PrimPol is required for replication reinitiation after mtDNA damage

Rubén Torregrosa-Muñoz1, Josef M. E. Forslund1,3, Steffi Goffart3, Annika Pfeiffer3, Gorazd Stojković2, Gustavo Carvalho1, Natalie Al-Furoukh1, Luis Blanco2, Sjoerd Wanrooij2,3, and Jaakko L. O. Pohjoismäki1,2,3

1Department of Environmental and Biological Sciences, University of Eastern Finland, 80101 Joensuu, Finland; 2Department of Medical Biochemistry and Biophysics, Umeå University, 901 87 Umeå, Sweden; and 3Centro de Biología Molecular Severo Ochoa, E-28049 Madrid, Spain

Edited by Philip C. Hanawalt, Stanford University, Stanford, CA, and approved September 1, 2017 (received for review April 2, 2017)

Eukaryotic PrimPol is a recently discovered DNA-dependent DNA primase and translesion synthesis DNA polymerase found in the nucleus and mitochondria. Although PrimPol has been shown to be required for repriming of stalled replication forks in the nucleus, its role in mitochondria has remained unresolved. Here we demonstrate in vivo and in vitro that PrimPol can reinitiate stalled mtDNA replication and can prime mtDNA replication from nonconventional origins. Our results not only help in the understanding of how mitochondria cope with replicative stress but can also explain some controversial features of the lagging-strand replication.

DNA repair | fork rescue | mtDNA damage | mtDNA replication

PrimPol is an unusual mammalian primase-polymerase belonging to the archaeo-eukaryotic primase superfamily of primases (1, 2). The superfamily includes all known replicative primases in Archaea and Eukaryotes and is evolutionarily unrelated to the bacterial topoisomerase-primases (TOPRIMs) (3, 4). Similarly to the related archaeal PriS/L replicative primases (5, 6), PrimPol has a clear preference for dNTPs over NTPs, allowing it to synthesize DNA primers and function as a DNA-dependent DNA polymerase (2). It has been suggested that the priming, as well as primer extension activities, are required for DNA damage tolerance, such as translesion synthesis (TLS) across lesions such as 8-oxo-7-hydroxyguanine (2, 7), abasic sites, and UV lesions (8–10). Concordantly, PrimPol-KO cells are viable (1, 2, 9), but have an increased sensitivity to DNA-damaging agents such as UV and hydroxyurea (11). In addition, PrimPol contributes to the repriming of replication forks that are arrested at G-quadruplex structures in the template (12).

Like many DNA repair proteins (13), PrimPol is known to be localized in the nucleus and mitochondria (2), suggesting that it may play similar roles in the maintenance of mtDNA as it does with nuclear DNA. Although PrimPol has been proposed to be involved in multiprimer events on mtDNA (2), no specific role for PrimPol in mtDNA maintenance has been experimentally demonstrated to our knowledge. In contrast to the nucleus, mitochondria are thought to have a limited set of DNA repair pathways; for example, they are unable to repair cyclobutane pyrimidine dimers caused by UV damage (14). Repair of DNA lesions presents only a subset of genome maintenance mechanisms, and the most dangerous types of DNA damage can result from complications during DNA replication. This seems to also be the case in mitochondria, as replication fork stalling has been implicated as the main cause of pathological mtDNA rearrangements (15, 16). mtDNA replication can stall as a result of mutations in TANK helicase and the catalytic subunit of DNA polymerase γ (Pol γ) (16–18), chain-terminating nucleoside analogs such as 2′-3′-dideoxycytidine (ddC) (19), and DNA template damage (20). Unlike some catalytic mutations or ddC interference, oxidative or UV damage-induced stalling does not result in mtDNA copy number depletion, indicating that mitochondria have effective mechanisms to cope with such damage (21).

