assess the efficacy of CART/mRNA complexes following systemic or local routes of administration, as would be required for vaccination or protein augmentation therapies, we evaluated i.m. and i.v. injections of CART-complexed Fluc mRNA in anesthetized BALB/c mice using BLI. For each mouse, 7.5 μg mRNA was complexed with CART D13:A11 7 and administered by i.m. injection into the right thigh muscle in 75 μL PBS. As a direct control, 7.5 μg of naked mRNA was injected in the opposite flank. α-luciferin was systemically administered i.p. at 15 min before imaging for each time point, and luciferase expression was evaluated over 48 h, starting at 1 h after the administration of mRNA complexes. When Fluc mRNA was delivered with polyplexes derived from 7 into the muscle, high levels of luciferase activity were observed at the site of injection (Fig. 6 C and D). This expression peaked at 4 h and was still observable after 48 h. In contrast, i.m. injection of naked mRNA afforded only low levels of luciferase expression, as measured by photon flux, in all five mice.

When polyplexes were administered via tail vein injection at the same dose we observed robust abdominal bioluminescence as early as 1 h postinjection, peaking at 4 h (Fig. 6 E and F). High levels of expression persisted for 24 h, with detectable bioluminescence after 48 h. Bioluminescence is primarily localized in these images to the spleen and liver. No bioluminescent signals were observed when naked mRNA was administered i.v. For all mice studied, there were no outward signs of toxicity observed either immediately after injection or over a period of several weeks following treatment as indicated by ruffled fur, changes in behavior, hunched posture, or death.

The ability to successfully deliver functional mRNA via multiple routes of administration in vivo is critical for developing RNA-based therapeutics. Local i.m. injections are the preferred route of administration for many therapies, including vaccination, due to the ease of administration and ability to access naive dendritic and antigen-presenting cells in the dermal and muscle tissue. Following i.v. injections, the localization of mRNA polyplexes in tissues along the reticuloendothelial system such as the liver or spleen provides many opportunities in inducing immunotherapeutic responses. Spleen localization, as observed with our nontargeted complexes, is particularly exciting for future studies involving mRNA-based immunotherapy due to large numbers of dendritic and immune cells in that tissue. Liver localization was also apparent in these animals, and expression in this tissue may have applicability for treatment of hereditary monogenic hepatic diseases requiring protein augmentation or replacement such as hereditary tyrosinemia type I, Crigler–Najjar syndrome type 1, alpha-1-antitrypsin deficiency, Wilson disease, and hemophilia A and B, or acquired liver diseases such as viral hepatitis A–E and hepatocellular carcinoma (58–60).

Conclusions

We have developed a general, tunable, and step-economical strategy for mRNA delivery that uses unique oligomeric transporters that operate through an unprecedented mechanism to
effectively deliver mRNA into cells and animals with excellent efficiency. Our approach draws on a facile two-step process using OROP and global deprotection to rapidly prepare the oligo(carbonate-b-α-amino) ester delivery vehicles. Following intracellular delivery, these CARTs undergo a remarkable intramolecular rearrangement, during which cationic amines are converted to neutral amides, resulting in decomplexation and release of anionic mRNA into the cytosol for translation.

mRNA therapeutics have the potential to transform disease treatment. The clinical implementation of this technology, however, rests on the availability of safe, general, and efficacious delivery methods. We have achieved high levels of gene expression in cultured cells and living animals using mRNA complexed and delivered by CARTs. The effectiveness of mRNA delivery using these CARTs represents a strategy for mRNA delivery that results in functional protein expression in both cells and animals. The success of these materials will enable widespread exploration into their utilization for vaccination, protein replacement therapy, and genome editing, while augmenting our mechanistic understanding of the molecular requirements for mRNA delivery.

Methods

Materials. Reagents were purchased from Sigma-Aldrich and used as received unless otherwise indicated. The (3.9 mg, 0.013 mmol) MTC-dodecyl monomer was prepared from MTC-dodecyl (3.9 mg, 0.013 mmol), and MTC-10% FBS and 1% penicillin/streptomycin. Lipofectamine 2000 was purchased from Life Technologies, and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide was purchased from Fluka. Con A was purchased from TriLink Biosciences. DMEM was purchased from Invitrogen and supplemented with 10% FBS and 1% penicillin/streptomycin. Lipofectamine 2000 was purchased from Life Technologies, and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide was purchased from Fluka. Con A was purchased from Sigma-Aldrich.

mRNAs. EGFP mRNA (5meC, Ψ, L-6101), Fluc mRNA (5meC, Ψ, L-6107), and Cy5-EGFP mRNA (5meC, Ψ, L-6402) were purchased from TriLink BioTechnologies Inc.

