Simultaneous two-photon imaging of intracellular chloride concentration and pH in mouse pyramidal neurons in vivo

Sebastian Sulis Sato1,2, Pietro Artoni1, Silvia Landi1, Olga Cozzolino1, Riccardo Parraa, Enrico Pracuccia, Francesco Trovatoa, Joanna Szczurkowskab, Stefano Luina, Daniele Arosi1, Fabio Beltramab, Laura Canceddab, Kai Kailae, and Gian Michele Rattoa,2

1National Enterprise for Nanoscience and Nanotechnology (NEST), Istituto Nanoscienze Consiglio Nazionale delle Ricerche (CNR) and Scuola Normale Superiore Pisa, 56127 Pisa, Italy; 2Neuroscience and Brain Technologies Department, Istituto Italiano di Tecnologia, 16163 Genoa, Italy; 1Institute of Biophysics, National Research Council and Bruno Kessler Foundation, 38122 Trento, Italy; 2Centre for Integrative Biology, University of Trento, 38122 Trento, Italy; and 3Department of Biosciences and Neuroscience Center (HiLife), University of Helsinki, 00014 Helsinki, Finland

Intracellular chloride ([Cl−]) and pH (pH) are fundamental regulators of neuronal excitability. They exert wide-ranging effects on synaptic signaling and plasticity and on development and disorders of the brain. The ideal technique to elucidate the underlying ionic mechanisms is quantitative and combined two-photon imaging of [Cl−] and pH. However, this has never been performed at the cellular level in vivo. Here, by using a genetically encoded fluorescent sensor that includes a spectroscopic reference (an element insensitive to Cl− and pH), we show that ratiometric imaging is strongly affected by the optical properties of the brain. We have designed a method that fully corrects for this source of error. Parallel measurements of [Cl−] and pH at the single-cell level in the mouse cortex showed the in vivo presence of the widely discussed developmental fall in [Cl−] and the role of the K-Cl cotransporter KCC2 in this process. Then, we introduce a dynamic two-photon excitation protocol to simultaneously determine the changes of pH and [Cl−] in response to hypercapnia and seizure activity.

Significance

The control of intracellular Cl− and pH plays a crucial role in several neuronal functions, and the study of these processes would be helped by tools for their noninvasive optical measurement in vivo. In this study, we have performed combined measurements of Cl− and pH of individual pyramidal neurons by means of in vivo two-photon imaging, and we provide direct experimental demonstration for the presence of the postnatal developmental shift to lower intraneuronal Cl−. Moreover, we introduce an approach for dynamic and simultaneous monitoring of intraneuronal Cl− and pH in vivo. These methods will open a window for the study of the roles of intraneuronal pH and Cl− in neuronal signaling, plasticity, and disease.

The authors declare no conflict of interest.

This article is a PNAS Direct Submission.
Freely available online through the PNAS open access option.
1S.S.S., P.A., and O.C. contributed equally to this work.
2To whom correspondence should be addressed. Email: giannimichele.ratto@sns.it.

This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10.1073/pnas.1702861114/-/DCSupplemental.

Intracellular chloride ([Cl−]) and pH (pH) are fundamental regulators of neuronal excitability. They exert wide-ranging effects on synaptic signaling and plasticity and on development and disorders of the brain. The ideal technique to elucidate the underlying ionic mechanisms is quantitative and combined two-photon imaging of [Cl−] and pH, but this has never been performed at the cellular level in vivo. Here, by using a genetically encoded fluorescent sensor that includes a spectroscopic reference (an element insensitive to Cl− and pH), we show that ratiometric imaging is strongly affected by the optical properties of the brain. We have designed a method that fully corrects for this source of error. Parallel measurements of [Cl−] and pH at the single-cell level in the mouse cortex showed the in vivo presence of the widely discussed developmental fall in [Cl−] and the role of the K-Cl cotransporter KCC2 in this process. Then, we introduce a dynamic two-photon excitation protocol to simultaneously determine the changes of pH and [Cl−] in response to hypercapnia and seizure activity.

Intracellular chloride ([Cl−]) and pH (pH) are fundamental regulators of neuronal excitability. They exert wide-ranging effects on synaptic signaling and plasticity and on development and disorders of the brain. The ideal technique to elucidate the underlying ionic mechanisms is quantitative and combined two-photon imaging of [Cl−] and pH, but this has never been performed at the cellular level in vivo. Here, by using a genetically encoded fluorescent sensor that includes a spectroscopic reference (an element insensitive to Cl− and pH), we show that ratiometric imaging is strongly affected by the optical properties of the brain. We have designed a method that fully corrects for this source of error. Parallel measurements of [Cl−] and pH at the single-cell level in the mouse cortex showed the in vivo presence of the widely discussed developmental fall in [Cl−] and the role of the K-Cl cotransporter KCC2 in this process. Then, we introduce a dynamic two-photon excitation protocol to simultaneously determine the changes of pH and [Cl−] in response to hypercapnia and seizure activity.

Intracellular chloride ([Cl−]) and pH (pH) are fundamental regulators of neuronal excitability. They exert wide-ranging effects on synaptic signaling and plasticity and on development and disorders of the brain. The ideal technique to elucidate the underlying ionic mechanisms is quantitative and combined two-photon imaging of [Cl−] and pH, but this has never been performed at the cellular level in vivo. Here, by using a genetically encoded fluorescent sensor that includes a spectroscopic reference (an element insensitive to Cl− and pH), we show that ratiometric imaging is strongly affected by the optical properties of the brain. We have designed a method that fully corrects for this source of error. Parallel measurements of [Cl−] and pH at the single-cell level in the mouse cortex showed the in vivo presence of the widely discussed developmental fall in [Cl−] and the role of the K-Cl cotransporter KCC2 in this process. Then, we introduce a dynamic two-photon excitation protocol to simultaneously determine the changes of pH and [Cl−] in response to hypercapnia and seizure activity.

Intracellular chloride ([Cl−]) and pH (pH) are fundamental regulators of neuronal excitability. They exert wide-ranging effects on synaptic signaling and plasticity and on development and disorders of the brain. The ideal technique to elucidate the underlying ionic mechanisms is quantitative and combined two-photon imaging of [Cl−] and pH, but this has never been performed at the cellular level in vivo. Here, by using a genetically encoded fluorescent sensor that includes a spectroscopic reference (an element insensitive to Cl− and pH), we show that ratiometric imaging is strongly affected by the optical properties of the brain. We have designed a method that fully corrects for this source of error. Parallel measurements of [Cl−] and pH at the single-cell level in the mouse cortex showed the in vivo presence of the widely discussed developmental fall in [Cl−] and the role of the K-Cl cotransporter KCC2 in this process. Then, we introduce a dynamic two-photon excitation protocol to simultaneously determine the changes of pH and [Cl−] in response to hypercapnia and seizure activity.

Intracellular chloride ([Cl−]) and pH (pH) are fundamental regulators of neuronal excitability. They exert wide-ranging effects on synaptic signaling and plasticity and on development and disorders of the brain. The ideal technique to elucidate the underlying ionic mechanisms is quantitative and combined two-photon imaging of [Cl−] and pH, but this has never been performed at the cellular level in vivo. Here, by using a genetically encoded fluorescent sensor that includes a spectroscopic reference (an element insensitive to Cl− and pH), we show that ratiometric imaging is strongly affected by the optical properties of the brain. We have designed a method that fully corrects for this source of error. Parallel measurements of [Cl−] and pH at the single-cell level in the mouse cortex showed the in vivo presence of the widely discussed developmental fall in [Cl−] and the role of the K-Cl cotransporter KCC2 in this process. Then, we introduce a dynamic two-photon excitation protocol to simultaneously determine the changes of pH and [Cl−] in response to hypercapnia and seizure activity.
We determined the two-photon spectroscopic properties of LSSmClophensor as a function of pH and [Cl\(^-\)]. Then, we show that the propagation of both excitation light and emitted fluorescence in the brain is strongly dependent on wavelength, which can cause large errors, even in ratiometric measurements of [Cl\(^-\)] and pH. By using the red fluorescent protein, LSSmKate, as an invariant reference, we are able to fully correct for this source of error. The validity of this correction was independently verified by fluorescence lifetime imaging microscopy (FLIM) measurements of pH, which notably are not affected by scattering effects in brain tissue. Thus, our imaging technique allowed for direct and simultaneous measurements of neuronal [Cl\(^-\)], and pH at the single-cell level in vivo. We present here direct evidence for the developmental decrease in [Cl\(^-\)], and of the involvement of NKCC1 in the maintenance of high [Cl\(^-\)], in immature neurons. Finally, we combined a methodology for dynamic in vivo imaging with local field potential (LFP) recordings to show the interplay between changes of network activity and the modulation of neuronal [Cl\(^-\)], and pH, in response to hypercapnia and seizure.

Results

Two-Photon Spectral Properties of LSSmClophensor: Dependency on pH and Chloride. We used the Cl\(^-\) and pH sensor LSSmClophensor (21) formed by the fusion of E\(^2\)GFP (27) and of the red fluorescent protein, LSSmKate2 (28) (Fig. 1A). Since the excitation spectrum of E\(^2\)GFP depends on pH and because its fluorescence is quenched on Cl\(^-\) binding, E\(^2\)GFP provides a pH- and Cl-dependent signal (29). In contrast, LSSmKate2 is insensitive to pH and Cl\(^-\), thus providing a ratiometric reference.

We characterized the two-photon excitation spectra of LSSmClophensor and its dependency on pH and Cl\(^-\). We calibrated the purified sensor protein in aqueous solutions, where we could control temperature, pH, and Cl\(^-\) concentration with great precision. Furthermore, given the fast diffusion of the protein in solution, these spectra are unaffected by photobleaching and have an optimal signal to noise ratio. Fig. 1B shows that the excitation of LSSmKate2 is independent of pH after correction for bleed through and that the E\(^2\)GFP spectra display a well-defined isobestic point at about 910 nm (details are in Materials and Methods, and Figs. S1 and S2 show raw data). The E\(^2\)GFP spectrum at an arbitrary pH is given by the linear combination of the protonated and deprotonated spectra, and the relative contributions of these terms are used to compute pH (Fig. 1C and D).

LSSmClophensor is a double-ratiometric indicator both in excitation and emission that requires two steps to complete a measurement. First, pH is determined by the excitation spectra of E\(^2\)GFP. Although it is enough to collect the fluorescence at only two different excitation wavelengths, it is possible to obtain a more reliable estimate of pH by sampling the excitation spectra at several wavelengths. Second, since the sensor exploits the quenching of E\(^2\)GFP fluorescence on Cl\(^-\) binding (29), increases of Cl\(^-\) led to a drop of E\(^2\)GFP fluorescence relative to LSSmKate2 (Fig. 1E), and the ratiometric analysis of the emitted fluorescence provides the Cl\(^-\) measurement (details are in Materials and Methods).

