Increased intracellular Ca2+ concentrations prevent membrane localization of PH domains through the formation of Ca2+-phosphoinositides

Jin Ku Kanga, Ok-Hee Kima, June Hurb, So Hee Yua, Santosh Lamichhaneb, Jin Wook Leea, Uttam Ojhaa, Jeong Hee Honga, Cheol Soon Leeb, Ji-Young Chaa, Young Jae Leeb, Seung-Soon Imc, Young Joo Parkd, Cheol Soo Choia, Dae Ho Leea, In-Kyu Leea, and Byung-Chul Oha,1

aDepartment of Physiology, Lee Gil Ya Cancer and Diabetes Institute, Gachon University College of Medicine, Incheon 21999, Republic of Korea; bDepartment of Biochemistry, Lee Gil Ya Cancer and Diabetes Institute, Gachon University College of Medicine, Incheon 21999, Republic of Korea; cDepartment of Physiology, Keimyung University School of Medicine, Daegu 704-701, Republic of Korea; dDepartment of Internal Medicine, Seoul National University College of Medicine, Seoul 03080, Republic of Korea; and eDepartment of Internal Medicine, Graduate School of Medicine, Kyungpook National University, Daegu 702-701, Republic of Korea

Edited by C. Ronald Kahn, Section of Integrative Physiology, Joslin Diabetes Center, Harvard Medical School, Boston, MA, and approved September 29, 2017 (received for review April 19, 2017)

Insulin resistance, a key etiological factor in metabolic syndrome, is closely linked to ectopic lipid accumulation and increased intracellular Ca2+ concentrations in muscle and liver. However, the mechanism by which dysregulated intracellular Ca2+ homeostasis causes insulin resistance remains elusive. Here, we show that increased intracellular Ca2+ acts as a negative regulator of insulin signaling. Chronic intracellular Ca2+ overload in hepatocytes during obesity and hyperlipidemia attenuates the phosphorylation of protein kinase B (Akt) and its downstream signaling molecules by inhibiting membrane localization of pleckstrin homology (PH) domains. Pharmacological approaches showed that elevated intracellular Ca2+ inhibits insulin-stimulated Akt phosphorylation and abrogates membrane localization of various PH domain proteins such as phospholipase C\textsubscript{6} and insulin receptor substrate 1, suggesting a common mechanism inhibiting the membrane targeting of PH domains. PH domain-lipid overlay assays confirmed that Ca2+ abolishes the binding of various PH domains to phosphoinositides (PIPs) with two adjacent phosphate groups, such as PI(3,4)\textsubscript{2}, PI(4,5)\textsubscript{2}, and PI(3,4,5)\textsubscript{3}. Finally, thermodynamic analysis of the binding interaction showed that Ca2+-mediated inhibition of binding to PIPs results from the tight binding of Ca2+ rather than PH domains to PIPs forming Ca2+-PIPs. Thus, Ca2+-PIPs prevent the recognition of PIPs by PH domains, potentially due to electrostatic repulsion between positively charged side chains in PH domains and the Ca2+-PIPs. Our findings provide a mechanistic link between intracellular Ca2+ dysregulation and Akt inactivation in insulin resistance.

membrane localization | PH domain | Ca2+-phosphoinositides | intracellular Ca2+ concentration | insulin resistance

Insulin resistance is a systemic metabolic disorder that manifests as decreased insulin-stimulated glucose transport and metabolism in adipocytes and skeletal muscles and as impaired suppression of hepatic gluconeogenesis (1–3). These functional defects may result from impaired insulin signaling in the peripheral tissues. Although the underlying molecular mechanisms of these signaling defects are not completely understood, the dysregulation of Ca2+ homeostasis in intracellular organelles such as cytosol, endoplasmic reticulum (ER), and mitochondria has emerged as a key pathophysiological event in insulin resistance, obesity, and type 2 diabetes (3–10). In animal models of obesity and insulin resistance, saturated fatty acids have been shown to inhibit the ER calcium importer, the sarco/ER calcium pump, which subsequently leads to elevated cytoplasmic Ca2+ levels (7, 9–11). Chronically elevated intracellular Ca2+ has extreme negative effects on the functions of subcellular organelles such as the ER and mitochondria, leading to impaired metabolic homeostasis (5, 9, 10). In contrast, interventions that block Ca2+ entry into cells not only improved insulin sensitivity and glucose homeostasis in obese subjects and diabetic patients (12, 13), but also restored autophagy (4, 9) and insulin sensitivity in obese mouse models (14). However, the molecular mechanisms that link intracellular Ca2+ overload to insulin resistance have not been completely elucidated.