Instrumentation. Gel permeation chromatography (GPC) was performed in tetrahydrofuran (THF) at a flow rate of 1.0 mL/min on a Malvern Viscotec VE2001 chromatography system equipped with four 5-μm Waters columns (300 × 7.7 mm) connected in series. The Viscotec VE3580 refractive index (RI) and VE3210 UV/Vis detectors and Viscotec GPCmax autosampler were used, and the number average molecular weights (Mn, in g mol⁻¹) and molecular weight distributions (Mw/Mn) were calibrated using monodisperse polystyrene standards (Polymer Laboratories). Particle size was measured by DLS, and Cy5-EGFP mRNA (5meC, Ψ, L-6402) were purchased from TriLink BioTechnologies Inc.

Cell Lines. Hela, J774, HepG2, and HEK-293 cells were maintained in DMEM supplemented with 10% (vol/vol) FBS and 1% penicillin/streptomycin. CHO cells (maintained in F12 media supplemented with 10% (vol/vol) FBS and 1% penicillin/streptomycin. All cells were grown at 37 °C in a 5% CO2 atmosphere. Cells were passaged at ~80% confluence.

MSCs were prepared according to the method of Huang et al. (61). Briefly, femurs were excised from two 8-wk-old female CD1 mice, and the tissue was removed from the outside of the bone. The ends of the bones were then cut with a sterile scissor. The marrow was flushed from the four bones with 5 mL DMEM containing 5 μg/mL of Trypsin-EDTA (Invitrogen) and 0.5% trypsin (Invitrogen) for 5 min at 37 °C. The cells were then collected and transferred to a 75-cm² tissue culture flask and incubated for 3 h, until 100% confluence was achieved. The culture medium could be maintained for two more passages, but growth was greatly reduced upon four passages. For transfection, the cells were plated at 1.2 × 10⁴ per well in 24-well plates.

Preparation of Cooligomers Dxo-Mt. For the representative synthesis of Dxo-Mt, a flame-dried vial was charged with MTC-dodecyl monomer 5 (33.2 mg, 0.10 mmol), dansyl initiator 3 (3.9 mg, 0.013 mmol), and 50 μL CH₂Cl₂. Diazoacylazidene (DBU) (0.8 mg, 0.005 mmol) and thiourea catalyst (TU) (Fig. 2B) (2.0 mg, 0.005 mmol) in 50 μL CH₂Cl₂ were added to the reaction vial and allowed to stir. After 2 h, N-Boc monomer 6 was added to the vial as a solid and the reaction was allowed to stir for 3 h. After a total of 5 h, the reaction was quenched with five drops of AcOH then concentrated under reduced pressure. The crude material was dialyzed in CH₂Cl₂ against MeOH (1.0-kDa dialysis bag). Concentration afforded 37.9 mg pale green residue. End group analysis (2.8 ppm) by 'H NMR shows DP 13±1.

Procedure for Guanidine and Morpholine Deprotection. To a vial containing Boc-protected cooligomer (representative scale 0.011 mmol) dissolved in 4.5 mL CH₂Cl₂ was added TFA (0.5 mL). The reaction was sealed under inert atmosphere and stirred at room temperature for 12 h. The solvent was concentrated in vacuo to afford the deprotected cationic cooligomers as oils (>95%). Complete deprotection was confirmed by 'H NMR analysis.

GPC Degradation Experiment. Cationic D xo-A L: 11b (21.0 mg, 0.0227 mmol) in CH₂Cl₂ (1.5 mL) was treated with PBS pH 7.4 (200 μL) and allowed to stir for 1 h. The reaction was then concentrated under reduced pressure, taken up in THF, and sonicated for 5 min. The resulting heterogeneous mixture was filtered through a 0.22-μm syringe filter and submitted for GPC analysis. Gel permeation was calibrated with a home-built gel-permeation column (460 × 2.5 mm) and a set of 5100 U oligomers shows a higher molecular weight of the protected diblock oligomer 11a. Comparing the homoblock 10 and the degraded diblock oligomer 11c (4,300 Da) shows overlap of the UV and RI signals matching the homoblock 10 (Fig. S3).