Properties of LSSmClophensor Expressed in Vivo. In utero electroporation (30, 31) applied at embryonic day 15.5 led to the transfection of layer 2/3 pyramidal neurons of the visual cortex as shown in a postnatal day (P) 32 mouse (Fig. 2 A and B). A spectral sequence is obtained by imaging the same cells at different excitation wavelengths. Each image in Fig. 2C has been obtained at the indicated wavelength by in vivo imaging in a P10 mouse. The quantification of the raw fluorescence of five cells (Fig. 2D) is shown in Fig. 2E, while Fig. 2F shows the effects of correction for bleed through (Eq. 6 and Fig. S1C).

Fig. 1. Two-photon spectra of LSSmClophensor in aqueous solution. (A) Schematic structure of the sensor. (B) Excitation spectra of the E\(^2\)GFP and LSSmKate2 components of LSSmClophensor at different levels of pH at 24 °C. Data have been corrected for bleed through and normalized using the peak of the LSSmKate2 emission. The nonlabeled spectra of E\(^2\)GFP have been obtained at pH 6.4, 6.8, 6.9, 7.1, 7.2, 7.4, and 7.6. The excitation spectrum of LSSmKate2 is pH-insensitive: Lower shows the normalized difference (percentage) between the spectra obtained at pH values of 6, 7, and 8, with the mean spectrum averaged for all pH levels. (C) Linear decomposition of the spectrum obtained at pH 7.0 (green symbols) on the spectra obtained at pH 6.0 and 8.0 (thin red and blue lines, respectively). The two components are represented by the thick red and blue curves, respectively, and their sum is the line running through the experimental points. (D) The color-coded circles represent the corresponding coefficients in the linear decomposition of the spectra of the set of calibration solutions shown in B. The ratio between the components provides the angle \(\theta\), which is specific for each value of pH. The error bars, computed from the fit residues (Supporting Information), are contained within the symbol size. (E) Chloride determines the quenching of the E\(^2\)GFP signal as shown by the loss of fluorescence measured at the isobestic point. Green circles and line of best fit show the ratio of the fluorescence excited at 910 nm in the green and red channels (normalized to 1 at the maximum) as a function of chloride concentration. The apparent chloride \(K_d\) depends on pH, because chloride binds only to protonated E\(^2\)GFP. Dashed lines are calculated for pH 6.0 and 8.0. Spectra have been obtained from three different samples, and each has been analyzed at three different temperatures (Fig. S2).
occurring during the scan (Fig. S4). Owing to this mismatch, the with regard to the calibrations that was not caused by bleaching before data analysis (Materials and Methods). Spectra were corrected for field illumination and bleed through and thus indicating a progressive loss of two-photon excitation at the focal plane with decreasing wavelength (Fig. 3). Next, we examined whether, for a given focal plane, we could establish a relationship between excitation scattering/absorption and emission extinction. Fig. 3E shows the correlation between these two effects as quantified by the measured $\Delta - \gamma$ pairs at different depths. $\Delta(z)$ yields the relative loss of fluorescence excited at 960 and 910 nm as defined by

$$\Delta(z) = \frac{YFP_{960}(z)}{YFP_{910}(z)} - \frac{YFP_{910}(0)}{YFP_{960}(0)},$$

where the subscripts indicate the excitation wavelength, and z indicates the imaging depth. Depth 0 corresponds to tissue surface where no scattering occurs, and $\Delta = 1$ indicates that there is no wavelength-dependent loss of excitation power. $\gamma(z)$ is defined by

$$\gamma(z) = \frac{R_{YFP}(z)}{G_{YFP}(z)} \cdot \frac{G_{YFP}(0)}{R_{YFP}(0)},$$

where z is the imaging depth. The value of $\gamma(z)$ is equal to 1 in the absence of differential extinction of the fluorescence detected in the R and G channels. Fig. 3E shows that there is a linear relationship between the extinction of emission and the loss of excitation and that this relationship is similar in cortical neurons of different mice. Based on this finding, if $\Delta(z)$ is known, the parameter for differential emission extinction, γ, can be readily estimated using the empirical relationship:

$$\gamma = 1 + \mu(\Delta(z) - 1),$$

with $\mu = 0.40 \pm 0.016 (n = 66$ cells from six mice) (Fig. 3E).

In Vivo Measurements of pH and $[\text{Cl}^-]_e$. Fig. 4E illustrates the computation of steady-state pH and $[\text{Cl}^-]_e$. After calibration of the images (Supporting Information), the fluorescence within the cell body outline was measured and corrected for bleed through to obtain the excitation spectra of E2GFP and LSSmKate2. As explained above, the spectra obtained at a given depth in the tissue must be corrected for loss of absorption/scattering before computing the pH values. We performed this correction knowing that $R_{\gamma}(\lambda)$ (the LSSmKate2 spectrum obtained in vivo at depth z) is not affected by pH and $[\text{Cl}^-]_e$. Therefore, any divergence between $R_{\gamma}(\lambda)$ and the LSSmKate2 spectra must be caused by wavelength-dependent loss of excitation. Thus we computed the correction factors $\varphi_{\gamma}(\lambda)$ defined as

$$\varphi_{\gamma}(\lambda) = \frac{R_{\gamma}(\lambda)}{R_{\gamma}(\lambda)^*}$$

where $R_{\gamma}(\lambda)$ indicates the LSSmKate2 excitation spectrum corrected for bleed through at depth 0. We used this set of factors to correct the E2GFP spectrum.
8 mice, 512 neurons), and P18 on the sensor spectra was very strong. After computation of pHi, through at depth z. Fig. 4 shows the pHi and [Cl\(^{-}\)] estimates and the magnitude of the shift correlated with the initial chloride level. The pups in this age group are more mature neurons, leading to a mosaicism with regard to [Cl\(^{-}\)] (reflecting cellular immaturity) would be predictable of a larger effect of the NKCC1 blocker. Fig. 6 shows that the treatment caused a shift of [Cl\(^{-}\)] in immature neurons is generally thought to be predictive of a larger effect of the NKCC1 blocker. Fig. 6 shows that the treatment caused a shift of [Cl\(^{-}\)] in immature neurons is generally thought to be predictive of a larger effect of the NKCC1 blocker.

Developmental Decrease of the Intraneuronal Chloride Concentration. Next, we exploited our technical approach to address the question whether a developmental decrease in [Cl\(^{-}\)] takes place during the maturation of cortical neurons in vivo. We studied mice at three stages of development [P4–P5 (n = 9 mice, 182 neurons), P8–P10 (n = 8 mice, 512 neurons), and P18–P51 (n = 5 mice, 226 neurons)] under light urethane anesthesia. From the excitation spectra for E\(^{\text{GFP}}\) and LSSmKate2, we obtained the Ct and pH maps, as shown in Fig. 5 A and B. This analysis was limited to the cell bodies, because most of the corresponding in vitro data are based on somatic measurements and also because the cell body provides a better signal-to-noise ratio for ion imaging than the dendrites. While no large age-dependent change in neuronal pH\(_{i}\) was detected as shown by the median and interquartile range (IQR; pH\(_{i}\) IQR 7.11–0.27, 7.17–0.23, and 7.16–0.25 at P4–P5, P8–P10, and P18–P51, respectively) (Fig. 5C), a robust developmental shift in [Cl\(^{-}\)] was clearly evident among the three age groups. The median level of [Cl\(^{-}\)] decreased from 54 (IQR 34) mM at P4–P5 to 40 (IQR 45) mM at P8–P10 and further down to 17 (IQR 22) mM in the P18–P51 group (Fig. 5D). These data are in agreement with measurements of the ion transport efficacy of KCC2 in cortical neurons in vitro, which show strong up-regulation commencing around P6, with near-maximum extrusion rates achieved at ~P14–P16 (3, 36).

Developmental Decrease of the Intraneuronal Chloride Concentration.

The high [Cl\(^{-}\)] in immature neurons is generally thought to be maintained by Cl\(^{-}\) uptake via NKCC1 (in the Introduction). Consistent with data obtained in vitro, superfusion of the cortex of P4–P5 mice with saline containing the NKCC1 inhibitor bumetanide (55 \(\mu\)M) resulted in a pronounced decrease of median [Cl\(^{-}\)] to 21 mM (IQR 22 mM; five mice, n = 381 neurons) (Fig. 6A and B). Application of the vehicle only had no discernible effect on [Cl\(^{-}\)] (53 mM; IQR 30 mM; four mice, n = 126 neurons).

Fig. 5D shows that the P8–P10 group has a large variability, which might be because of the presence of both immature and more mature neurons, leading to a mosaicism with regard to neurons with low and high [Cl\(^{-}\)]. The pups in this age group are large enough to enable implanting them with a perforated optical window that could be microperfused with bumetanide. In four mice at P8–P10 (n = 166 neurons), we imaged the same neurons before and after bumetanide to establish whether a high initial value of [Cl\(^{-}\)] (reflecting cellular immaturity) would be predictive of a larger effect of the NKCC1 blocker. Fig. 6C–E shows that the treatment caused a shift of [Cl\(^{-}\)], toward lower values in each individual neuron and that, indeed, the amplitude of the shift correlated with the initial chloride level.

Dynamic Imaging of H\(^{+}\) and Cl\(^{-}\) Ions in Vivo. During network activity, [Cl\(^{-}\)] and pH\(_{i}\) are modulated by channel-mediated fluxes driven by ionic driving forces for Cl\(^{-}\) and for channel-permeant acid-base...
species (mainly HCO\textsubscript{3}{-}), respectively. However, active transport of Cl- and H+/HCO\textsubscript{3}{-} will oppose the effects of the passive fluxes, and thus, the instantaneous ion concentrations are set by the properties of the ion channel/transporter relationships (3).

So far, there are no data on intracellular Cl- and pH dynamics in cortical neurons in vivo. Measurements of the steady-state values of pH\textsubscript{i} and [Cl-], based on sampling the excitation spectra at several wavelengths are inherently slow and cannot provide time-resolved data. However, Eq. 7 (Materials and Methods) shows that it is possible to measure simultaneously pH\textsubscript{i} and [Cl-], by alternating only two different excitation wavelengths. In these experiments, excitation was provided by two tunable lasers, which were steered and combined before the scanning head, and alternatively selected by electromechanical shutters during acquisition (Fig. 7A and B). We constructed time-lapse sequences by alternating excitation at 860 nm and at the isosbestic point at 910 nm: each pair of E2GFP images provides an estimate of pH\textsubscript{i}, while the LSSmKate2 images containing 30% CO\textsubscript{2} in air. Breathing this gas mixture induces fast acidification of the brain extracellular space and brain tissue (37), leading to suppression of neuronal activity involving multiple mechanisms, such as enhancing GABAergic transmission (1), as well as inhibition of NMDA receptors and voltage-gated Na+ and Ca2+ channels (38, 39). Time-lapse imaging was performed while recording the LFP with an intracortical electrode inserted in the optic window. Fig. 7C shows that, at the beginning of the recording (t < 60 s), the LFP is dominated by slow oscillations in the δ-band (0.5–4 Hz) characteristics of slow-wave sleep and present under urethane anesthesia. Acidification began within 20 s from the onset of CO\textsubscript{2} inhalation and network activity rapidly subsided (Fig. 7C and D). The excitation spectra of LSSmClopHensor rapidly shifted toward the acidic form, reaching a plateau level within a few minutes from hypercapnia onset (Fig. 7E and F). In four mice (>P35), we observed a similar behavior and kinetics, with an average fall in pH\textsubscript{i} of 0.6 ± 0.3. The intraneuronal acidosis was paralleled by a fast drop in [Cl-], which is probably caused by the cessation of neuronal activity and/or by the actions of plasmamembrane chloride/bicarbonate transporters in response to the fall in pH\textsubscript{i} (1). An alkaline shift was observed immediately at the end of the CO\textsubscript{2}
inhalation together with the gradual reappearance of network activity (Fig. 7 C–E).