Insulin-stimulated phosphoinositide 3-kinase (PI3K) catalyzes the phosphorylation of phosphoinositides (PIPs) at the 3-position to produce PI(3,4)\textsubscript{2} or PI(3,4,5)\textsubscript{3}, which recruit a variety of signaling proteins with pleckstrin homology (PH) domains, including phosphoinositide-dependent kinase 1 (PDK1) and protein kinase B (Akt) (1, 15). In turn, Akt acts as a key merge point of the PI(3,4,5)\textsubscript{3}-mediated insulin signaling system by phosphorylating the enzyme glycogen synthase kinase 3 beta (GSK3\beta), the forkhead transcription factors, the 160-kDa substrate of Akt (AS160), and cAMP response element-binding protein (CREB) (1). The activity of the insulin signaling pathway is transiently attenuated by dephosphorylation of PI(3,4,5)\textsubscript{3} rather than PH domains to PIPs, forming Ca2+-PIPs.

Significance

Insulin resistance is a metabolic disorder in which target cells fail to respond to physiological levels of circulating insulin, leading to hyperinsulinemia and glucose intolerance. The molecular mechanism underlying insulin resistance is still largely unknown. Here, we found that intracellular Ca2+ overloading in obesity attenuates insulin-stimulated phosphorylation of protein kinase B and its downstream signaling by preventing membrane localization of various pleckstrin homology (PH) domains. When at high intracellular levels, Ca2+ binds tightly with phosphoinositides to yield Ca2+-phosphoinositides (PIPs), abrogating the membrane targeting of PH domains and disrupting insulin signaling. Thus, we identified a previously unknown physiological function of intracellular Ca2+ as a critical negative regulator of insulin signaling, especially through the formation of Ca2+-PIPs.

The authors declare no conflict of interest.

This article is a PNAS Direct Submission.

This open access article is distributed under Creative Commons Attribution-NonCommercial-NoDerivatives License 4.0 (CC BY-NC-ND).

1To whom correspondence should be addressed. Email: bcoh@gachon.ac.kr.

This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10.1073/pnas.1706489114/-/DCSupplemental.
via phosphoinositide phosphatases such as PTEN and SHIP2, altering its binding specificity and affinity to PH domains (15). Thus, the binding of PH domains to PI(3,4,5)P₃ has a critical role in regulating Akt function (16). Aside from enzymatic dephosphorylation of PI(3,4,5)P₃ by phosphoinositide phosphatases, however, other regulatory mechanisms of the binding of PH domains to PI(3,4,5)P₃ have not been reported.

PH domains are small protein modules that occur in a large variety of ~250 proteins, including Akt/Rac family serine/threonine kinases, Btk/Ik/Tec subfamily tyrosine kinases, phosphoinositide-specific phospholipase C (PLC), the Rho family of GTPases, insulin receptor substrates (IRSs), and cytoskeletal proteins (17), suggesting their broad and important roles in cell signaling and regulation. PH domains play essential roles in recruiting proteins to the plasma membrane by binding to their phosphoinositides with a broad range of specificity and affinity. PH domains of Akt, Bruton’s tyrosine kinase (BTK), and general receptor for phosphoinositides-1 (GRP1) are known to recognize highly specific PI3K products of PI(3,4)P₂ and PI(3,4,5)P₃ (17). Mutations disrupting PH domain function that abolish PI(3,4,5)P₃ binding cause severe signaling defects such as X-linked agammaglobulinemia in humans and X-linked immunodeficiency in mice (18, 19). In contrast, mutations that promote constitutive membrane localization of Akt PH domains at the plasma membrane can cause cancer (20). These findings imply that membrane targeting of PH domains through PI(3,4,5)P₃ recognition is essential for Akt activity.