EGFP mRNA Delivery and Expression in HeLa Cells by Flow Cytometry. HeLa cells were seeded at 40,000 cells per well in 24-well plates and allowed to adhere overnight. Oligomer/mRNA polyplexes were prepared by mixing RNase-free PBS pH 5.5 and EGFP mRNA with various amounts of oligomer from DMSO stock solutions, to achieve specific cooligomer/mRNA ratios (optimized to a theoretical cation:anion ratio of 10:1, 8.4 μL total volume). The complexes were incubated for 20 s at room temperature before treatment. The Lipo control was prepared in OptiMEM per the manufacturer’s instructions. The cells were washed with serum-free DMEM and mRNA/Lipo complexes were added to a new well of 200 μL per well (125 ng mRNA per well). After washing with serum-free DMEM, 2.5 μL of the mRNA/cooligomer complexes was added to a total volume of 200 μL, all conditions in triplicate, for a final mRNA concentration of 125 ng per well. The cells were incubated for 8 h at 37 °C then trypsinized with trypsin-EDTA (0.05%) for 10 min at 37 °C. Serum-containing DMEM was added and the contents of each well centrifuged and the supernatant removed, and the pellets were resuspended in PBS (125 μL) and transferred to FACs tubes and read on a flow cytometry analyzer (LSR-II.UV at Stanford University). The data presented are the geometric mean fluorescent signals from 10,000 cells analyzed. For transfection efficiency, untreated cells were gated for no EGFP expression, and the data presented are the percentages of 10,000 cells analyzed with higher EGFP expression than untreated cells. Error is expressed as ± SD. All other cell lines were used as above in their respective media. For HepG2 cells, 5 mM EDTA was added to the PBS used to resuspend the cell pellets for flow cytometry.

Epifluorescence Microscopy. HeLa cells were seeded in black, glass-bottomed, 12-well plates and allowed to adhere overnight. EGFP mRNA polyplexes were prepared as above (final concentration of 125 ng mRNA per well in 400 μL total volume) and added to serum-free DMEM. Cells were incubated for 8 h at 37 °C, then media was removed and 1 mL of DMEM without phenol red was added to wells. GFP fluorescence was acquired using a Zeiss Epifluorescence Microscope with GFP filter set. Percent transfection was...
determined by dividing the number fluorescent cells observable in a given field of view by the total number of cells. DLS and Zeta Potential. mRNA/cooligomer complexes were prepared at a 10:1 (cation:anion) charge ratio as above using 500 ng EGFP mRNA and added to 120 μL RNase-free PBS pH 5.5, 7.4, or neutral RNase-free water. The solution was immediately transferred to a disposable clear plastic cuvette and the size measured. Size measurements were taken at the initial time (1 min) and at 15-min intervals over 2 h. The sizes reported are the z-averages. Zeta potential measurements were taken by diluting the mRNA:cooligomer complexes formulated for DLS into 800 μL water, transferring to zeta cell (DTS1060), and measuring zeta potential. All values reported are the average of a minimum of three trial runs. Error expressed as ± SD.

Mechanism of Cell Entry at 4 °C. For studies at reduced temperature, HeLa cells were incubated in serum-free DMEM at 4 °C for 30 min before treatment with Cy5-EGFP mRNA polycycles. Polycycles were prepared as above using Cy5-labeled EGFP mRNA at a final concentration of 125 ng mRNA per well in 200 μL. The cells were treated on ice and incubated for 1 h at 4 °C and directly compared with cells treated at 37 °C by flow cytometry. The fold difference in fluorescence was calculated from the mean Cy5 fluorescence of cells treated at 4 °C divided by the mean Cy5 fluorescence of cells treated at 37 °C.

Fluorescent Cy5-EGFP mRNA Delivery and Expression Analysis. To measure cellular uptake and release of oligomer/mRNA polycycles, HeLa cells were treated with polycycles prepared as above using Cy5-labeled EGFP mRNA at a final concentration of 62.5 ng mRNA per well. Cells were prepared and analyzed by flow cytometry for both EGFP and Cy5 fluorescence as above.

Effect of Endosomal Inhibitors on EGFP mRNA Expression. To measure the effect of inhibiting endosomal acidification, Con A was added to HeLa cells treated with CART 7/EGFP mRNA polycycles (125 ng mRNA per well, prepared as above) at a final concentration of 50 nM. Chl was added to HeLa cells treated with CART 7/mRNA polycycles at a final concentration of 100 μM. Cells were prepared and analyzed by flow cytometry for EGFP fluorescence as above.