To trigger a robust, seizure-like network event, we applied the potassium channel blocker 4-aminopyridine (4-AP) on the occipital cortex of adult mice (40) under light urethane anesthesia. In these experiments, the cranial window was sealed with a perforated coverslip to apply a droplet of 100 mM solution of 4-AP in saline. As observed previously in superfused slices and after in vivo i.p. injection (40, 41), epileptiform activity started within 30 min from drug application. Fig. 8A shows the LFP recorded during a cortical seizure, which was characterized by a large increase of oscillatory activity in a wide bandwidth (Fig. 8A). Dynamic imaging of \([\text{Cl}^-]\) showed a rapid net accumulation of \([\text{Cl}^-]\) (Fig. 8C) in parallel with the temporal evolution of fast oscillations in the \(\gamma\) band (Fig. 8D). These data indicate that active \([\text{Cl}^-]\) extrusion was overwhelmed by the channel-mediated load that is most likely attributable to \(\text{GABA}_A\)-R-mediated \([\text{Cl}^-]\) influx triggered by the intense interneuronal activity present in this model (42). Similar results were obtained in five mice (>P35), where \([\text{Cl}^-]\) was elevated by 22 \pm 7 mM. In all cases, the recovery of \([\text{Cl}^-]\) commenced immediately after the abrupt end of seizure activity. Interestingly, there was also a fall in \(p\text{Hi}\) that had a slower time course than the increase in \([\text{Cl}^-]\). These data do not permit identification of the underlying mechanism, but both a \(\text{GABA}_A\)-R-mediated efflux of \(\text{HCO}_3^-\) and a production of metabolic acid are likely to contribute to the cellular acidosis, which in fact, is characteristic of seizures and seizure-like activity (26, 43).

Discussion

Properties and Advantages of LSSmCloHensor in Neuronal Ion Imaging. In this study, we have developed a method for simultaneous two-photon in vivo imaging of \([\text{Cl}^-]\) and \(p\text{Hi}\) in individual cortical pyramidal neurons based on LSSmCloHensor, a genetic indicator consisting of an ion-sensitive GFP (E2GFP) and an ion-insensitive red fluorescent protein (LSSmKate2) that provides a ratiometric reference. One of our main findings is that in vivo ion imaging in general, even if done in a ratiometric manner, is strongly affected by the wavelength-dependent extinction of light as it propagates through brain tissue. This effect, whereby shorter wavelengths are absorbed more efficiently as a function of imaging depth, leads to a significant distortion of excitation spectra and to a red shift of fluorescence. Since the optical properties of LSSmKate2 are independent of \([\text{Cl}^-]\) and \(p\text{Hi}\), we have been able to use its signal to correct for the above source of error. Notably, the approach used in this correction was verified in FLIM measurements of \(p\text{Hi}\), which are insensitive to light absorption within brain tissue. To show the utility of our methodology, we provide here direct in vivo evidence for the developmental shift to lower intraneuronal \([\text{Cl}^-]\) levels that takes place during neuronal maturation and for the specific role of bumetanide-sensitive \([\text{Cl}^-]\) accumulation in neonatal neurons, which is required for their widely studied depolarizing \(\text{GABA}_B\)-R responses. We also introduce a method for dynamic monitoring of changes in \(p\text{Hi}\) and \([\text{Cl}^-]\) in vivo, exemplified here as responses to hypercapnia and seizure activity.

Several ion sensors based on GFP have been developed (20), starting from Clomeleon (44). Clomeleon consists of the fusion of CFP and Topaz, a YFP mutant, with fluorescence that is reduced on binding with \([\text{Cl}^-]\) ions. When exciting CFP and recording emission from CFP and FRET emission from Topaz, an increase in \([\text{Cl}^-]\) causes a reduction of the Topaz fluorescence. Clomeleon signal has a complex \(p\text{Hi}\) dependence, and its apparent \(K_d\) spans two orders of magnitude in the \(p\text{Hi}\) range from 6 to 8. At physiological \(p\text{Hi}\), the reported \(K_d\) for \([\text{Cl}^-]\) (about 160 mM) is far from physiologically meaningful \([\text{Cl}^-]\) levels (44–46). The above properties as well as the distortion present in deep tissue imaging imply that Clomeleon offers little sensitivity and reliability at the low concentrations expected in adult neurons.

Wimmer et al. (47) provided fluorometric data on \([\text{Cl}^-]\), changes in vivo by using SuperClomeleon (48), which has a somewhat higher affinity (20–40 mM) to \([\text{Cl}^-]\) than Clomeleon. This study has important differences from our approach, since they could only measure bulk changes of \([\text{Cl}^-]\), concentration in a relatively large brain volume. This is also true for a more recent study by Berglund et al. (49) on tonic \(\text{GABA}_A\)ergic inhibition in the cerebellum, where the authors performed \([\text{Cl}^-]\) imaging at cellular level in slices and used bulk measurements in vivo. Finally, it is obvious that, in experiments with SuperClomeleon, it is not possible to make a correction for \(p\text{Hi}\) differences and dynamic changes at the level of individual neurons even in vitro, which would be required for a valid estimate of \([\text{Cl}^-]\), based on the highly \(p\text{Hi}\)-sensitive \([\text{Cl}^-]\) signal of this indicator. Here, it is noteworthy that neuronal \(p\text{Hi}\) shows relatively large cell-to-cell variations (Fig. 5), even under steady-state conditions (50).

The Developmental Shift in Neuronal \([\text{Cl}^-]\). Despite the extensive electrophysiological data obtained in vitro, which are supported by a wide range of molecular biological studies on the expression patterns and properties of NKCC1 and KCC2 (3, 4), the presence of the ontogenetic decrease in \([\text{Cl}^-]\), and the consequent shift in \(E_{\text{GABA}_A}\) have been and are still being debated (12). A key element in this debate is the absence so far of direct in vivo demonstration of the \([\text{Cl}^-]\) shift. In this study we provide direct evidence for this developmental phenomenon. Our imaging data, based on a total of ~900 individual pyramidal neurons in three age groups, show a
53 mV. Given the substantial scatter in the primary data on [Cl−] in newborn mice is maintained by the operation of NKCC1. White in the horizontal pseudocolor calibration bar corresponds to [Cl−] = 25 mM. The numbers in figure add [Cl−] of the adjacent neuron and the computed error. (Vertical scale bar: 25 µm.) (B) Superimposed distributions of [Cl−] at P4–P5 under control conditions (area under red curve; vehicle, four mice) and after treatment with bumetanide (area under green curve; seven mice, Kolmogorov-Smirnov test, P < 0.001). (C) Paired imaging before and 40 min after superfusion with bumetanide in a P10 mouse. The same cells were imaged before and after the administration of bumetanide through a tiny perfusion of the imaging chamber. All cells in the field displayed a decrease in [Cl−], which is in agreement with analogous experiments in vitro (24).

Intraneuronal Steady-State pH and the Effect of Hypercapnia. Our two-photon imaging data show that pH\textsubscript{I} in pyramidal neurons is around 7.16 in P18–P51 neurons, with no changes during postnatal development. As stated above, using FLIM in P18–P51 neurons gave values that were practically identical with those obtained by spectrscopic imaging. As a whole, the pH\textsubscript{I} data obtained under physiological conditions are in good agreement with those published before in vivo work (22, 23). Exposure to hypercapnic conditions (CO\textsubscript{2} elevated to 50%) brought about a block in neuronal activity associated with an acidosis with an amplitude that is consistent with analogous experiments in vitro (24).

Seizure-Induced Changes in Neuronal [Cl−] and pH\textsubscript{I}. Unlike in the quasisteady-state conditions, which often prevail in experiments in vitro, neurons in vivo are never silent, and therefore, local intraneuronal ion concentrations are documented in an activity-dependent manner, primarily imposed by changes in driving force. While both synaptic and extrasynaptic GABA\textsubscript{A}R-mediated current can be of sufficient magnitude to transiently reverse the polarity of IPSPs in mature neurons from hyperpolarizing to depolarizing and even to become functionally excitatory (3, 24). This kind of manifestation of ionic plasticity at synapses must have a profound effect on the properties of neuronal networks, and therefore, dynamic monitoring of [Cl−] at the cellular level in vivo is of much interest. Moreover, intense neuronal activity is known to lead to a fall in pH\textsubscript{I} that is attributable to the generation of metabolic acid, such as lactate, as well as GABA\textsubscript{A}R-mediated net efflux of HCO\textsubscript{3}. The activity-dependent neuronal acidosis is considered to present one of those intrinsic mechanisms, which suppress an overt increase in network excitability, such as seizures (24). In light of the above considerations, we used a double-ratiometric method to simultaneously image [Cl−] and pH\textsubscript{I} at the level of single pyramidal neurons during seizure-like activity induced by the K+ channel blocker 4-AP (40), and our data show that it is possible to monitor both ion concentrations at a frame rate which is sufficiently high to yield physiologically relevant data, qualitatively similar to what has been shown in work on brain slices (21, 51, 52). Our data show that cortical seizures are accompanied by an increase in [Cl−], tightly limited to the window of intense network activity. Moreover, we observed a delayed and slow fall in pH\textsubscript{I}, which is in agreement with analogous data obtained in dynamic measurements of brain tissue pH in vitro (26, 43).
It is worth noting that the time constant of Cl− interaction with LSSmClopHensor is identical to that of ClopHensor (29) and similar to that of Clomeleon and SuperClomeleon (53). This implies that the sensor signal is not likely to fully reflect the fast changes in [Cl−], that are bound to take place during seizures, but as is the case with genetically encoded sensors for calcium- and ion-sensitive K+ microelectrodes, ionic dynamics measured at rates corresponding to the present do provide useful information on the direction, magnitude, and time course of the net activity-induced Cl− flux.

Conclusions

This study introduces a technique for simultaneous two-photon in vivo imaging of intraneuronal [Cl−] and pH based on LSSmClopHensor. This genetic sensor is constructed by fusion of an ion-sensitive GFP (E2GFP) with a red fluorescent protein (LSSmKate2), which provides a ratiometric reference. Since the optical properties of LSSmKate2 are insensitive to Cl−, the chloride estimate is then obtained by the green to red emission ratio.