In this study, we provide evidence that phosphoinositides tightly bind with Ca²⁺, forming Ca²⁺-PIPs under obesity-associated intracellular Ca²⁺ overload. These Ca²⁺-PIPs prevent membrane recruitment of PH domains by inhibiting their binding to PI(3,4,5)P₃, leading to abnormal subcellular localization of PH domains. Our results demonstrate a molecular mechanism of Ca²⁺-mediated inhibition of the recruitment of various PH domain-containing molecules to the plasma membrane, providing insights into diseases associated with abnormal subcellular localization of signaling proteins.

Results

High-Fat Diets and Palmitate Treatment Increase Intracellular Ca²⁺ Levels and Attenuate Insulin Signaling. To investigate the molecular mechanisms of insulin resistance, we fed mice a high-fat diet (HFD) or normal chow for 8 wk, then fasted the mice overnight and subsequently refed them with normal chow or a HFD for 4 h. We then analyzed the effects of a HFD on the phosphorylation of key insulin signaling molecules, Akt, and its downstream signaling molecules GSK3β and FOXO3. Interestingly, postprandial phosphorylation of Akt at T308 and S473 and the phosphorylation of GSK3β and FOXO3 were dramatically decreased in mice livers after refeeding with a HFD (Fig. 1A), suggesting that insulin signaling was impaired in the livers of mice fed a HFD for 8 wk. Based on recent findings that dysregulation of intracellular Ca²⁺ plays an important role in insulin resistance (5, 9, 10, 21), we next analyzed in vivo levels of intracellular Ca²⁺ in the liver of mice fed a HFD or normal chow for 10 wk using adenoviral vectors to express calmodulin-based genetically encoded fluorescence calcium indicators (GCaMP6m) (22). This method results in robust expression of adenoviral GCaMP6m in the hepatocytes of mice fed a HFD (Fig. 1B), where we observed that the hepatocytes expressing GCaMP6m were significantly elevated in the livers of HFD-fed mice compared with controls (Fig. 1B). Quantification of fluorescent signals showed that the intracellular Ca²⁺ level was almost threefold higher in the hepatocytes of HFD-fed mice than in control mice regardless of feeding status (Fig. 1C), demonstrating that intracellular Ca²⁺ was highly elevated in the hepatocytes of HFD-fed mice.

To assess whether impaired insulin signaling in mice fed a HFD is associated with increased intracellular Ca²⁺ levels, we treated human HepG2 hepatoma cells for 24 h with palmitic acid, a long-chain saturated fatty acid that causes insulin resistance in animals (23). Similar to our in vivo findings, palmitic acid treatment markedly attenuated the insulin-stimulated phosphorylation of Akt at T308 and S473 and the phosphorylation of GSK3β and FOXO3 in a dose-dependent manner (Fig. 1D and SI Appendix, Fig. S1), indicating that palmitic acid impairs insulin signaling in vitro. Next, we examined the effects of palmitic acid on intracellular Ca²⁺ levels in HepG2 cells using the fluorescent dye Fluo-3 acetoxymethyl (AM). We found that palmitic acid significantly elevated intracellular Ca²⁺ levels in the HepG2 cells in a dose-dependent manner (Fig. 1E), showing that intracellular Ca²⁺ levels were almost threefold higher in HepG2 cells treated with palmitic acid (Fig. 1F). These results indicated that exposure to a HFD elevated palmitic acid levels, leading to increased intracellular Ca²⁺ levels, suggesting a mechanism responsible for impaired insulin signaling. To further assess the importance of intracellular Ca²⁺ overload, we measured intracellular Ca²⁺ concentrations in HepG2 cells with Fura-2 AM after palmitic acid treatment for 24 h. Treatment with high concentrations of palmitic acid significantly elevated the baseline intracellular Ca²⁺ concentrations (approximately threefold, SI Appendix, Fig. S2A). Strikingly, high concentrations of palmitic acid led to irregular patterns of sustained intracellular Ca²⁺ overload in HepG2 cells (SI Appendix, Fig. S2B).

Thus, we hypothesized that the attenuation of insulin-stimulated Akt phosphorylation by a HFD is potentially driven by elevated intracellular Ca²⁺ levels.