Confocal Microscopy. HeLa cells were seeded in an eight-chambered glass-bottomed dish (Nunc Lab-Tek II; Thermo Scientific) at 10,000 cells per well and allowed to adhere overnight. Before treatment, cells were washed with serum-free DMEM, and 200 μL of serum-free DMEM with 100 μM TRITC-Dextran (average molecular weight 4,400; Sigma) was added to each well. Cy5-EGFP mRNA polycycles were prepared as above (final concentration of 125 ng mRNA per well) and added to each corresponding well. Cells were incubated for 4 h at 37 °C, then media was removed and 500 μL of PBS containing 10 mM Hepes buffer solution was added. Cells were imaged using a Leica SP8 White Light Confocal microscope tuned for DAPI (dansyl), GFP, DiD TRITC-Dextran, and Cy5.

Bli of Fluc mRNA Delivery to HeLa Cells. HeLa cells were seeded at 10,000 cells per well in black 96-well plates and allowed to adhere overnight. mRNA polycycles and Lipo control were prepared as above using Fluc mRNA (final concentration of 50 ng mRNA per well in 50 μL total volume). All conditions were performed in replicates of six. Cells were incubated with treatment for 8 h at 37 °C, then medium was removed and 100 μL of a- luciferin solution (300 μg/mL) in DMEM was added to the cells. The resultant luminescence was measured using an IVIS 50 or IVIS 200 (Xenogen product line; Perkin-Elmer) CCD camera and Living Image Software. Data represent the average of three experiments with error expressed as ± SD.

Bli of Fluc mRNA Delivery in Female BALB/c Mice. Fluc mRNA expression was analyzed in female BALB/c mice with an IVIS 200 system (Xenogen product line; Perkin-Elmer), located in the Stanford Center for Innovation in In-Vivo Imaging. Animals were anesthetized with isoflurane using an SAS3 anesthesia system (Anesthesia Support) and an EVA 4 waste gas evacuation system (Universal Vaporizer Support).

For i.v. administration, 7.5 μg of Fluc mRNA was injected into the tail vein of each mouse in 75 μL PBS. mRNA was either administered naked or in complexation with CART 7 at a 1:10:cation:anion ratio. For i.m. injections, CART/mRNA complexes of 7.5 μg Fluc mRNA were injected into the right flank of each mouse in 75 μL PBS. A control dose of naked Fluc mRNA was administered in the same volume to the left flank of the mouse.

Expression of Fluc was analyzed by BLI after i.p. injecting α-luciferin at 150 mg/kg. A grayscale body surface image (digital photograph) was taken under weak illumination. After switching off the light source, photons emitted from luciferase-expressing cells within the animal body and transmitted through the tissue were quantified over a defined period ranging up to 5 min using the software program Living Image (Perkin-Elmer).

ACKNOWLEDGMENTS. We thank Prof. Lynette Geshgeski for materials, tissue culture equipment, and use of a plate reader and epifluorescence microscope; Prof. Chaitan Khosla for use of HeLa cells; and Prof. Richard Zare for materials and the use of the Malverns Zetasizer DLS. This work was supported by Department of Energy Grant DE-SC0005430 and National Science Foundation Grant NSF CHE-1306730 (to R.M.W.) and NIH Grants NIH-CA031841 and NIH-CA031845 (to P.A.W.). This work was also funded in part through a generous gift from the Chambers Family Foundation for Excellence in Pediatric Research (to C.H.C.) and the Child Health Research Institute at Stanford University (to C.H.C.). Support through the Stanford Center for Molecular Analysis and Design (C.J.M.) and through fellowships from the National Science Foundation (J.R.V.) is also acknowledged. Flow cytometry data were collected on an instrument in the Stanford Shared FACS Facility obtained using NIH 510 shared instrument Grant 510RR02431-01. Confocal microscopy was collected on an instrument in the Stanford Cell Sciences Imaging Facility supported by National Center for Research Resources Award 15100D010580.


McKinlay et al.