Materials and Methods

Animals and Procedures for in Vivo Imaging. LSSmClopHensor was transduced by in utero electroporation in CD-1 mice at embryonic day 15.5 to transfect neuronal progenitors of layer 2/3 pyramidal neurons of the visual cortex (30). Before imaging, mice were anesthetized with an i.p. injection of urethane (1–1.5 g/kg). Craniotomy (2- to 3-mm diameter) was performed as described elsewhere, and the dura mater was removed to reduce light scattering (58). A custom-made steel head post with a central imaging chamber was glued to the skull. Hypercarbia was induced by exposing the animals to a mixture containing 30% CO\textsubscript{2} in ambient air. This study was performed in strict accordance with the recommendations of the Italian Ministry of Health (Dlgs, 26/14) and according to protocol 277/2015-R approved by the Ministry of Health on April 23, 2015.

Solutions. The composition of the sterile saline solution was 126 mM NaCl, 3 mM KCl, 1.2 mM KH\textsubscript{2}PO\textsubscript{4}, 1.3 mM MgSO\textsubscript{4}, 26 mM NaHCO\textsubscript{3}, 2.4 mM CaCl\textsubscript{2}, 15 mM glucose, and 10 mM Hepes, pH 7.4. A 4-μL aliquot of bumetanide stock solution (50 mg/mL in DMSO) was sonicated in 10 mL of saline, and a bolus of a few microliters was applied on the cortex before sealing of the imaging chamber.

Bleed-Through Correction for LSSmClopHensor. Fig. S1A shows the two-photon excitation spectra of purified LSSmClopHensor obtained by providing the same number of photons at each wavelength. As expected, the spectra measured in the green channel strongly depend on pH. The pH dependency was also observed in the red channel as a result of bleed through of the E2GFP emission. The magnitude of bleed through was determined by purifying separately the proteins composing the sensor (E2GFP and LSSmKate2) (details are in Supporting Information) and by measuring their fluorescence in both emission bands of the EEG. The hypercarbic condition was induced by letting the mouse breath a mixture of 30% CO\textsubscript{2} in air with a face mask (blue horizontal line).
channels (Fig. S1B). These data provided the coefficients $a(\lambda)$ and $b(\lambda)$ that describe the cross-talk between the emission channels (Fig. S1C). The fluorescence of EGFP and LSSmKate2 corrected for bleed through is given by the following system of linear equations:

$$\begin{align*}
G_*(\lambda) &= G_*^{\text{raw}}(\lambda) - \alpha; \\
R_*(\lambda) &= \beta; \\
\end{align*}$$

where G_*^{raw} and R_*^{raw} label the fluorescence measured in the green and red channels (after background subtraction and flat correction), and G_* and R_* indicate the fluorescence that originates from EGFP and LSSmKate2, respectively. LSSmClopHensor is characterized by the absence of intra-molecular FRET, since LSSmKate2 has a very large Stokes shift: its peak of absorption (460 nm) is much bluer than the emission peak of EGFP (530 nm) (additional details are in Supporting Information).

To compare the sensor spectra obtained at different pH values, we had to consider that different samples had slightly different protein concentrations. Since the optical properties of LSSmKate2 are not influenced by pH, we normalized each spectrum at the peak of R_*, and this normalization is used through the study.

Measurement of pH and Calibration of LSSmClopHensor. The excitation spectrum of LSSmClopHensor at a given pH, $G_{\text{exc}}(\lambda)$, can be described as the linear combination of the protonated ($G_{\text{exc}}(\lambda)$) and deprotonated ($G_{\text{exc}}(\lambda)$) spectra according to the equation:

$$G_{\text{exc}}(\lambda) = \beta G_{\text{exc}}(\lambda) + \gamma G_{\text{exc}}(\lambda).$$

This is a set of n equations, where n is the number of wavelengths at which spectra are sampled. If $n = 2$, the system can be solved analytically according to the standard ratiometric analysis. A larger set of excitation wavelengths provides a result that is less sensitive to errors, and δ and ϵ can be determined by minimizing the sum of the residues R defined as:

$$R = \sum_{i=1}^{n} \left(G_{\text{exc}}(\lambda_i) - (\delta G_{\text{exc}}(\lambda_i) + \epsilon G_{\text{exc}}(\lambda_i)) \right)^2.$$

The size of the residue is an indicator of the quality of the fit. We applied this procedure to the dataset of Fig. 18 for each spectrum, we determined δ and ϵ: (details are in Supporting Information). Fig. 1C shows the decomposition of the EGFP spectrum. A calibration curve can be obtained by the relationship between the polar angle $\theta = \text{atan}(\delta / \epsilon)$ (Fig. 1D) and the pH of the fitted spectra. The calibration is fitted with the following sigmoidal function:

$$0 = \theta_0 + \frac{\theta_h - \theta_0}{1 + 10^{[\text{pK}_a - \text{pH}] / \Delta \text{pH}}}$$

where pK_a is the affinity for H+. Table S1 shows the values of the fit parameters (θ_0, θ_h, pK_a, and ΔpH) at three different temperatures ($24 \degree C$, $31 \degree C$, and $36 \degree C$). The corresponding functions are reported in Fig. S2B. The calibrations were repeated periodically, and they showed only minimal changes.

Computation of the Intracellular Chloride Concentration. Because Cl− binds solely to the protonated form of EGFP, only a fraction of the sensor fluorescence depends on $[\text{Cl}^-]_i$, and this fraction in turn depends on pH. This is summarized by the following equation (9):

$$K^*_\text{Cl} = \frac{k^*_\text{Cl} \times \text{pH}_{\text{isp}}}{1 + 10^{\text{pK}_a - \text{pH}}}$$

where 13.1 mM is the Cl− affinity for fully protonated EGFP (29), and the term on the right is the inverse of the fraction of nonprotonated sensor (i.e., the fraction that is Cl−-insensitive). Finally, $[\text{Cl}^-]_i$ is given by:

$$[\text{Cl}^-]_i = \frac{k^*_\text{Cl} \times \text{pH}_{\text{isp}}}{1 + 10^{\text{pK}_a - \text{pH}}},$$

where $(r(0))$ is the ratio between the fluorescence of EGFP and LSSmKate2 measured at the isosbestic point when $[\text{Cl}^-]_i = 0$ (Table S1). The term $(r(\text{Cl}))$ is the same ratio measured at a given $[\text{Cl}^-]_i$.

Calibration of LSSmClopHensor: Measurements in Solution and in HEK293T Cell Cultures. The protein calibration set provides correct results only if the sensor behaves identically in solution and in the cytoplasm or if one can correct for the difference between solution and cellular environment. Since the optical properties of the chromophore are affected by the surrounding cellular environment (60), we repeated the pH calibration in HEK293T cells in the presence of ionophores that dissipate the transmembrane pH gradient. After scoring the pH of each dataset with the median of the distribution (Fig. S7A), we observed that the spectroscopic estimate of pH was systematically more acidic than the pH of the extracellular calibration media. From these data (Fig. S1B), we obtained an empirical equation that allows us to correct the pH, computed by the spectroscopy data for the effects caused by the intracellular environment:

$$\text{pH}_{\text{corr}} = -162.70 + 72.83 \times \text{pH}_{\text{isp}} - 10.57 \times \text{pH}_{\text{isp}}^2 + 0.52 \times \text{pH}_{\text{isp}}^3.$$

HEK293T cells were incubated with the calibration buffer (20 mM Hepes, 0.6 mM MgSO\textsubscript{4}, 38 mM sodium glucuronate, 100 mM potassium glucuronate) supplemented with ionophores mixture to equilibrate extra- and intracellular ion concentrations (5 \text{ mM} K+/H+ exchanger nigericin, 5 \text{ mM} protonophore carbonyl cyanide p-chlorophenylhydrazone, 5 \text{ mM} K+ ionophore valinomycin, 10 \text{ mM} Cl−/OH− exchanger tributyltin chloride). Cells were treated with a succession of five washes to allow equilibration of pH.

In Vivo Two-Photon Imaging. In vivo two-photon imaging was performed on a Prairie Ultima Multiphoton microscope equipped with two mode-locked Ti:Sapphire lasers (Coherent Chameleon UltraII and Coherent Verdi-Mira). For each field, a set of images was acquired at different excitation wavelengths (ranging in number from 5 to 11). Acquisitions were performed with a water immersion lens (60x, 1.00 N.A.; Olympus) at a resolution of 512 \times 512 pixels and at zoom 2, leading to a field of 102 \times 102 mm and a linear resolution of 0.2 \mu m per pixel. Before each imaging session, we measured the power of the excitation laser at the optic bench and at the output of the objective lens for each wavelength used. This conversion function is required to infer the power at the sample (which is inaccessible after the mouse is placed under the objective) from the power measured on the optic bench.

Time-lapse imaging was performed by alternating the excitation from the two lasers tuned at 860 and 910 nm. The two beams have been adjusted to have orthogonal polarization, so that they can be combined by a polarization beam splitter. Two different sets of mirrors placed before the beam splitter were used for coalignment. The wavelength was selected by fast electro-mechanical shutters synchronized to the microscope scanning unit. The data were analyzed by custom ImageJ macros.

33. Artoni P, Landi S, Sato SS, Luin S, Ratto GM (2016) Arduino Due based tool to facilitate the computation described by Eqs. S1–S29. Since a reliable pH estimate is necessary for a proper final determination of [Cl–], the average error for pH was determined, and cells that presented an error larger than twice the mean error were excluded from following analysis. When [Cl–] is in the few millimolar range, the ratio r of the E’GFp and SSfMMateK2 fluorescence is close to (0), and therefore, because of experimental error on the fluorescence estimate, Eq. 11 can occasionally yield negative values for the Cl– measurements. This is an unavoidable consequence of the propagation of experimental errors, and we decided not to exclude these data from the population. Statistics were computed with Origin 8. Nonparametric distributions were compared with the paired Wilcoxon rank test or with the Kolmogorov-Smirnov test as indicated in the figures.