To our knowledge, nothing is known about the fate of stalled replication forks in mitochondria, and evidence suggests that the outcomes might be different in different tissues (15). Mitotic cells, like those used in tissue culture, mainly employ a highly strand-asymmetric replication mechanism, whereby the lagging-strand DNA is synthesized with a considerable delay (22). This replication mechanism results in typical patterns on 2D agarose gels used in DNA replications studies (23, 24). Although there is still debate about the details, the two proposed models for strand-asymmetric replication mechanism are very alike with the exception of the displaced strand being coated with preformed RNA (23) or the mitochondrial single-strand binding protein mtSSB (25). As there is evidence for (24) and against (26) RNA covering the displaced mtDNA strand in vivo, we use “strand-asymmetric mechanism” as a general term without differentiating between the two models. The main origin of leading-strand replication in the strand-asymmetric mechanism is the origin of heavy-strand replication (O₃h) in the noncoding region (NCR) of mtDNA (27). Replication from O₃h is assumedly primed by mitochondrial RNA polymerase (MTRPOL) transcribing from one of the two light-strand promoters (28). A major origin for the lagging-strand synthesis is at the origin of light-strand replication (O₃l), two thirds of the genome downstream of O₃l, and is also initiated by MTRPOL (16, 29), although there is evidence for other light-strand origins (25).

In the present work, we examine the role of PrimPol in the restart of stalled mtDNA replication forks and its significance for mtDNA maintenance after damage. We find that PrimPol is not only

Significance

Failure to maintain mtDNA integrity can lead to a wide variety of neuromuscular disorders. Despite its central role in the development of these disorders, many mechanistic details of mtDNA maintenance are still unclear. In the present work, we have studied the role of PrimPol, an unusual primase-polymerase, in mammalian mtDNA maintenance. We report here that PrimPol is specifically required for replication reinitiation after DNA damage. PrimPol synthesizes DNA primers on an ssDNA template, which can be elongated by the mitochondrial replicative polymerase γ, a solution to repriming beyond DNA lesions and to facilitate lagging-strand replication. Our findings show that PrimPol has biological relevance for mtDNA maintenance.

Author contributions: S.G., L.B., S.W., and J.L.O.P. designed research; R.T.-M., J.M.E.F., S.G., A.P., G.S., and N.A.-F. performed research; S.G., L.B., and S.W. contributed equally to this work.

The authors declare no conflict of interest.

This article is a PNAS Direct Submission.

Published under the PNAS license.

1R.T.-M. and J.M.E.F. contributed equally to this work.
2S.W. and J.L.O.P. contributed equally to this work.
3To whom correspondence may be addressed. Email: sjoerd.wanrooij@umu.se or jaakko.pohjoismaki@uef.fi.
4This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10.1073/pnas.1705367114/-/DCSupplemental.
responsible for the replication reinitiation downstream of DNA lesions, but that it is also involved in the completion of partially ss mtDNA molecules. We conclude that, even though PrimPol is not essential for mtDNA maintenance, it provides an adaptational mechanism against genotoxic stress in mitochondria and might also enable origin-independent initiation of lagging-strand synthesis.

Results

PrimPol Is Required for Repriming of Stalled mtDNA Replication. Chain-terminating nucleoside analogs (CTNAs) represent a very specific type of problem for DNA replication that can be mainly resolved via repriming and not, for example, by a TLS-type of activity. As PrimPol was recently shown to be important in maintaining nuclear DNA replication in the presence of CTNAs (11), we wanted to investigate whether this is also the case for mtDNA replication. In fact, Pol γ is the only mammalian replicative polymerase capable of incorporating ddC during DNA synthesis (30), resulting in specific blockage of mtDNA replication that can be detected by using 2D agarose gel electrophoresis (AGE; Fig. 1 and Fig. S1; further details are provided in SI Results and Discussion). Although Primpol-KO MEFs do not show any obvious replication phenotype under normal conditions (Fig. 1C), a 48-h treatment with 175 μM ddC results in complete replication stalling and depletion of mtDNA copy number (Fig. 1D and Fig. S2), revealing major differences in the replication responses between the WT and KO cells (Fig. 1E).

WT MEFs showed a strong increase in replication bubbles, indicating increased replication initiation within the Oxy-containing region of mtDNA (explained in Fig. 1B and Fig. S1). In contrast, Primpol−/− cells seem to lose their replication intermediates upon ddC treatment (Fig. 1E), demonstrating that the compensatory increase in replication initiation is fully dependent on the presence of PrimPol. As replication cannot be completed in either cell type as a result of the recurrent ddC incorporation, the WT MEFs show a similar depletion of mtDNA copy number under ddC as Primpol−/− (Fig. 1D). However, when ddC is removed from the growth medium, mtDNA copy number recovery is significantly delayed in Primpol−/− cells compared with WT MEFs (Fig. 1D). No difference in mtDNA integrity was observed between the two cell lines (Fig. S2C).