PNAS PLUS | Published online January 9, 2017 | E555


Charge-altering releasable transporters (CARTs) for the delivery and release of messenger RNA in living animals

Colin J. McKinlay\textsuperscript{a,1}, Jessica R. Vargas\textsuperscript{a,1}, Timothy R. Blake\textsuperscript{a}, Jonathan W. Hardy\textsuperscript{b,\textsuperscript{g}}, Masamitsu Kanada\textsuperscript{b,\textsuperscript{g}}, Christopher H. Contag\textsuperscript{b,\textsuperscript{c,\textsuperscript{d,\textsuperscript{e,\textsuperscript{g}}}}, Paul A. Wender\textsuperscript{a,\textsuperscript{f}}, Robert M. Waymouth\textsuperscript{a}

Departments of \textsuperscript{a}Chemistry, \textsuperscript{b}Pediatrics, \textsuperscript{c}Microbiology and Immunology, \textsuperscript{d}Bioengineering, \textsuperscript{e}Radiology, and \textsuperscript{f}Chemical and Systems Biology; \textsuperscript{g}Molecular Imaging Program at Stanford (MIPS); Stanford University, Stanford, CA 94305

Supplemental Figures

\textbf{Fig. S1.} Kinetics of degradation of α-amino ester homo-oligomers in PBS at acidic (pH 5.5, blue) and slightly basic (pH 7.4, red) conditions.
<table>
<thead>
<tr>
<th>entry</th>
<th>initiator</th>
<th>block 1 monomer (DP)&lt;sup&gt;a&lt;/sup&gt;</th>
<th>block 2 monomer (DP)&lt;sup&gt;a&lt;/sup&gt;</th>
<th>$M_n$ (GPC)&lt;sup&gt;b&lt;/sup&gt;</th>
<th>$M_w/M_n$ (GPC)&lt;sup&gt;b&lt;/sup&gt;</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>Dansyl (3)</td>
<td>5 (13)</td>
<td>6 (11)</td>
<td>6013</td>
<td>1.25</td>
</tr>
<tr>
<td>8</td>
<td>Dansyl (3)</td>
<td>5 (18)</td>
<td>6 (17)</td>
<td>5800</td>
<td>1.32</td>
</tr>
<tr>
<td>9</td>
<td>Dansyl (3)</td>
<td>6 (13)</td>
<td>-</td>
<td>4362</td>
<td>1.18</td>
</tr>
<tr>
<td>10</td>
<td>Pyrene (4)</td>
<td>5 (15)</td>
<td>-</td>
<td>4800</td>
<td>1.46</td>
</tr>
<tr>
<td>11</td>
<td>Pyrene (4)</td>
<td>5 (15)</td>
<td>6 (12)</td>
<td>6400</td>
<td>1.44</td>
</tr>
<tr>
<td>12</td>
<td>Benzyl</td>
<td>5 (4)</td>
<td>MTC-Guan&lt;sup&gt;1&lt;/sup&gt; (4)</td>
<td>2300</td>
<td>1.61</td>
</tr>
<tr>
<td>13</td>
<td>Dansyl (3)</td>
<td>5 (13)</td>
<td>MTC-Guan&lt;sup&gt;1&lt;/sup&gt; (12)</td>
<td>6514</td>
<td>1.38</td>
</tr>
<tr>
<td>14</td>
<td>Dansyl (3)</td>
<td>5 (13)</td>
<td>MTC-Piperidine&lt;sup&gt;2&lt;/sup&gt; (13)</td>
<td>4303</td>
<td>1.31</td>
</tr>
</tbody>
</table>

<sup>a</sup> DP calculated by <sup>1</sup>H-NMR endgroup analysis. <sup>b</sup> $M_n$ and $M_w/M_n$ determined for protected oligomers by gel permeation chromatography (GPC) in THF relative to polystyrene standards