ACKNOWLEDGMENTS. We thank Juha Voipio, Andy Trevelyan, Eva Ruusuvuori, and Mari A. Virtanen for comments on the manuscript. The study was supported by Telethon Grants GGP13187 (to L.C. and G.M.R.), TCP15021 (to L.C.), and GGP12265 (to G.M.R.); funding from ERC (European Research Council Grant) 2013-AdG 341116 (to K.K.) and the Academy of Finland (K.K.); and MIUR (Ministero Università e Ricerca) Flagship Project Nanomax (G.M.R.).
Supporting Information

Sulis Sato et al. 10.1073/pnas.1702861114

Generation of the LSSmClophensor Plasmid

LSSmClophensor is based on the previously published Clophensor (20), where the red signal was provided by the red fluorescent protein mDsrRed. LSSmClophensor was developed by joining E2GFP with the Long Stokes Shift Monomeric protein LSSmKate2. LSSmClophensor was cloned under the CAG promoter by the following procedure (21). A plasmid pCMV-MCS from the AAV Helper-Free System (catalog no. 2400071; Agilent) was mutagenized with the oligos AsclFwdV2 5′-GGACCAGATCCCCGCGGCGCTTCGAAATC-CCGGCC-3′ and AsclRevV2 5′-GGCCGGGATTCGAAGGCGCGCCGGCTGGATGATTTCC-3′ to introduce a restriction site for Ascl. Subsequently, a fragment of CAG promoter was added to the mutagenized pCMV-MCS by digesting the Addgene plasmid 13777 with Neol and NotI and by ligating the 1,361-bp fragment to the mutagenized pCMV-MCS digested with Nco to obtain pCAG-MCS. The correct orientation of the ligated fragment was evaluated by digesting the obtained plasmid with BamiI and EcoRI and with XmaI alone. Then, E2GFP-LSSmKate2 was amplified with PCR with the following primers: AsclGFPFwd 5′-GGCCGGCCTAGGTTGACGGCAGAGAGCTGGATCGGTCC-3′ and XmaIClophensorR 5′-GCTAAACTCTGAGCCCTTCCTAGAGCCTACG-3′. The amplicon was digested with Ascl and XhoI and inserted into the pCAG-MCS plasmid that was previously digested with the same enzymes. The resulting pCAG-LSSmClophensor plasmid was validated by sequencing. To amplify plasmid DNA, we used the Qiagen plasmid plus maxi kit (catalog no. 12965). Transformation of DNA was performed by using a recombinant free Escherichia coli strain (One Shot Stbl3 Chemically Competent E. coli; catalog no. C7373-43; Invitrogen).

Production of LSSmClophensor Protein

The LSSmClophensor plasmid, carrying an N-terminal His tag, was transformed in BL-21 E. coli expression strain (catalog no. C6010-03; Life Technology). Selected bacterial colonies were incubated at 37 °C in a Luria–Bertani growth medium with the addition of ampicillin. During the incubation, the OD600 was constantly monitored, and 1 mM IPTG (isopropyl-β-D-thiogalactopyranoside) was added to the growth medium at OD600 = 0.6 to induce protein expression. The temperature of the incubator was lowered to 30 °C and with the term a. The term r(0) was derived directly from the concentrations. By means of Eq. 11, we first computed the apparent apparent pK(a) for Cl– at the specified pH. Then, by substituting into Eq. 10, we obtained the pK(a). Having fixed the pK(a), we finally fitted Eq. 9 on the pH calibration data, and thus, we obtained the asymptotic values θ0 and θ0 and the term a. The term r(0) was derived directly from the spectra corrected for bleed through. Table S1 shows the values and errors of the parameters used in this study, and Fig. S2 shows the effect of temperature on the spectra at pH values of 6 and 8 and on the fitting parameters pK(a) and R0.

Absence of Intramolecular FRET in LSSmClophensor

Our data prove that there is no FRET between E2GFP and LSSmKate2 as shown by the following argument. The bleed-through coefficients were measured in solutions of the two proteins separately, and therefore, they cannot account for FRET occurring in the complete sensor. If there were any intramolecular transfers of energy from E2GFP to LSSmKate2, the excitation spectra measured in

Preparation of the LSSmClophensor Protein for Spectroscopy

Purified LSSmClophensor protein was washed by using 30-kDa Millipore cutoff filters to substitute the elution solution with H2O. A stock solution for zero pH calibration buffers was prepared as follows: 20 mM Hapes, 0.6 mM MgSO4, 38 mM sodium gluconate, 100 mM potassium gluconate. From this base, vials of calibration solutions were prepared at several different pH values (6.0, 6.4, 6.8, 6.9, 7.0, 7.1, 7.2, 7.4, 7.6, and 8.0) at 24 °C. The pH of these calibration buffers was also measured at other temperatures of the calibration dataset (i.e., 31 °C and 36 °C). Chloride calibration was performed as follows: the zero chloride buffer was mixed with a 138 mM chloride buffer (20 mM Hepes, 0.6 mM MgSO4, 38 mM NaCl, 100 mM KCl) in different percentages to obtain chloride concentrations of 0.1, 5, 10, 30, 40, 70, and 138 mM. The pH of these mixtures was subsequently carefully adjusted by adding NaOH.

A 5-μL volume of unbuffered protein was added to 35 μL of each aliquot of calibration buffer to a final volume of 40 μL. The solution was placed in a spectroscopic chamber (catalog no. C-18139; Invitrogen) under the two-photon microscope using a thermostatic slide holder (Harvard Instruments).

pH Meter Calibration

pH meter (Seven Multi with a Hamilton BioTrode probe; Mettler Toledo) was calibrated at 24 °C, 31 °C, and 36 °C by using solutions of high-precision calibration buffers at pH 6.0, 7.0, and 8.0 (catalog nos. 33545, 242221, and 33547, respectively; Sigma-Aldrich). Calibration buffers were warmed at the proper temperature, and the pH was adjusted according to the temperature sensitivity of each buffer as provided by Sigma-Aldrich.

Calibration of LSSmClophensor: Spectroscopy of the Protein Solution

Imaging was performed on the buffered protein solution at given temperature, pH, and Cl– concentration under the two-photon microscope under conditions similar to those in the in vivo experiments. The efficiency of the photomultiplier tubes of the two detection channels was checked periodically by imaging a control solution. The calibration was performed on a series of solutions at a fixed pH and temperature and containing different Cl– concentrations. By means of Eq. 11, we first computed the apparent apparent pK(a) for Cl– at the specified pH. Then, by substituting into Eq. 10, we obtained the pK(a). Having fixed the pK(a), we finally fitted Eq. 9 on the pH calibration data, and thus, we obtained the asymptotic values θ0 and θ0 and the term a. The term r(0) was derived directly from the spectra corrected for bleed through. Table S1 shows the values and errors of the parameters used in this study, and Fig. S2 shows the effect of temperature on the spectra at pH values of 6 and 8 and on the fitting parameters pK(a) and R0.
the red channel after bleed-through correction (Fig. 1B) would show some dependency on pH. Fig. 1B shows that the residues of LSSmKate2 excitation spectra, computed as the difference of the spectra measured at a given pH and the spectra averaged on 10 different values of pH, are independent on pH. This shows that there is no detectable FRET from E²GFP to LSSmKate2.

In Utero Electroporation

Tripolar in utero electroporation targeting pyramidal neurons of the visual cortex was performed as previously described (30, 61). Timed pregnant CD1 mice (strain code 022; Charles River) were anesthetized at E15.5 with isoflurane (induction, 4%; surgery, 2%), and the uterine horns were exposed by laparotomy. Expression vectors (1–3 µg/µL in water) and Fast Green dye (0.3 µg/µL; Sigma-Aldrich) were injected (5–6 µL) through the uterine wall into one of the embryo’s lateral ventricles by a 30-gauge needle. While the embryo’s head was carefully held between standard forceps-type circular electrodes (5-mm diameter; negative poles; Nepa Gene), a third electrode (5 × 3 mm; positive pole) was positioned on the back of the head. Six electrical pulses (amplitude, 30 V; duration, 50 ms; intervals, 1 s) were delivered with a square-wave generator (CUY21EDIT; Nepa Gene or BTX ECM 830; Harvard Bioscience). The uterine horns were returned into the abdominal cavity, and embryos continued their normal development until delivery.

HEK293T Cell Cultures

HEK293T cells were cultured in DMEM supplemented with 1 mM sodium pyruvate, 2 mM l-glutamine, 100 U/mL penicillin, 100 µg/mL streptomycin, 10% FBS, and 10 mM Hepes. Cells were transfected with the Effectene transfection reagent (catalog no. 301425; Qiagen).

Minimization of the Sum of the Fit Residues

The residue defined as

\[
R = \sum_{i=1}^{n} \left(G_{\text{atR}}(\lambda_i) - \left(\delta G_{8.0}(\lambda_i) + \epsilon G_{6.0}(\lambda_i) \right) \right)^2
\]

is a quadratic function of \(\delta\) and \(\epsilon\), and it defines a paraboloid. Its minimum can be found in correspondence of the zero of the partial derivative of \(R\) in respect of \(\delta\) and \(\epsilon\):

\[
\begin{align*}
\frac{\partial R}{\partial \delta} &= 0 \\
\frac{\partial R}{\partial \epsilon} &= 0
\end{align*}
\]

Since \(R\) is quadratic, the system is linear and can be easily solved, returning two analytical expressions for \(\delta\) and \(\epsilon\):

\[
\delta = \frac{\sum_{i=1}^{n} G_{8.0}(\lambda_i)^2 - \sum_{i=1}^{n} G_{6.0}(\lambda_i) G_{8.0}(\lambda_i)}{\sum_{i=1}^{n} G_{6.0}(\lambda_i) G_{8.0}(\lambda_i) G_{\text{atR}}(\lambda_i)}
\]

\[
\epsilon = \frac{\sum_{i=1}^{n} G_{6.0}(\lambda_i)^2 - \sum_{i=1}^{n} G_{8.0}(\lambda_i) G_{\text{atR}}(\lambda_i)}{\sum_{i=1}^{n} G_{6.0}(\lambda_i) G_{8.0}(\lambda_i) G_{\text{atR}}(\lambda_i)}
\]

where the term \(V\) is defined as

\[
V = \sum_{i=1}^{n} G_{8.0}(\lambda_i)^2 \sum_{i=1}^{n} G_{6.0}(\lambda_i)^2 \left(\sum_{i=1}^{n} G_{6.0}(\lambda_i) G_{8.0}(\lambda_i) \right)^2
\]

Statistical Handling of Data and Error Propagation

Cells were screened before analysis and were excluded if the red signal was equal to or lower than twice the offset signal. The fluorescence recorded in each pixel is affected by random fluctuations of the laser power and by shot noise. These noise sources are superimposed on the actual signal, introducing an uncertainty on the spectral measures, which ends up as an error on the pH and chloride estimates. The error present at each pixel of the pH and chloride maps can be quantified by the quality of the fit attained when projecting the pixel spectra on the calibration spectra obtained at pH 6 and 8. The uncertainty of the fit of the spectra is given by

\[
\sigma = \sqrt{\frac{R}{n-2}}
\]

where \(R\) is the sum of the fit residues (Eq. S1), and \(n\) is the number of wavelengths. The normalization factor is given by \(n - 2\), which is the number of dfs of the system having obtained two parameters from the fit. With only two wavelengths, the residue is zero, and it is impossible to estimate the fit error. The uncertainty \(\sigma\) can be partitioned on the two components, obtaining two expressions for the contribution of each component to the total residue plus a term representing the covariance of the two components:
\[
\sigma_c^2 = \sigma^2 \sum_{j=1}^{n} \left(\frac{\partial \delta}{\partial G_{\text{pH}}(\lambda_j)} \right)^2 \sum_{i=1}^{n} G_{\text{pH}}(\lambda_i)^2 \frac{1}{V}
\]

[S7]

\[
\sigma_\delta^2 = \sigma^2 \sum_{j=1}^{n} \left(\frac{\partial \varepsilon}{\partial G_{\text{pH}}(\lambda_j)} \right)^2 \sum_{i=1}^{n} G_{\text{pH}}(\lambda_i)^2 \frac{1}{V}
\]