To confirm that PrimPol can reinitiate replication when strand elongation is blocked at the mtDNA replication fork, we simulated the situation in vitro by using M13mp18 ssDNA template, purified recombinant Pol γAB2 (for simplicity, hereafter referred to as Pol γ), and PrimPol. When provided with a normal oligonucleotide primer, Pol γ was able to efficiently synthesize [α-32P]GTP-labeled full-length (7.3-kb) product from M13mp18 template (Fig. 2A, lane 2, black arrowhead). The shorter DNA bands observed in this reaction are the result of Pol γ pausing in front of secondary DNA structures, which form on this ssDNA template in the absence of single-strand binding proteins. The addition of PrimPol to the reaction resulted in additional DNA products (Fig. 2A, lane 3, white arrowheads), which differ from the ones caused by Pol γ pausing (Fig. S3). PrimPol alone cannot generate these species because PrimPol is unable to synthesize long DNA fragments as a result of its low processivity (Fig. 2A, lane 1). In agreement with the published data on insufficient removal of chain terminators by Pol γ proofreading activity (30), Pol γ was unable to elongate a primer with a 3′ ddC-monophosphate (ddCMP) (Fig. 2A, lane 5). The observed faint full-length DNA product is likely to result from ddCMP-oligonucleotide impurity. When PrimPol is added to the reaction, it will provide new primers for Pol γ and enables DNA synthesis, with the majority of products arising from specific priming events on the M13mp18 template (Fig. 2A, lane 6, white arrowheads). It should be noted that Pol γ is unable to initiate DNA synthesis in the absence of a primer (Fig. 2A, lane 8), but the addition of PrimPol to the reaction enables the synthesis of full-length DNA products (Fig. 2A, lane 9), further corroborating that PrimPol can provide DNA primers for Pol γ (2).

During in vivo experiments, addition of ddC to the cell growth media results, after several phosphorylation steps, in a mixed deoxyctydide/di-deoxycytidine triphosphate (ddCTP/ddCTP) cellular...
PrimPol Is Required for UV-Induced mtDNA Replication Initiation. Because UV damage induces similar accumulation of replication intermediates as ddC treatment (21), we sought to identify whether this is also a consequence of PrimPol-dependent replication reinitiation. Whereas UV exposure caused a rapid increase in replication bubbles in normal MEFs, this reaction was completely absent in PrimPol−/− cells (Fig. 3C). Our interpretation is that UV exposure induces a PrimPol-dependent increase of replication initiation in O1-containing fragments and must be regulated by some damage-response pathway. In contrast to the ddC treatment, in which replication intermediates were lost (Fig. 1E), UV exposure had no effect on the replication intermediates in Primpol−/− cells (Fig. 3C) or mtDNA copy number (Fig. S6).

PrimPol Overexpression Increases Lagging-Strand Initiation During mtDNA Replication. As PrimPol is able to synthesize primers on ssDNA, which Pol γ can elongate (Fig. 2A, lanes 9), we decided to next analyze whether PrimPol expression alone could modify ss mtDNA replication intermediates in vivo. We found this plausible, as PrimPol interacts with TWNK and Pol γ in mitochondria (Fig. S7). Furthermore, TWNK is also reported as a PrimPol (as CCDC111) partner in the BioPlex database (33). To get a view of the whole mitochondrial genome, long-range 2D-AGE analysis of full-length mtDNA, cut once downstream or upstream of O1, was performed (Fig. 4 and Fig. S8). Although PrimPol overexpression notably decreased the levels of the partly single-stranded circles (“ssc” in Fig. 4), it also generally increased all replicative molecules and, more specifically, dsDNA intermediates, such as the double-γ forms (“dy” in Fig. 4). These changes in replication intermediates are dependent on mitochondrially localized PrimPol and, more specifically, on its primase activity, as demonstrated by a primase-deficient variant of PrimPol (Fig. S8).