**Fig. S2.** Characterization of CART and non-immolative oligomers synthesized using OROP.
**Figure S3.** A) Normalized viability of HeLa cells treated with CART 7/mRNA complexes relative to untreated cells, as determined by MTT assay over 72 h. Complexes tested at concentrations of 125 ng mRNA/well. Particles formulated at 10:1 (cation:anion) charge ratio. B) LC$_{50}$ value of diketopiperizine 2 alone is >> 500 µM. Results are a minimum of three trials. Error expressed as ± SD.
Figure S4. Dynamic light scattering and zeta potential measurements of mRNA polyplexes formed with with CART 7 and non-degrading co-oligomers. (A) Hydrodynamic diameter of self-immolative CART D_{11}:A_{13} 7 complexed with eGFP mRNA; (B) Zeta potential measurements demonstrate the surface charge of CART/ mRNA particles shift from positive to negative as a result of the charge-altering behavior of 7. (C) Polyplex size is independent of mRNA length, as CART 7/mRNA complexes formed with luciferase mRNA display a similar size profile. (D) Hydrodynamic diameter of non-immolative piperidinium oligomer D_{13}:Pip_{13} 14. (E) The zeta potential of mRNA polyplexes formed with non-immolative D_{13}:Pip_{13} 14 remain positive over time. (F) Hydrodynamic diameter of self-immolative CART D_{18}:A_{17} 8 complexed with eGFP mRNA. All particles formulated at a 10:1 (+/-) theoretical charge ratio. Results are a minimum of three trials. Error expressed as ± SD.
**Figure S5.** Relative uptake and expression of Cy5-eGFP mRNA following treatment with complexes formed with CARTs 7 and 8 and homooligomer 9. Filled bars represent eGFP expression and open bars represent Cy5 fluorescence.
Figure S6. Co-formulation and delivery of mRNA polyplexes to HeLa cells using binary mixtures of eGFP and Fluc mRNA results in proportional expression, as determined by tandem BLI and flow cytometry analysis. Cells were treated with CART 7/mRNA complexes at a total concentration of 125 ng mRNA/well for 8 h prior to analysis. eGFP and Fluc mRNA were incorporated at fixed ratios (w/w).
Characterization Data and Additional Experimental Procedures

Dansyl D$_{13}$:A$_{11}$ (Boc-protected 7)
$^1$H NMR (500 MHz, Chloroform-$d$) δ 8.54 (d, $J = 8.5$ Hz, 1H), 8.25 (dd, $J = 11.5, 8.0$ Hz, 1H), 7.66 – 7.40 (m, 1H), 7.19 (d, $J = 7.6$ Hz, 1H), 4.33 – 4.21 (m, 66H), 4.10 (td, $J = 6.8, 2.6$ Hz, 26H), 3.99 (s, 11H), 3.93 (s, 12H), 3.52 (t, $J = 11.9$ Hz, 26H), 2.88 (d, $J = 1.6$ Hz, 6H), 1.65 – 1.58 (m, 33H), 1.46 (d, $J = 3.1$ Hz, 50H), 1.40 (d, $J = 1.9$ Hz, 47H), 1.32 – 1.25 (m, 94H), 0.87 (t, $J = 6.9$ Hz, 32H).

Dansyl D$_{13}$:A$_{11}$ (7)
$^1$H NMR (400 MHz, Methanol-$d_4$) δ 7.66 (d, $J = 8.0$ Hz, 2H), 4.58 (q, $J = 5.5$ Hz, 19H), 4.50 – 4.31 (m, 31H), 4.34 – 4.23 (m, 28H), 4.30 – 4.23 (m, 53H), 3.49 (dt, $J = 15.3, 5.4$ Hz, 23H), 3.25 – 3.15 (m, 2H), 3.07 (d, $J = 12.8$ Hz, 6H), 1.64 (d, $J = 8.5$ Hz, 33H), 1.30 (s, 188H), 1.37 – 1.17 (m, 486H), 0.90 (t, $J = 6.6$ Hz, 45H).

Dansyl-D$_{18}$:A$_{17}$ (Boc-protected 8)
$^1$H NMR (500 MHz, Chloroform-$d$) δ 8.54 (dt, $J = 8.6, 1.2$ Hz, 1H), 8.25 (d, $J = 10.9$ Hz, 1H), 8.35 – 8.19 (m, 1H), 7.54 (ddd, $J = 23.4, 8.6, 7.4$ Hz, 2H), 7.19 (d, $J = 7.6$ Hz, 1H), 4.32 – 4.21 (m, 100H), 4.10 (td, $J = 6.9, 2.8$ Hz, 37H), 3.99 (d, $J = 6.3$ Hz, 19H), 3.92 (d, $J = 8.3$ Hz, 16H), 3.57 – 3.46 (m, 14H), 2.88 (s, 6H), 1.60 (q, $J = 6.9$ Hz, 38H), 1.46 (t, $J = 2.2$ Hz, 82H), 1.40 (d, $J = 1.9$ Hz, 80H), 1.27 (d, $J = 29.0$ Hz, 117H), 0.87 (t, $J = 6.9$ Hz, 111H).