[S8]

\[
\sigma_{\delta\varepsilon} = \sigma^2 \sum_{j=1}^{n} \left(\frac{\partial \delta}{\partial G_{\text{pH}}(\lambda_j)} \frac{\partial \varepsilon}{\partial G_{\text{pH}}(\lambda_j)} \right) = -\sigma^2 \sum_{i=1}^{n} G_{\text{pH}}(\lambda_i) G_{\text{pH}}(\lambda_i) \frac{1}{V}
\]

[S9]

As an example, we explicitly compute Eq. S8:

\[
\sigma_c^2 = \sigma^2 \sum_{j=1}^{n} \left(\frac{\partial \delta}{\partial G_{\text{pH}}(\lambda_j)} \right)^2 \sum_{i=1}^{n} \frac{G_{\text{pH}}(\lambda_i)^2}{V} \sum_{i=1}^{n} G_{\text{pH}}(\lambda_i) [\sum_{i=1}^{n} G_{\text{pH}}(\lambda_i) G_{\text{pH}}(\lambda_i)]^2
\]

\[
\frac{\partial \delta}{\partial G_{\text{pH}}(\lambda_j)} \frac{\partial \varepsilon}{\partial G_{\text{pH}}(\lambda_j)} \]

[S10]

where it is implicit that the summations over \(i \) run from one to \(n \). Since \(V \) does not contain \(G_{\text{pH}}(\lambda_i) \) and given that the only nonzero terms of the summation containing \(G_{\text{pH}}(\lambda_i) \) are the terms where \(i = j \), we obtain the following expression:

\[
\sigma_c^2 = \sigma^2 \sum_{j=1}^{n} \left(\frac{\partial \delta}{\partial G_{\text{pH}}(\lambda_j)} \right)^2 \sum_{i=1}^{n} \frac{G_{\text{pH}}(\lambda_i)^2}{V} \sum_{i=1}^{n} G_{\text{pH}}(\lambda_i) [\sum_{i=1}^{n} G_{\text{pH}}(\lambda_i) G_{\text{pH}}(\lambda_i)]^2 - 2 \sum_{i=1}^{n} G_{\text{pH}}(\lambda_i)^2 \sum_{i=1}^{n} G_{\text{pH}}(\lambda_i) \sum_{i=1}^{n} G_{\text{pH}}(\lambda_i) [\sum_{i=1}^{n} G_{\text{pH}}(\lambda_i) G_{\text{pH}}(\lambda_i)]^2 \frac{1}{V^2}
\]

[S11]

Since the summations are decoupled, the indexes \(j \) and \(i \) are interchangeable. Furthermore, the expansion of \(V \) (Eq. S5) returns

\[
\sigma_c^2 = \sigma^2 \left[\sum_{i=1}^{n} G_{\text{pH}}(\lambda_i)^2 \right] \left[\sum_{i=1}^{n} G_{\text{pH}}(\lambda_i)^2 \sum_{i=1}^{n} G_{\text{pH}}(\lambda_i)^2 - \left(\sum_{i=1}^{n} G_{\text{pH}}(\lambda_i) G_{\text{pH}}(\lambda_i) \right)^2 \right] \frac{1}{V^2}
\]

[S11]

\[
\sigma_c^2 = \sigma^2 \left[\sum_{i=1}^{n} G_{\text{pH}}(\lambda_i)^2 \right] \left[\sum_{i=1}^{n} G_{\text{pH}}(\lambda_i)^2 \sum_{i=1}^{n} G_{\text{pH}}(\lambda_i)^2 - \left(\sum_{i=1}^{n} G_{\text{pH}}(\lambda_i) G_{\text{pH}}(\lambda_i) \right)^2 \right] \frac{1}{V^2}
\]

[S11]

The term \(\sigma_{\delta\varepsilon} \) (Eq. S9) is caused by the fact that there is a reciprocal dependence between the components \(\delta \) and \(\varepsilon \), and therefore, their covariance is nonzero.

The first step of the propagation of these uncertainties is the computation of their effect on the angle \(\theta \) defining the pH value (Fig. 1C). The angle \(\theta \) is a nonlinear function of \(\delta \) and \(\varepsilon \):

\[
\theta = \arctan \frac{\varepsilon}{\delta}
\]

[S12]

The uncertainty on \(\theta \) can be computed from its first-order Taylor expansion:

\[
\Delta \theta^2 = \left(\frac{\partial \theta}{\partial \varepsilon} \right)^2 \sigma_{\varepsilon}^2 + \left(\frac{\partial \theta}{\partial \delta} \right)^2 \sigma_{\delta}^2 + 2 \frac{\partial \theta}{\partial \varepsilon} \frac{\partial \theta}{\partial \delta} \sigma_{\delta\varepsilon}
\]

[S13]
The first two terms account for the propagation of the errors on δ and ϵ, while the third term accounts for their covariance. Given that
\[
\frac{d}{dx} \tan(x) = \frac{1}{1 + x^2}
\]
from Eq. S13, we obtain
\[
\Delta \theta^2 = \left(\frac{\delta^2}{\epsilon^2 + \delta^2} \right)^2 \left(\frac{1}{\epsilon^2} \sigma_\epsilon^2 + \frac{\epsilon^2}{\delta^2} \sigma_\delta^2 - \frac{2 \epsilon}{\delta} \sigma_\epsilon \sigma_\delta \right). \tag{S14}
\]
After simplifications and conversion of θ from radians to degrees, we obtain
\[
\Delta \theta = \frac{180}{3.14} \sqrt{\frac{\sigma_\epsilon^2 + \epsilon^2 \sigma_\delta^2 - 2 \epsilon \sigma_\epsilon \sigma_\delta}{(\epsilon^2 + \delta^2)}}. \tag{S15}
\]
Finally, $\Delta \theta$ can be expressed in function of the uncertainty of δ and ϵ and of their covariance by substituting Eqs. S7–S9 into Eq. S15, yielding
\[
\Delta \theta = \frac{180}{3.14} \frac{\sigma_\epsilon}{\sqrt{(\epsilon^2 + \delta^2)}} \left(\sum_{i=1}^{n} G_{\text{s},0}(\lambda_i) + \epsilon^2 \sum_{i=1}^{n} G_{\text{s},0}(\lambda_i)^2 + 2 \epsilon \sum_{i=1}^{n} G_{\text{s},0}(\lambda_i) G_{\text{s},0}(\lambda_i) \right) \tag{S16}
\]
This expression can be used to compute the uncertainty on pH. Indeed, by inverting Eq. 9, we express the pH as a function of θ and of the parameters obtained during the calibration procedure (Table S1):
\[
pH = pK_a + \frac{1}{a} \log_{10} \left(\frac{\theta_L - \theta}{\theta_R - \theta} \right). \tag{S17}
\]
The uncertainty on pH can be computed as a function of the uncertainty on the fitting parameters θ_L, θ_R, a, and pK_a (reported in Table S1) and of the uncertainty on θ:
\[
\Delta pH^2 = \Delta pK_a^2 + \frac{1}{a^2} \Delta a^2 \left[\log_{10} \left(\frac{\theta_L - \theta}{\theta_R - \theta} \right) \right]^2 + 2 \cdot 3.02 \cdot \frac{1}{a^2} \left[\frac{\Delta \theta^2}{(\theta_L - \theta)^2} + \frac{\Delta \theta^2}{(\theta_R - \theta)^2} + \frac{\Delta \theta^2}{(\theta_R - \theta)^2 (\theta_R - \theta)^2} \right]. \tag{S18}
\]
The error on the chloride measure was computed as follows. We calculated the uncertainty on $K_0^{\text{Cl}^-}$ by combining Eqs. 9 and 10 and by differentiating the resulting equation. The error on $K_0^{\text{Cl}^-}$ depends on the uncertainty of pK_a (calculated from the fit of Fig. S2B; reported in Table S1) and on the uncertainty of the error of pH:
\[
\Delta K_0^{\text{Cl}^-} = (13.1 \cdot 2.30 \cdot 10^{pH-pK_a}) \sqrt{\Delta pH^2 + \Delta pK_a^2}. \tag{S19}
\]
Finally, the error on the chloride concentration was computed by propagating the errors on $K_0^{\text{Cl}^-}$ and on $r(0)$ as obtained from the chloride calibration (Table S1):
\[
\Delta Cl = \sqrt{ \left[\left(\frac{r(0)}{r(Cl)} - 1 \right) \Delta K_0^{\text{Cl}^-} \right]^2 + \left(\frac{K_0^{\text{Cl}^-}}{r(Cl)} \right)^2 \Delta r(0)^2}. \tag{S20}
\]
For each cell, we computed the mean pH and chloride values by averaging the pH and chloride estimates of each pixel weighted for the square of the relative error:
\[
pH = \frac{\sum_{i=1}^{n} \frac{1}{\Delta pH} \cdot pH_i}{\sum_{i=1}^{n} \frac{1}{\Delta pH}}, \tag{S21}
\]
where m is the number of pixels in the cell profile, and
\[
Cl = \frac{\sum_{i=1}^{n} \frac{1}{\Delta Cl} \cdot Cl_i}{\sum_{i=1}^{n} \frac{1}{\Delta Cl}}. \tag{S22}
\]
For each cell, the error on the weighted pH and chloride values is computed as the mean of the errors of each pixel. Alternatively, pH and chloride values were computed by averaging the fluorescence on the entire cell body profile, while errors were computed as outlined above. The two methods gave similar results.
Determination of Extinction in Vivo

We imaged HEK293T cells transfected with a YFP plasmid (pEYFP-N1; Clontech) to determine the relative distribution of fluorescence in our G and R detectors in the absence of wavelength-dependent extinction. To determine the differential extinction of emitted fluorescence in vivo, we acquired Z stacks down to a depth of 350 μm with a step size of 1 μm in YFP-expressing mouse cortical neurons (35). In all of these experiments, the excitation wavelength was set at 960 nm.

For the determination of the effects of scattering and absorption on excitation, we measured the two-photon excitation spectra of YFP expressed in HEK293T (zero scattering reference) or in the mouse cortex at various depths (34). Spectra were obtained by acquiring sets of images in the wavelength range 900–1,000 nm. Shorter wavelengths (800–900 nm) were not explored because of the low fluorescence yield of YFP in this range.