![Image](image-url)

Fig. 1. High-fat diet (HFD) and palmitate treatment increase intracellular Ca²⁺ levels and attenuate insulin signaling. (A) Immunoblot analysis of mouse liver extracts after overnight fasting and subsequent refeeding with normal chow or a HFD for 4 h. (B) Representative confocal images of cytosolic free Ca²⁺ in the hepatocytes expressing adenoviral GCaMP6m from mice fed normal chow or a HFD for 10 wk following 7 d of adrenoviral infection. Ex vivo hepatocytes expressing adenoviral GCaMP6m were visualized using confocal microscopy from formalin-fixed liver sections of mice following overnight fasting and subsequent refeeding with normal chow or a HFD for 4 h. (Scale bars: 10 μm.) (Bottom) Images merged with 4,6-diamidino-2-phenylindole (DAPI) staining of nuclei and differential interference contrast (DIC) microscopy. (C and F) Fluorescence intensities of GCaMP6m Images (C) and Fluo-3 AM images (F) of cytosolic Ca²⁺ were quantified with low power field images using ImageJ software. Data represent mean ± SEM (n = 3–5, *P < 0.05, **P < 0.01). (D) Immunoblot analysis of HepG2 cells treated with the indicated concentrations of palmitic acid for 24 h followed by treatment with 100 nM insulin for 15 min. (E) Representative Fluo-3 AM images of cytosolic Ca²⁺ in HepG2 cells treated with the indicated concentrations of palmitic acid for 24 h. Intracellular Ca²⁺ visualized using confocal microscopy. (Scale bars: 10 μm.)
induce sustained intracellular Ca2+ state acetate (PMA) and ionomycin on Akt phosphorylation, both Akt phosphorylation, we evaluated the effects of phorbol myristate ester (PMA) or ionomycin (D), followed by treatment with 100 nM insulin for 15 min. (B, C, E, and F) Representative Fluoro-3 AM images (B) and quantification (C) of intracellular Ca2+ in HepG2 cells treated with PMA. Data represent means ± SEM (n = 5, *P < 0.05).

Akt Phosphorylation Is Modulated by Intracellular Ca2+ Concentration. To investigate the direct effects of elevated intracellular Ca2+ on Akt phosphorylation, we evaluated the effects of phorbol myristate acetate (PMA) and ionomycin on Akt phosphorylation, both of which are used to trigger intracellular calcium influx. After pretreating the HepG2 cells with PMA or ionomycin for 30 min to induce sustained intracellular Ca2+ overload, we examined insulin-stimulated phosphorylation of Akt after stimulating with insulin (100 nM) for 15 min. Immunoblotting clearly showed that PMA dramatically inhibited insulin-stimulated phosphorylation of Akt at T308 and S473 and its substrates AS160 and FOXO3 in a dose-dependent manner (Fig. 2A and SI Appendix, Fig. S3). Confocal images using the fluorescent dye Fluo-3 AM showed that PMA treatment dramatically increased the levels of intracellular free Ca2+, which distribution was distinct from that of mitochondria (SI Appendix, Fig. S4). This increase was almost fivefold higher compared with controls, indicating that elevated intracellular Ca2+ is highly correlated with decreased phosphorylation of Akt and its key downstream signaling proteins (Fig. 2 B and C). Consistently, ionomycin also significantly decreased insulin-stimulated phosphorylation of Akt, AS160, and FOXO3 (Fig. 2D and SI Appendix, Fig. S5). Indeed, the levels of intracellular Ca2+ in HepG2 cells treated with ionomycin were markedly higher than in control cells (Fig. 2 E and F), suggesting that decreased phosphorylation of Akt is driven by sustained intracellular Ca2+ overload. Together, these results indicated that intracellular Ca2+ overload attenuates insulin signaling in HepG2 cells, as well as other cells such as Chinese hamster ovary-insulin receptor (CHO-IR) cells (SI Appendix, Fig. S6).

Consistent with a recent study showing that verapamil, a Ca2+ channel blocker that inhibits calcium entry into intracellular stores, improves hepatic steatosis in mice fed a HFD (9), we found that pretreatment with verapamil increased the sensitivity of insulin-stimulated phosphorylation of Akt at T308 and S473 after 15 min of insulin (10 nM) treatment (SI Appendix, Fig. S7A). Indeed, treatment with verapamil substantially reduced palmitic acid-induced decreases in Akt phosphorylation at T308 and S473 (SI Appendix, Fig. S7 B and C), suggesting that a calcium channel blocker might reverse or improve impaired insulin signaling.