Dansyl-D$_{18}$:A$_{17}$ (8)
$^1$H NMR (400 MHz, Methanol-$d_4$) δ 8.64 – 8.50 (m, 1H), 8.24 (d, $J = 7.6$ Hz, 1H), 7.63 (t, $J = 8.0$ Hz, 2H), 7.41 (s, 1H), 4.58 (s, 24H), 4.49 – 4.27 (m, 46H), 4.30 (s, 46H), 4.19 – 4.04 (m, 93H), 3.55 – 3.45 (m, 43H), 3.04 – 2.85 (m, 6H), 1.65 (s, 87H), 1.37 – 1.21 (m, 486H), 0.90 (t, $J = 6.9$ Hz, 75H).

Dansyl-A$_{13}$ (Boc-protected 9)
$^1$H NMR (400 MHz, Chloroform-$d$) δ 8.63 – 7.42 (m, 4H), 4.23 (d, $J = 5.9$ Hz, 20H), 4.03 – 3.85 (m, 23H), 3.58 – 3.46 (m, 22H), 2.88 (s, 6H), 1.53 – 1.31 (m, 111H).

Dansyl-A$_{13}$ (9)
$^1$H NMR (500 MHz, Methanol-$d_4$) δ 8.57 (d, $J = 8.5$ Hz, 1H), 8.39 (d, $J = 8.7$ Hz, 1H), 8.22 (dd, $J = 7.2$, 1.2 Hz, 1H), 7.64 (td, $J = 8.1, 3.9$ Hz, 2H), 7.41 (d, $J = 7.6$ Hz, 1H), 4.58 (s, 25H), 4.25 (t, $J = 5.4$ Hz, 2H), 4.16 (s, 19H), 4.16 – 4.06 (m, 9H), 4.03 (s, 2H), 3.83 (q, $J = 5.3$ Hz, 3H), 3.58 – 3.48 (m, 27H), 3.24 (s, 2H), 3.22 – 3.12 (m, 3H), 2.98 (d, $J = 12.2$ Hz, 6H).

Preparation of oligomers 10 and 11a:
A flame-dried vial was charged with dodecyl-MTC 5 (201.3 mg, 0.61 mmol), 1-pyrene butanol 4 (13.5 mg, 0.005 mmol), and 400 µL toluene. DBU (8.4 mg, 0.005mmol) and TU (22.7 mg, 0.005 mmol) in 200 µL toluene were added to the reaction vial and allowed to stir. After 1 h, an aliquot (300 µL) of the reaction mixture was quenched with 5 drops AcOH then concentrated under reduced pressure. To the remaining 300 µL of the reaction mixture was added morpholinone monomer 6 (71.0 mg, 0.35 mmol) as a solid, and the reaction was allowed to stir for 3 h. After a total of 4 hours the reaction was quenched with 5 drops AcOH then concentrated under reduced pressure. The crude material was dialyzed in CH$_2$Cl$_2$ against MeOH (1.0 kDa dialysis bag).
Concentration of the homo-oligomer under reduced pressure yielded 84.0 mg clear residue. End group analysis by $^1$H-NMR shows DP 15.

GPC (RI): $M_n$ (PDI): 4800 g mol$^{-1}$ ($M_w/M_n = 1.46$).

$^1$H NMR (300 MHz, Chloroform-d) $\delta$ 8.40-7.73 (m, 9H), 4.28 (s, 48H), 4.18 – 4.02 (m, 32H), 3.49 (s, 40H), 1.61 (t, $J = 6.7$ Hz, 6H), 1.36 – 1.16 (m, 324H), 0.93 – 0.81 (m, 45H).

Concentration of the dialyzed block co-oligomer under reduced pressure yielded 134.0 mg clear residue. End group analysis by $^1$H-NMR shows DP 15:12.

$^1$H NMR (500 MHz, CD$_3$Cl): $\delta$ 8.35-7.85 (m, 9H), 4.40 – 4.15 (m, 78H), 4.15 – 4.07 (m, 30H), 4.02 – 3.92 (bs, 24H)

GPC (RI): $M_n$ (PDI): 6400 g mol$^{-1}$ ($M_w/M_n = 1.44$).