Ideally, the fluorescent protein used to probe the coupling between excitation scattering/absorption and extinction of emission should have exactly the same emission spectra of the combination of E2GFP and LSSmKate2. YFP did not satisfy this condition; however, the different power distribution of fluorescence of YFP in the red channel compared with LSSmKate2 caused only a minor effect on the extinction estimate as shown by the following argument. The power distribution of a fluorophore within a bandpass filter can be computed by the emission spectra. If we assume that the bandpass filter has a rectangular profile, we can compute the mean emission wavelength of a fluorophore in the filter bandwidth as

$$\lambda_{\text{mean}} = \frac{\int_{\lambda_{\text{left}}}^{\lambda_{\text{right}}} F(\lambda) d\lambda}{\int_{\lambda_{\text{left}}}^{\lambda_{\text{right}}} F(\lambda) d\lambda},$$

where λ_{left} and λ_{right} are the limits of the bandpass filters, and $F(\lambda)$ is the fluorescence of each fluorophore. As shown in Fig. S5, the mean wavelength of the emission of LSSmKate2 in the red channel (606 nm) is shifted 7 nm toward the red in comparison with YFP (599 nm). The distance between the LSSmKate2 mean wavelength and the mean wavelength of YFP/E2GFP measured in the green channel (531 nm) is 75 nm. That means that the difference in mean wavelengths between YFP and LSSmKate2 in the red channel is only about 9% of the distance between the spectral windows, thus leading to a relatively small error in the estimate of the correction factor.

Intracellular Stoichiometry of LSSmClopHensor: Fluorescence Recovery After Photobleaching Measurements

We performed two independent controls of the sensor’s protein component stoichiometry within cells based on in vivo fluorescence recovery after photobleaching (FRAP) and on the measure of the correlation spectra of fluorescence fluctuations. We reasoned that, if the sensor is present in neurons as a correctly formed fusion protein, its molecular mass (about 54 kDa) approaches the limit for free diffusion through nuclear pores (62). Thus, we bleached the sensor fluorescence in the nucleus, and we imaged the recovery process by two-photon imaging. The rate of recovery provides an estimate of the diffusion speed of the fluorescent molecules between the bleached volume and the remaining cell volume. In these experiments, we focused the laser power (80 mW measured at the objective lens) for 15 s onto one point inside the nucleus to photobleach the nuclear fluorescent proteins (bleach). Then, we measured the recovery of the nuclear fluorescence until recovery was completed. The recovery of fluorescence is caused by the ongoing exchange of sensor molecules between the nuclear compartment and the cytosol, and it is described by an exponential growth with a time constant, which depends on the rate of diffusion through the nuclear membrane (62). The recovery process is provided by the following function:

$$I(t) = \frac{S_{\text{Nuc}}}{S_{\text{Nuc}} + S_{\text{Cyt}}} = \left(I_{\infty} - I_{\text{post}} \right) \left(1 - e^{-\frac{t}{\tau}} \right) + I_{\text{post}},$$

where S_{Nuc} is the integrated fluorescence measured in the nucleus, and S_{Cyt} is the integrated fluorescence measured in the cytoplasm. I_{∞} and I_{post} are the normalized fluorescence intensities measured at the asymptote and at the beginning of the recovery, respectively; τ is the time constant of the shutting between nucleus and cytoplasm. To explore this process at different timescales and minimize bleaching during imaging, in each FRAP experiment, the frame period was gradually increased from 30 s (initial recovery) to 60 and 120 s toward the asymptote. The power used for imaging during recovery depended on the protein expression level but was always under 20 mW (measured at the objective lens).

Since fluorescent proteins are not enrolled in active translocation through the nuclear membrane, the time course of the fluorescence recovery strongly depends on the molecular weight of the protein itself. If LSSmClopHensor is present as a correctly formed fusion between LSSmKate2 and E2GFP, the time course of the recovery of fluorescence should be much slower than the recovery of YFP. Experimental testing of this assumption was performed in vivo in pyramidal neurons expressing either LSSmKate2 or YFP (line H in ref. 35), and the time course of the fluorescence recovery is shown in Fig. S3A. The time constant of the recovery measured in the cells examined, >12 min, was consistent with previous measurements on GFP dimers (63). This rate was very slow compared with the rate of fluorescence recovery of a YFP monomer, which was in the 2- to 4-min range (Fig. S3A).

Intracellular Stoichiometry of LSSmClopHensor: Fluorescence Correlation Spectroscopy

We exploited the fact that fluorescence correlation spectroscopy can be used to count the number of fluorescent particles in the focal volume. This technique can be used to estimate the numbers of E2GFP and LSSmKate2 molecules, thus allowing us to estimate their stoichiometry (Fig. S3B). Here, it should be kept in mind that increasing $[\text{Cl}^-]$ leads to a progressive quenching of E2GFP fluorescence, which will decrease the number of active particles in the G channel. Accordingly, Fig. S3B shows that, with diminishing $[\text{Cl}^-]$, the apparent stoichiometry approaches asymptotically a 1:1 ratio, consistent with a stable fusion protein and with perfect pairing between E2GFP and LSSmKate2. The comparison of the active molecules in the R and G channels provides the stoichiometry of the sensor. Since this technique is based on light fluctuation inside the point-spread function of excitation, the lower the protein concentration is
inside the cell, the more accurate the measurement of the number of fluorescent protein molecules. Thus, we transfected cells with a reduced concentration of plasmidic DNA (100 ng for a 60-mm cell plate). The measurement was made 5 d after transfection to make sure that both green and red protein expression have reached steady state. Our results (Fig. S3B) showed that, in the absence of chloride, the rate of fluctuations in the two channels tended to one, consistently with a perfect pairing between E2GFP and LSSmKate2.

HEK293T cells were washed three times for 3 min each with a pH 7.0 buffer solution (20 mM Hapes, 0.6 mM MgSO4, 38 mM sodium gluconate, 100 mM potassium gluconate) containing a mix of ionophores as previously described, and extracellular chloride was varied by adding NaCl to the buffered medium. We set a gradually increasing chloride concentration of the buffer medium (0, 7, 10, 20, 45, 70, 85, 95, 120, 160, 270, and 400 mM). Measurements were performed with a 60x water immersion objective on a Leica sp2 system, with excitation at 458 nm: this wavelength excites both the isosbestic point for E2GFP and the LSSmKate2 at its excitation peak. We used two avalanche diodes in the detection channels. The signal was sent to a two-channel counting board (model M9003; Hamamatsu Photonics K.K.) and analyzed with its proprietary software (U9451; Hamamatsu Photonics K.K.). We used low excitation power to avoid artifacts caused by E2GFP molecules escaping to dark states. The number of optically active protein molecules given by a fluorescence correlation spectroscopy measurement is inversely proportional to the magnitude of the autocorrelation function of the fluorescence of that protein. Therefore, E2GFP autocorrelation gives the number of E2GFP molecules. To this end, we selected E2GFP fluorescence by a 500- to 550-nm bandpass filter, and the fluorescence was split and sent to the two diodes. This configuration is necessary to avoid after-pulse rebound in the detectors. The same procedure was followed for the LSSmKate2 fluorescence by using a 575- to 640-nm bandpass filter.

FLIM

We measured the fluorescence lifetime of LSSmClophensor as an alternative method to estimate pH, since this approach is independent of excitation distortion. We show that the fluorescence lifetimes of the protonated and deprotonated forms of E2GFP are different. Fig. S6D shows the fluorescence decay of the sensor excited at 910 nm and imaged in HEK cells. At this wavelength, we measured a mix of the protonated and deprotonated lifetimes, yielding a relationship between the time course of fluorescence decay and pH. We obtained a calibration curve of pH vs. lifetime both in protein solution and in HEK cells (Fig. S6B). We acquired the spectra of E2GFP and LSSmKate2 in P18 pyramidal neurons in vivo for the spectroscopic computation of pH, and afterward, we measured the fluorescence decay at 910 nm (Fig. S6 C and D). In this way, we estimated the pH of each imaged cell (n = 11) by two independent methods, only one of which was affected by tissue absorption (Fig. S6E). Fig. S6F shows an excellent agreement of the two pH measurements: pH 7.15 ± 0.07 and 7.17 ± 0.06 for the spectroscopic and FLIM measurements, respectively.

Since the protonated and deprotonated states of E2GFP have different fluorescence lifetimes, measurements of pH based on lifetime are independent from excitation/emission light extinction. FLIM measurements were performed by using a time-to-digital converter board (model SPC-830; Becker & Hickl GmbH) that was synchronized to the two-photon laser with a fast diode detector (pulse period of 12.5 ns). The voltage of the photomultipliers of the Prairie Microscope was maintained constant (900 V) for both calibration and in vivo experiments. The instrument response function (IRF) was measured at the same photomultiplier voltage by using KH2PO4 microcrystals, which convert the IR light of the laser into visible light by second harmonic generation.

Lifetime measurements were calibrated both in purified protein buffered to a known pH level and in cells by using the same pH buffers supplied with ionophores as described above. As expected from literature, we found that lifetimes measured in cells were slightly shifted with respect to the ones measured in solutions of purified protein at the same pH. This can be explained by the effect of the viscosity of the intracellular medium on the lifetime of the fluorescence of our GFP mutant (60).

Lifetime images were acquired with the Prairie Ultima system by synchronizing the microscope galvos to the Becker & Hickl GmbH software by using open source hardware (Arduino Uno). The acquisition of each FLIM image required about 2 min. The power of the laser beam at the objective was set under 5 mW, and the wavelength was set to 910 nm. After each acquisition was completed, the measurement was repeated with the laser switched off for the acquisition of the dark image. In brief, FLIM acquisition and analysis were performed as follows.

1. Lifetime images and dark images were imported in ImageJ by using the Bio-Formats plugin. The imported files are xyt matrices that contain both spatial and temporal decay information.
2. A region of interest (ROI) was drawn for each cell, and the mean value of fluorescence of each image was calculated.
3. Lifetime decays for each function were exported in Origin and fitted with a single exponential convoluted with the measured IRF function:

\[
I(t) = \int_{-\infty}^{\infty} Ae^{-t/Ct} \text{IRF}(t) \, dt.
\]

The different parts of the imaged field experience a slight shift in the timing of the excitation, likely owing to slight differences in the optical paths: this was accounted for with the free parameter \(t_0\) (\(t_0 \sim 1 \text{ ns}\)).

4. The measured lifetime was converted to pH using the calibration dataset (Fig. S6B).

Workflow of Calibration and Processing of Imaging Data

Images were analyzed with ImageJ (https://imagej.nih.gov/ij/). The images were processed as follows.