High Intracellular Ca2+ Concentration Prevents Membrane Localization of PH Domains. Given that intracellular Ca2+ concentration in cells transiently increases up to 10-4 M (24) and high intracellular Ca2+ concentration inhibits the phosphorylation of Akt and its downstream signaling proteins, we asked whether intracellular Ca2+-leaks can modulate the subcellular localization of PH domains required for kinase activity. For the experiment, we selected two different PH domains, Akt-PH and PLC\textgamma-PH. To examine the effects of intracellular Ca2+ on the membrane localization of these two PH domains, we transiently expressed Akt-PH domain mCherry (Akt-PH mCherry) or PLC\textgamma-PH domain GFP (PLC\textgamma-PH GFP) fusion proteins in CHO cells that stably express the IR (CHO-IR cells) (25).

The Akt-PH domain recognizes the highly specific PI3K products of PI(3,4)P\textsubscript{2} and PI(3,4,5)P\textsubscript{3}, which are generated transiently upon activation of almost all surface receptors such as insulin and growth factors (1). We treated CHO-IR cells with or without insulin (100 nM). The localization of Akt-PH mCherry was primarily cytoplasmic in unstimulated cells (Fig. 3A). After stimulation with insulin, Akt-PH mCherry was preferentially localized to the plasma membrane (Fig. 3A). In contrast, pretreatment with PMA/ionomycin inhibited insulin-stimulated membrane recruitment of Akt-PH mCherry (Fig. 3A). Similarly, pretreatment with ionomycin led to the inhibition of insulin-stimulated membrane localization of endogenous Akt in CHO-IR cells (SI Appendix, Fig. S8A), suggesting that intracellular Ca2+ overload prevents membrane translocation of Akt, potentially by inhibiting PH domain interactions with PI(3,4)P\textsubscript{2} or PI(3,4,5)P\textsubscript{3}.

Because the PLC\textgamma-PH domain recognizes PI(4,5)P\textsubscript{2}, which is present at 10- to 20-fold higher levels than those of PI3K-dependent products of PI(3,4)P\textsubscript{2} and PI(3,4,5)P\textsubscript{3}, PLC\textgamma-PH domains are constitutively activated at the plasma membrane. We found that pretreatment with PMA/ionomycin prevented insulin-stimulated translocation of PLC\textgamma-PH GFP to the plasma membrane (Fig. 3B). To further confirm that PLC\textgamma-PH depends on the concentration of intracellular Ca2+, we repeated the experiment in CHO-IR cells with or without ionomycin at different concentrations of PMA or ionomycin (Fig. 3C). Consistently, pretreatment with ionomycin prevented or inhibited PLC\textgamma-PH-dependent membrane translocation of Akt-PH mCherry and PLC\textgamma-PH GFP fusion proteins (Fig. 3D). Collectively, these results suggest that increased intracellular Ca2+ load prevents membrane localization of PH domains.
products PI(3,4)P2 and PI(3,4,5)P3 (17), we monitored the subcellular localization of PLCδ-PH GFP in CHO-IR cells. As shown in Fig. 3C, PLCδ-PH GFP was localized to the plasma membrane when transiently expressed in CHO-IR cells. However, PLCδ-PH GFP was rapidly moved from the plasma membrane to the cytosol after stimulation with ionomycin or PMA (Fig. 3C), which was consistent with a previous study (26). Interestingly, the inhibitory effects of PMA on membrane localization of PLCδ-PH GFP was completely reversed by subsequent chelation of intracellular Ca2+ by EDTA (Fig. 3C), implying that higher intracellular Ca2+ is a negative regulator for membrane targeting of PH domains. Next, we also monitored the subcellular localization of endogenous IRS1 protein containing a PH domain with broad substrate specificity in CHO-IR cells pretreated with ionomycin before insulin stimulation. Again, pretreatment with PMA/ionomycin completely blocked insulin-stimulated membrane localization of endogenous IRS1 protein (SI Appendix, Fig. S8B), indicating that intracellular Ca2+ overload prevents membrane translocation of various PH domains by a common mechanism, potentially inhibiting interactions with PIPs.