Sequence-Specific Priming by PrimPol. The concentration of PrimPol used (200 nM) equals approximately 40 monomers of the enzyme per M13mp18 template with a potential priming site every 180 nt. As noted earlier, instead of observing a range of elongation products, only a major DNA species was observed, indicating a preferred priming site on the offered template. This priming site became dominant over a 3′-P-labeled synthetic primer at PrimPol concentrations greater than 50 nM, whereas, at higher concentrations (500–1,000 nM), more and smaller replication products were obtained (Fig. 2B, lanes 8 and 9). However, this does not mean that excess of PrimPol is inhibiting DNA synthesis in these reactions. When the same DNA products are separated over a neutral Tris-borate-EDTA (TBE) gel, instead of a denaturing gel, it is possible to visualize all DNA products, regardless of gaps between labeled primer and PrimPol-primed DNA synthesis, demonstrating that high PrimPol levels actually support more DNA synthesis (Fig. S5A). The observed main priming site on M13mp18 was highly specific, as the size of the main PrimPol-primed product was dependent on the position of the ddCMP-oligonucleotide primer (Fig. S5B). To map this site, we used a modified method for 5′-RACE and discovered that DNA priming started opposite the 3′-GTCC-5′ sequence (Fig. 2C), indicating that PrimPol has an identical sequence preference as HSV1 primase (31) and similar to known prokaryotic primases (32).
The increase in replication intermediates, especially PrimPol, is responsible for increased PrimPol overexpression in human T-REx 293 cells induces significant increase in partially single-stranded replication bubbles (Fig. 3). After 4 h recovery from a 30-s exposure to 305 nm UVB, the control WT cells show a significant increase in partially single-stranded replication bubbles (ppss-b; SI Results and Discussion), whereas PrimPol-KO MEFs are unaffected. Longer exposure (Bottom) was given to illustrate the qualitative and quantitative differences in the replicative forms.

Taken together, PrimPol overexpression increases ds mtDNA forms at the expense of partially single-stranded forms (Fig. S9C), demonstrating that PrimPol can also prime DNA synthesis on a single-stranded template in vivo.

Discussion

Almost all recently discovered mtDNA maintenance proteins are shared with the nucleus (13), making it difficult to dissect their specific importance for the mitochondrial compartment. Furthermore, nuclear DNA damage activates a number of signaling pathways that block cell proliferation or target the cell for apoptosis, making any simultaneous damage in the mitochondrial compartment trivial. The same also applies for the role of PrimPol. Although not essential for life (9), PrimPol is beneficial for nuclear genome maintenance, as its loss influences the mitotic checkpoint responses after damage (34). However, mitochondria also require efficient DNA repair and damage-tolerance mechanisms for long-term survival. Mitochondria have formidable intrinsic sources of DNA damage, most notably reactive oxygen species originating from the electron transport system (35), capable of causing oxidative damage that can block mtDNA replication (20, 21). mtDNA replication can also stall as a result of impaired replisome proteins (17, 18) or sequence-specific replication pause sites (36). Unless the replication is reinitiated, stalling can lead to replication fork collapse and double-strand breaks, resulting in the formation of pathological deletions (16). Our experiments provide direct evidence that PrimPol is a central player in mtDNA replication fork rescue.

PrimPol Is Required for Increased Replication Initiation After DNA Damage. The increase in replication intermediates, especially when accompanied by a decrease in mtDNA copy number, has provided a central unifying theme for gene expression in the mitochondrial compartment. Almost all recently discovered mtDNA maintenance proteins are shared with the nucleus (13). PrimPol overexpression is accompanied by a decrease in mtDNA copy number (Fig. 4). When PrimPol is overexpressed (v), lagging-strand synthesis is initiated at multiple loci, resulting in more dsDNA intermediates that can be cut by the restriction enzyme (e.g., BamHI). Note that, despite the general increase in dsDNA, some restriction sites remain uncut.
been treated as a hallmark of replication stalling in a number of studies that used 2D-AGE (17, 18, 37). However, if the stalled replication forks are actively processed or turned over, an increase in replication intermediates can be obtained only through a concomitant increase in replication initiation. In the case of ddC, the accumulation of replication intermediates is caused by recurrent initiation and stalling events (Figs. 1 and 2). In the absence of PrimPol, no reinitiation occurs, resulting in the loss of replication intermediates (Fig. 1C), further demonstrating that replication reinitiation is required for replication maintenance in the presence of ddC. As shown here, the primase and polymerase activity of PrimPol are not significantly affected by the presence of ddNTPs, precluding the formation of abortive primers that could compromise fork restart and progression. Despite PrimPol’s ability to reprime replication after a CTNA, mtDNA will eventually be lost because of the repeated incorporation of ddCTP by Pol γ (Fig. S10).