1. Dark subtraction. Dark images were acquired in both G and R channels, with the excitation beam switched off to record the signal offset. Since the dark image from a scanning microscope does not contain any spatial structure (as opposed to what happens with a...
Effect of Laser Power Stability on pH and Cl⁻ Estimates

Laser fluctuations are a main source of noise in all imaging measures, and this problem is especially severe in nonratiometric imaging, such as Ca²⁺ imaging based on Oregon Green and the GCaMP family of indicators. In single-excitation ratiometric measurements, the problem is largely solved by the presence of a reference channel. Thus, our ratiometric measurements of chloride are insensitive to laser fluctuations, since they are obtained by taking the ratio of the fluorescence from the G and R channels at a fixed excitation wavelength. However, fluctuations of laser power occurring between frames acquired at different excitation wavelengths affect the determination of pH that relies on spectral data. Since the K_d for Cl⁻ depends on pH, fluctuations occurring during the acquisition of spectra also affect indirectly the determination of Cl⁻. To ensure uniformity, the power at the microscope entry port was controlled before each spectroscopic measurement by the electronics described elsewhere (33). One advantage of the spectroscopic method is that, since it relies on fitting the experimental data with the calibration curves at several wavelengths, errors caused by laser fluctuations (or other sources) at a given wavelength are attenuated by the fitting process. Finally, since the residue is used to compute the indetermination of pH and Cl⁻, any error affecting the regularity of the spectra ends up in the errors of the pH and Cl⁻ estimates. Therefore, although it is unlikely to compensate perfectly for laser fluctuations, it is possible to provide a statistically meaningful estimate of the measurement errors, which include the impact of laser fluctuations. The situation relative to dynamic imaging is more complex. Since in these experiments, we alternate only two wavelengths, pH is obtained by an exact solution, and thus, we cannot estimate the error by propagating the residue value. In this case, we use the red signal as a measure of the relative intensity of the beams at the two wavelengths by normalizing the E²GFP signal to the LSsMkate2 signal. The correction of the fluorescence red shift was obtained before obtaining the temporal series by means of a complete steady-state spectra. Finally, to reduce the impact of pH error on chloride measurements, the time series of pH values were smoothed by a rectangular box filter before computing chloride affinity.

LFP Recordings

A thick-wall borosilicate micropipette with filament (1 mm o.d., 0.58 mm i.d.) was pulled to a tip diameter of about 1.5 μm (resistance about 2 MΩ when filled with saline solution) and connected to a voltage amplifier by means of a high-impedance head stage (EXT-02F; NPI Electronics). The electrode was inserted in the cortex through a perforated coverslip to a depth of about 250 μm. The reference electrode was an Ag/AgCl pellet immersed in saline outside of the skull in the immediate proximity of the craniotomy. The extracellular potential was amplified 1,000-fold, band pass filtered (0.1–1,000 Hz), and oversampled at 5–10 kHz by an NI-usb6251 acquisition board. Acquisition and analysis was performed through custom software written in MatLab that exploits the Chronux toolbox for spectral analysis (chronux.org/).
Fig. S1. Raw excitation spectra of LSSmClopHensor and fluorescence bleed through between the acquisition channels. (A) Spectra have been obtained from purified protein in aqueous solution imaged under the two-photon microscope. Data have been normalized at the value of the red fluorescence at 910 nm. The red fluorescence showed an apparent dependency on pH. The symbols indicate the wavelengths at which the spectra have been sampled, and they have been omitted in most traces for clarity. The nonlabeled spectra of LSSmClopHensor have been obtained at pH values of 6.4, 6.8, 6.9, 7.0, 7.1, 7.2, 7.4, and 7.6. (B) Emission spectra of E2GFP and LSSmKate2 depend on the wavelength of two-photon excitation. The green and red rectangles show the bandwidth of the emission filters of our imaging setup (G: 525/70 nm; R: 607/45 nm). E2GFP shows only a modest change of the emission spectrum, which falls mostly inside the G detection channel. For clarity, only the extremes of the spectra (excitation 800 and 1,000 nm) are shown. In contrast, LSSmKate2 shows a drastic increase of fluorescence emitted in the G detection channel for wavelength shorter than 850 nm. (C) The bleed-through coefficients α and β have been derived by measuring the fluorescence of each protein in the green and red channels. As expected from the emission spectra, β is quite constant, while α has a strong dependency on excitation below 850 nm.

Fig. S2. Dependency of LSSmClopHensor calibration on temperature. (A) Excitation spectra at pH 6.0 and 8.0 (peaks at about 840 and 960 nm, respectively) for three different temperatures as indicated in the labels. Notably, the temperature dependency is different for the protonated and deprotonated spectra. The LSSmKate2 spectra experience a slight fluorescence decrease with increasing temperature. (B) Calibration curves for pH at three different temperatures. The parameter θ is computed by the spectral decomposition shown in Fig. 1. (C) Dependency of pK_a and R_0 on temperature. The filled and empty black symbols report the pK_a measured at two- and one-photon excitation, respectively.
Fig. S3. Molecular integrity of LSSmClopHensor in living cells. (A) Nucleus/cytoplasm shuttling of YFP (Top) or LSSmClopHensor (Middle) in neurons as detected by in vivo FRAP measurements. The first image of each sequence shows the prebleach fluorescence. The recovery images show that the shuttling of LSSmClopHensor is much slower than that of YFP only. Bottom shows an example of recovery for YFP and LSSmClopHensor. The recovery of the sensor fluorescence is fitted by a single exponential with a much higher time constant than in the case of YFP, suggesting that most, if not all, LSSmChlophensor molecules are in the dimeric form. (Scale bar: 10 μm.) (B) Measure of the relative abundance of E2GFP and LSSmKate2 by means of fluorescence correlation spectroscopy (black) compared with the spectroscopic results (red). HEK cells were imaged while being exposed to increasing concentrations of chloride in the presence of ionophores to allow equilibration of both pH and chloride between the cytosol and the extracellular medium. The pseudocolor image in Upper shows the ratio G/R and the location of one fluorescence correlation spectroscopy measurement. Lower shows the quantification of the fluorescence correlation spectroscopy measures. The G/R fluorescence ratio (red dots and dashed red fit) is a good estimator of the ratio between the number of optically active green and red proteins, which has been determined by fluorescence correlation spectroscopy. At [Cl\(^-\)] \(_i\) = 0 mM, there is the same number of green and red optically active proteins. (Scale bar: 20 μm.)

Fig. S4. Effects of bleaching on the spectroscopic measures. (A) The repetition of a spectral series on the same cell shows that bleaching was negligible and that the repeatability was equal or better than 96%. Imaging depth was 245 μm, and each spectral dataset was obtained by scanning 11 wavelengths from 800 to 1,000 nm. The green and red symbols show the spectra of E2GFP and LSSmKate2 recorded in two different repeats (empty and filled symbols, respectively). Fluorescence has been corrected for offset, field illumination, and bleed through but not for excitation scattering. (B) Bleaching rate measured at 120- to 300-μm depth by means of repeated acquisitions of the same cell bodies. All imaging data shown have been obtained in typical conditions, with 35 mW delivered at the objective output at all wavelengths.
Fig. S5. Comparison of the fluorescence center band in the red channel for YFP and LSSmKate2. Emission spectra of E²GFP/YFP and LSSmKate2 after two-photon excitation at 1,000 nm. The green and magenta rectangles show the bandwidth of the emission filters of our imaging setup (G: 525/70 nm; R: 607/45 nm). The full arrows indicate the mean wavelength emitted by YFP (orange; 599 nm) and LSSmKate2 (magenta; 606 nm) in the red channel. The black arrow indicates the mean wavelength emitted by YFP/E²GFP in the green channel (531 nm).
FLIM of E2GFP was used to measure pH in a scattering-independent way and to evaluate the efficacy of the corrections for excitation scattering and intracellular environment. (A) FLIM calibration data obtained in HEK cells held in zero chloride and at the specified pH values. For each pH value, at least 30 cells were measured. Fluorescence decay times were measured at pH 6.0, 6.4, 6.8, 6.9, 7.0, 7.1, 7.2, 7.4, 7.6, and 8.0, with corresponding labels omitted for clarity. The distribution of the IRF shows the response of the detectors to a fluorescence pulse. (B) Calibration curves showing the average lifetime of E2GFP vs. pH in purified protein solution and in HEK cells, showing a difference because of the different environments. Lifetimes were determined in three different protein samples (black symbols) and in three different cell plates (red symbols). (C) Two-photon imaging of a field placed at 150 μm of depth in the cortex of a P18 mouse. pH was determined for each labeled neuron by both spectroscopy and FLIM analysis. (Horizontal scale bar: 15 μm.) (D) Decay of fluorescence as measured in the boxed neuron in C (black line) and its fit (thin orange line). For reference, the fluorescence decays at pH 6 and 8 are also shown. (E) Comparison of pH values for each cell labeled in C as obtained from spectroscopy analysis (without and with the different modalities of correction as indicated below the horizontal line) and from lifetime analysis. From the left, pH computed with a conventional ratiometric method with two excitation wavelengths (910 and 960 nm) and no correction for either bleed through or for excitation distortion, pH computed by spectral decomposition without any correction, pH computed by spectral decomposition and correction for bleed through only, and pH computed by spectral decomposition and correction for bleed through and excitation distortion. These data have been corrected for the effect of intracellular environment on spectral properties according to Fig. S7B (see below). The rightmost dataset shows the pH measured by FLIM. The pH estimates provided by the spectral method are statistically indistinguishable from the FLIM-based estimates (P = 0.36, paired Wilcoxon signed rank test). (F) The yellow symbols represent the relationship between the spectroscopic estimate of pH (x axis) and the FLIM estimate (y axis). The plot shows an excellent agreement between the two estimates after the imaging data have been fully corrected for absorption/scattering.
Figure S7. Calibration of LSSmClopHensor in living cells. (A) Effects of intracellular environment on LSSmClopHensor spectroscopy. HEK293T cells were transfected with LSSmClopHensor and imaged in zero chloride solution in the presence of ionophores to allow equilibration of pH between cytosol and extracellular media. Each group of cells was imaged at 31 °C in zero chloride at the pH indicated by the arrow. Each distribution shows the dispersion of the spectroscopic measure of pH, at a given value of extracellular pH. The comparison of these data with the pH of the extracellular solution (vertical arrows) suggests that the spectroscopic readout performed with the reference spectra is systematically more acidic. This must be because of differences of the sensor optical properties when it is placed in aqueous solution or in the cellular environment. The difference between the observed and the expected pH values is used to produce the transformation that corrects the pH values obtained with the spectra measured in calibration solutions. The figure contains data measured from 704 cells.

(B) The spectroscopic estimate of pH is shifted toward acidic values and has to be corrected according to the empirical function shown here. Error bars (SE) are contained within the symbol size.

Table S1. Values of the parameters describing LSSmClopHensor dependency on pH and chloride concentration at three different temperatures (n = 3 at each temperature)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>24 °C</th>
<th>31 °C</th>
<th>36 °C</th>
</tr>
</thead>
<tbody>
<tr>
<td>pKₐ</td>
<td>6.88 ± 0.05</td>
<td>6.77 ± 0.05</td>
<td>6.67 ± 0.04</td>
</tr>
<tr>
<td>θₐ</td>
<td>6.53 ± 0.16</td>
<td>8.44 ± 0.24</td>
<td>12.22 ± 0.24</td>
</tr>
<tr>
<td>θₐ</td>
<td>93.34 ± 0.11</td>
<td>92.29 ± 0.12</td>
<td>91.97 ± 0.09</td>
</tr>
<tr>
<td>A</td>
<td>1.31 ± 0.01</td>
<td>1.34 ± 0.01</td>
<td>1.30 ± 0.012</td>
</tr>
<tr>
<td>r(0)</td>
<td>0.98 ± 0.03</td>
<td>1.04 ± 0.03</td>
<td>1.11 ± 0.03</td>
</tr>
</tbody>
</table>