Finally, to investigate whether physiological elevation of intracellular Ca2+ in mice fed a HFD inhibits membrane localization of the Akt-PH domain, we examined the subcellular localization of Akt-PH domains in mice fed normal chow or a HFD using adenovirus-mediated overexpression of Akt-PH mCherry. Adenoviral Akt-PH mCherry was mostly localized to the plasma membrane in the hepatocytes of normal chow-fed mice in response to refeeding (insulin stimulation). Concurrent with the increased intracellular Ca2+ levels in mice fed a HFD (Fig. 1B and C), however, adenoviral Akt-PH mCherry did not translocate to the plasma membrane in the hepatocytes of HFD-fed mice (Fig. 3C). This provides direct evidence for the inhibition of PH domain localization to the plasma membrane via physiological elevation of intracellular Ca2+ in HFD-fed mice. Taken together, these results demonstrate that sustained intracellular Ca2+ overload in mice fed a HFD prevents membrane localization of Akt in vivo by inhibiting membrane localization of the PH domain.

Ca2+ Inhibits the Binding of PH Domains to PIPs with Two Adjacent Phosphate Groups. The PH domains of Akt, BTK, and GRP1 recognize highly specific PI3K products PI(3,4)P2 and PI(3,4,5)P3, which are generated transiently upon stimulation of almost all cell surface receptors (17). Because the activation and phosphorylation of Akt are regulated by direct interactions of PI(3,4)P2 or PI(3,4,5)P3 with PH domains (16), we reasoned that PH domains play an important role in Ca2+-mediated inhibition of Akt phosphorylation. To address this question, we expressed and purified the PH domain of Akt and examined its binding properties toward various PIPs (Fig. 4A). Protein-lipid overlay experiments showed selective binding of Akt PH domain to PI(3,4)P2 and PI(3,4,5)P3, in the absence of Ca2+ (Fig. 4B). However, increasing the Ca2+ concentration inhibited the binding of Akt PH domain to PI(3,4)P2 and PI(3,4,5)P3, suggesting that high concentrations of intracellular Ca2+ inhibit electrostatic interactions between PH domains and PIPs.

This result also raises the possibility that high intracellular Ca2+ concentrations may inhibit the binding of other PH domains to various PIPs. We purified PH domains from phospholipase C-δ1 (PLC-δ1), which binds most tightly to PI(4,5)P2 (27), and other PH domains from adapter proteins for several members of the tyrosine kinase receptor family, such as IRS1 (25). Consistent with previous findings (27), protein-lipid overlay experiments showed that the PLC-δ1 PH domain (PLCS-PH) bound tightly to PI(4,5)P2 only in the absence of Ca2+ (Fig. 4C). However, increasing the Ca2+ concentration completely abolished the binding of PLCS-PH to PI(4,5)P2. Interestingly, the IRS1-PH domain bound to all of the PIPs, including PI(3)P, PI(4)P, PI(5)P, PI(3,4)P2, PI(4,5)P3, PI(3,5)P3, and PI(3,4,5)P3 in the absence of Ca2+, suggesting that IRS1 has a broad binding specificity for various PIPs (28). Consistently, higher Ca2+ concentrations abolished the binding affinity of the IRS1 PH domain to PIPs, including PI(3,4)P2, PI(4,5)P3, and PI(3,4,5)P3 (Fig. 4D), suggesting that Ca2+ inhibits the binding of PH domains to PIPs with two adjacent phosphate groups. Thus, these results demonstrate that higher intracellular Ca2+ prevents the binding of PIPs to the PH domains of Akt, PLC-δ1, and IRS1.

Elevated Ca2+ Causes the Formation of Ca2+-PIPs, Which Abolish Electrostatic Interactions Between PH Domains and PIPs. The crystal structure of Akt PH domain bound to inositol-1,3,4,5-tetraphosphate (Ins(1,3,4,5)P4), a head group of PI(3,4,5)P3, provides mechanistic clues to the Ca2+-mediated inhibition of PH domain binding to PIPs (29). The PH domain of Akt anchors the phosphates at the 3, 4, and 5 positions of PI(3,4,5)P3 through electrostatic interactions with positively charged side chains of K14, K23, R25, and R86 (Fig. 4E).
signifying that Ca\(^{2+}\) may inhibit the electrostatic interactions by binding to either the PH domain of Akt or PI(3,4,5)P\(_3\).