Similar to the situation of treatment with ddC, PrimPol is responsible for the increased replication initiation after UV exposure (Fig. 3), although the damage seems to be tolerated in cells lacking PrimPol. It is likely that PrimPol is only one of several players involved in mtDNA damage response and its activities. Despite PrimPol contributing to the defense against a range of genotoxic insults, it is not essential for cell survival after acute damage. This is apparent also from the fact that PrimPol can facilitate recovery after UV damage to nuclear DNA, but does not influence cell survival (34). As stalled replication forks pose a great risk for genome integrity as a result of their tendency to collapse and form double-strand breaks with potentially catastrophic consequences, cells have evolved a number of partially redundant mechanisms to avoid such damage (38).

PrimPol Primes mtDNA Synthesis Independent of the Replication Origin. Fully dsDNA replication intermediates exist in mitochondria (39, 40) and have been suggested to originate from bidirectional replication that is initiated downstream of O H (41) (SI Results and Discussion). Under normal conditions, dsDNA replication represents the minority of replicative molecules in mitotic cells, and it remains unsettled to which extent these intermediates represent an independent replication and not just more frequent lagging-strand initiation during strand-asymmetric replication. Interestingly, overexpression of PrimPol results in the generation of fully dsDNA replication intermediates (Fig. 4). As PrimPol can provide primers for Pol γ on single-stranded substrate (Fig. 2A, lanes 7–9), it is also likely to prime the lagging strand during asymmetric replication. Increased lagging-strand priming would be the easiest explanation for the reduction of partially single-stranded circles (“ssc” in Fig. 4C) as well as the increase in fully dsDNA replication intermediates in PrimPol-overexpressing cells (e.g., “dy” in Fig. 4 and Fig. S9).

Although replication stalling is acknowledged as an important culprit behind pathological mtDNA deletions (15, 16), almost nothing is known about the fate of stalled replication intermediates, such as their subsequent processing, and which enzymatic players are involved. Our finding that PrimPol is required for the reinitiation of replication in mitochondria will hopefully pave the way for further understanding of mtDNA replication mechanisms and how the mitochondrial genome is protected against various intrinsic and extrinsic stressors.

Materials and Methods

Immortalization of MEFs and Generation of Flp-In T-Rex 293 PrimPol Cell Line. WT Primpol (+/+) and Primpol-KO (−/−) cells (Fig. S1A) were generated from primary MEFs (2) that were immortalized by transfection with an SV40T antigen expression vector using Lipofectamine 3000 (Thermo Fisher Scientific) according to the manufacturer’s recommendation. After transfection, the cells were grown to confluence and passaged onto 10-cm tissue culture dishes, followed by another five 1/10 passages (i.e., a 1/100,000-fold splitting of the original cells), which exposes the cells to a strong negative selection against nontransformed cells. Cells that continue growing after 6–10 passages are considered immortalized. Additionally, an inducible cell line expressing WT PrimPol was established by using Flp-In T-Rex 293 cells. The cloning of PrimPol cDNA with a C-terminal flag-tag into the pcDNA3.1RTO and the generation of the cell line was performed essentially as in the work of Wanrooij et al. (18). In this system, the transgene is expressed upon addition of doxycycline (Dox) to the growth medium. Dox 5–10 ng/mL was determined to give a stable long-term expression of the transgene (Fig. S7). At these concentrations, Dox is nontoxic for mitochondrial functions (42).