11c (following deprotection and rearrangement in PBS):

Preparation of Boc-protected D$_{13}$:G$_{12}$:

An oven-dried vial was charged with MTC-dodecyl 5 (29.5 mg, 0.089 mmol) and dansyl initiator 3 (2.2 mg, 0.007 mmol), in 100 µL methylene chloride. DBU (1.5 mg, 0.004 mmol) and TU (2.1 mg, 0.004 mmol) were added to the reaction vial and allowed to stir. After 1.25 hours MTC-guanidine (2) (40 mg, 0.089 mmol) was added to the vial as a solid and the reaction was allowed to stir for 1.5 additional hours. The reaction was quenched with a small amount of benzoic acid. The crude material was dialyzed in methylene chloride against MeOH (1.0 kDa dialysis bag). The remaining solvent was evaporated to afford co-oligomer as clear waxy solid. Degree of polymerization was determined by $^1$H-NMR end group analysis (DP = D$_{13}$ and G$_{12}$)

Dansyl-D$_{13}$:G$_{12}$ (Boc-protected 13)

$^1$H NMR (500 MHz, Chloroform-d) $\delta$ 4.27 (ddd, $J = 13.1$, 7.6, 2.8 Hz, 101H), 4.10 (td, $J = 6.8$, 2.8 Hz, 26H), 3.70 (q, $J = 5.7$ Hz, 24H), 2.88 (s, 6H), 1.48 (dd, $J = 6.0$, 2.4 Hz, 189H), 1.32 – 1.18 (m, 275H), 0.87 (t, $J = 6.9$ Hz, 35H).

Dansyl-D$_{13}$:G$_{12}$ (13)

$^1$H NMR (500 MHz, Methanol-d$_4$) $\delta$ 4.35 – 4.24 (m, 137H), 4.13 (d, $J = 6.4$ Hz, 31H), 3.52 (s, 30H), 3.01 (s, 6H), 1.63 (d, $J = 7.6$ Hz, 28H), 1.36 – 1.19 (m, 371H), 0.90 (t, $J = 6.9$ Hz, 48H)

Preparation of Boc-protected D$_{13}$:Pip$_{12}$:

An oven-dried vial was charged with MTC-dodecyl 5 (67 mg, 0.204 mmol) and dansyl initiator 3 (5 mg, 0.017 mmol), in 200 µL methylene chloride. DBU (1.6 mg, 0.010 mmol) and TU (3.8 mg, 0.010 mmol) were added to the reaction vial and allowed to stir. After 1.25 hours MTC-piperdine (2) (73 mg, 0.204 mmol) was added to the vial as a solid and the reaction was allowed to stir for 1.5 additional hours. The reaction was quenched with a small amount of benzoic acid. The crude material was dialyzed in methylene chloride against MeOH (1.0 kDa dialysis bag). The remaining solvent was evaporated to
afford co-oligomer as clear waxy solid. Degree of polymerization was determined by $^1$H-NMR end group analysis (DP = D$_{13}$ and Pip$_{13}$)

Dansyl-D$_{13}$:Pip$_{13}$ (Boc-protected 14)
$^1$H NMR (400 MHz, Chloroform-d) $\delta$ 8.45 – 8.08 (m, 2H), 7.57 (d, $J = 9.8$ Hz, 2H), 4.98 (dt, $J = 8.3$, 4.4 Hz, 15H), 4.27 (s, 95H), 4.09 (t, $J = 6.8$ Hz, 36H), 3.64 – 3.52 (m, 30H), 3.36 – 3.25 (m, 31H), 1.79 (d, $J = 9.9$ Hz, 26H), 1.60 (t, $J = 7.1$ Hz, 62H), 1.44 (s, 136H), 1.27 (d, $J = 7.2$ Hz, 255H), 0.86 (t, $J = 6.6$ Hz, 47H).

Dansyl-D$_{13}$:Pip$_{13}$ (14)
$^1$H NMR (400 MHz, Methanol-d$_4$) $\delta$ 5.11 (s, 16H), 4.93 (d, $J = 0.9$ Hz, 130H), 4.31 (d, $J = 17.6$ Hz, 110H), 4.12 (d, $J = 6.8$ Hz, 33H), 2.16 – 2.06 (m, 25H), 1.96 (s, 18H), 1.63 (s, 22H), 1.29 (s, 238H), 1.25 (s, 67H), 0.90 (t, $J = 6.6$ Hz, 55H).
Compiled $^1$H-NMR Spectra

Boc-protected 7

D$_{13}$A$_{11}$
Boc-protected 9
D_{13}G_{12}  
Boc-protected 13