To distinguish between these two possibilities, we used iso-thermal titration calorimetry (ITC), the gold standard for measuring binding affinity, to analyze whether Ca\(^{2+}\) binds to either the PH domain of Akt or PIPs. We examined the thermodynamics of Ca\(^{2+}\) binding to the PH domain of Akt at 25 °C. ITC analysis showed that Ca\(^{2+}\) does not bind to the PH domain of Akt (Fig. 4F), suggesting that Ca\(^{2+}\) may directly interact with PIPs, including PI(3,4)P\(_2\) and PI(3,4,5)P\(_3\). For the ITC analysis of Ca\(^{2+}\) binding to PIPs, we made liposomes composed of di-palmityl-sn-glycero-3-phosphocholine (POPC)/PI(3,4)P\(_2\) or PI(3,4,5)P\(_3\) (molar ratio of 80:20) (30). ITC analysis showed that PI(3,4)P\(_2\) bound two molecules of Ca\(^{2+}\) with strong affinity (K\(_d1\) = 4.6 ± 0.7 μM, K\(_d2\) = 6.5 ± 0.4 μM) (Fig. 4G). Ca\(^{2+}\) also bound PI(4,5)P\(_2\) liposomes with a very high affinity (K\(_d\) = 6.7 ± 0.12 μM) (Fig. 4H). Interestingly, PI(3,4,5)P\(_3\) tightly bound two molecules of Ca\(^{2+}\), one with high affinity (K\(_d1\) = 151.1 ± 15.5 nM) and the second with low affinity (K\(_d2\) = 4.6 ± 0.14 μM) (Fig. 4I). These results indicate that Ca\(^{2+}\) has a high affinity for PIPs with two adjacent phosphate groups and forms Ca\(^{2+}\)-PIPs, which are highly compatible with physiological concentrations of elevated intracellular Ca\(^{2+}\) (24). Importantly, these results are consistent with a well-known property of inositol phosphate, which mediates the formation of a bidentate (P-Ca\(^{2+}\)-P) between Ca\(^{2+}\) and the two acidic phosphate groups of inositol phosphates (31, 32). Consistent with this observation, previous computational modeling studies (33) have suggested that Ca\(^{2+}\) can form Ca\(^{2+}\)-induced PI(4,5)P\(_2\) clusters through electrostatic interactions. Furthermore, Bilkova et al. (34) showed that Ca\(^{2+}\) directly interacts with the head group phosphates of PI(4,5)P\(_2\), which further blocks the interactions of the PLC6-PH domain to PI(4,5)P\(_2\). Taken together, we demonstrated that intracellular Ca\(^{2+}\) overload causes the formation of Ca\(^{2+}\)-PIPs, which prevent the recognition of PIPs by PH domains, likely due to electrostatic repulsion between positively charged side chains of PH domains and Ca\(^{2+}\)-PIPs (Fig. 4J).

Discussion

Dysregulation of intracellular Ca\(^{2+}\) homeostasis is one of the primary causes of insulin resistance in obesity and type 2 diabetes (5, 9, 10), although the molecular mechanisms that underlie these associations are not completely elucidated. Here, we provide evidence that an increased intracellular Ca\(^{2+}\) concentration in obesity inhibits the phosphorylation of Akt and its critical downstream signaling events by preventing membrane translocation of PH domains to the plasma membrane (Fig. 5). Thus, we propose the role of Ca\(^{2+}\)-PIPs as critical negative regulators of the translocation of PH domain-containing molecules to the plasma membrane.