Cell Culture, ddC, and UV Light Treatment. Flp-in T-Rex 293 and MEF cells were cultured in DMEM containing 4.5 g/L glucose, 2 mM L-glutamine, 1 mM sodium pyruvate, 50 μg/mL uridine, and 10% FBS at 37 °C in a humidified atmosphere with 8.5% CO 2 atmosphere. No antibiotic agents were added to the growth medium. After the indicated times, cells were pelleted and DNA samples were extracted. To induce mtDNA replication stalling, cells were treated for 48 h with 175 μM of ddC (Sigma-Aldrich) (37). As previously described for UV damage (21), cells were exposed on the tissue culture dish with DMEM to a single 30-s dose of 30 J/m 2 UVB using a Benchtop 2 UV Transilluminator 302 nm instrument (UVP). UV light doses were controlled by using a handheld UV radiometer (UM-25; Minolta).

mtDNA Copy Number Analysis. Total cellular DNA was isolated by using proteinase K and SDS lysis followed by phenol:chloroform extraction and ethanol precipitation (40). mtDNA levels were analyzed by separating 2 μg HindIII-digested total DNA on a 0.4% agarose gel in 1X TBE 1.2 V/cm for 16 h at room temperature. Southern blotting and DNA hybridization were carried out as previously described (40) by using a Cy3 (mouse; nucleotides 14,783–15,333) probe for mtDNA, and an 18 rDNA probe (nucleotides 24–772; National Center for Biotechnology Information accession no. M10098) as loading control. Radioactive signal was captured on Kodak storage phosphor screen SO230, detected by using a Molecular Imager FX (BioRad), and quantified by using the associated QuantityOne software.

mtDNA Isolation and Analysis of mtDNA Replication Intermediates. mtDNA was isolated by using 1 h 20 μg/mL cytochalasin (Sigma-Aldrich) treatment for MEF cells or 30 min for T-Rex 293 cells before cell breakage, followed by differential centrifugation and sucrose gradient purification (43). The 2D–AGE analysis was performed essentially as in the work of Pohjoisimaki et al. (37). Further details are provided in SI Materials and Methods.

In Vitro Replication Assays. M13mp18 ssDNA (M13tsDNA) was used as a template to assay replication by PrimPol and Pol γ in the presence of deoxycytosine deoxynucleotides. Pol γA, Pol γB (forming the holoenzyme Pol γAB), and PrimPol were expressed and purified as described previously (20, 44). Standard reaction mixtures contained 10 mM Bis-Tris propane, 1 mM ddGTP, 200 μM dNTPs, 1 mM ATP, [α-32P]dGTP as radioactive tracer, and the indicated amount of ddCTP. When indicated, 12.5 nM Pol γA, 18.75 nM Pol γB (as a dimer), and 200 nM PrimPol was added. The reaction was performed by using 5 nM of singly- or nonprimed M13dsDNA (the 28-mer primer is complementary to nucleotides 6,218–6,245). Reactions were incubated for 60 min at 37 °C, stopped with 0.5% SDS/25 mM EDTA, purified with G-25 columns (GE Healthcare), and loaded on a 1% agarose (30 mM NaOH, 1 mM EDTA) agarose gel. The gel was run at 20 V for 16 h (4 °C), dried, exposed to a storage phosphor screen, and scanned with a Typhoon 9400 device (Amersham Biosciences).

Mapping of PrimPol Priming Site. Mapping of PrimPol priming site was performed by an adapted protocol for S’-RACE (45). Further details are provided in SI Materials and Methods.

ACKNOWLEDGMENTS. We thank Sandra Chocron and Maria Martinez-Jíménez for valuable PrimPol-related discussions and work and Mr. Craig Michell (University of Eastern Finland) for language editing. This work was supported by the Jane & Aatos Erkko (JAE) Foundation (R.T.-M. and J.L.O.P.), the Finnish Academy (S.G.), the Wallenberg Foundation (S.W., J.M.E.F., and A.P.), Olle Engkvist Byggmästare Foundation (G.S.), Brazilian Conselho Nacional de Desenvolvimento Científico e Tecnológico (C.G.), and Spanish Ministry of Economy and Competitiveness Grant BFU2015-65880-P (to L.B.).