In addition, acute induction of intracellular Ca\(^{2+}\) flux triggered by ionomycin and PMA markedly suppressed insulin-stimulated Akt phosphorylation, while Ca\(^{2+}\) channel blockers increased the sensitivity of insulin-stimulated phosphorylation of Akt at T308 and S473, in accordance with earlier studies (9, 35) although PMA cannot be regarded as a specific modulator of Ca\(^{2+}\) sensitivity, as it activates several signaling pathways, including the activation of inositol trisphosphate receptor (IP3R) (37). At physiological levels, glucagon and catecholamine transiently raises intracellular Ca\(^{2+}\) levels through the activation of IP3R, whereby the elevated Ca\(^{2+}\) antagonizes insulin signaling by complexing with Ca\(^{2+}\)-phosphoinositides and inhibiting the membrane recruitment of proteins containing PH domains to phosphoinositides. However, at the pathological conditions such as obesity or type 2 diabetes (38), activation of GPCRs may lead to sustained elevation of cytosolic Ca\(^{2+}\) levels in hepatocytes through IP3R (37). Thus, dysregulation of intracellular Ca\(^{2+}\) homeostasis in obesity may disrupt insulin action and mediate insulin resistance by inhibiting membrane localization and activation of proteins with PH domains through sustained formation of Ca\(^{2+}\)-phosphoinositides (Fig. 5). Alternatively, sustained high intracellular Ca\(^{2+}\) in obesity may also activate several Ca\(^{2+}\)-responsive proteins, such as CaMK II (21), NFAT transcription factors (39), and PKCs (40) that contribute to the development of insulin resistance.

Conversely, Akt is frequently hyperactivated in human cancer (41). Mutations that lead to either constitutive membrane localization of PH domains or disruption of the inhibitory interactions between PH domain and kinase domain promote oncogenesis in vivo (42), suggesting that the Akt PH domain acts as an inhibitor of kinase activation. Although many gaps remain in our understanding of the inhibitory functions of the PH domain...
in Akt, our findings suggest that Ca2+-PIPs in elevated intracellular Ca2+ conditions may act as negative regulators that eventually block the dissociation of the inhibitory interactions between the PH domain and the kinase domain in Akt. Interestingly, pretreatment of PMA or ionomycin inhibited both EGF-stimulated membrane localization of endogenous Akt and EGF-stimulated phosphorylation of Akt and its downstream targets, molecules in HaCaT cells (SI Appendix, Fig. S9). This suggested that intracellular Ca2+ overload prevents membrane localization of PH domains by other growth factors. These results may explain why increased intracellular Ca2+ levels induce apoptosis in multiple cell types, including thymocytes (43), neurons (44), and various cancer cells (45). Therefore, drugs that inhibit membrane localization of PH domain in Akt may be effective against many human cancers. Further elucidation of the role of Ca2+-PIPs in cell biology and physiology may require additional studies to provide new potential targets for pharmacological interventions for major human diseases, including cancer and diabetes. In conclusion, dysregulation of intracellular Ca2+ homeostasis may contribute to the pathogenesis of insulin resistance, obesity, and type 2 diabetes by preventing the localization of PH domains to the plasma membrane by coupling Ca2+-PIPs.

Materials and Methods

CS7816 male mice from Orient Bio, Inc. were studied under protocols approved by the animal ethics committee of Gachon University, Lee Gil Ya Cancer and Diabetes Institute (LCI-2014-0080). For full details of all these processes, see SI Appendix.

ACKNOWLEDGMENTS

We thank Drs. Steven E. Shoelson (Harvard Medical School) and Jae Young Park (Korea University) for helpful discussions. This work was supported by grants from the Korea Health Technology R&D Project, Korea Ministry of Health & Welfare (HI14C1135, A111345), and the Basic Science Research Program (2017R1D1A1B03031094) of the National Research Foundation.

7. Gwiazda KS, Yang TL, Lin Y, Johnson JD (2009) Effects of palmitate on ER and cytosolic Ca2+ levels induce apo-
9. Park HW, et al. (2014) Pharmacological correction of obesity-induced autophagy ar-
Supplementary Information for:

Increased intracellular Ca2+ concentrations prevent membrane localization of PH domains through the formation of Ca2+-phosphoinositides

*Lee Gil Ya Cancer and Diabetes Institute, Gachon University, College of Medicine, Department of Physiology, 155 Gaetbeol-ro, Yeonsu-gu, Incheon, 406-840, Korea
†Lee Gil Ya Cancer and Diabetes Institute Gachon University, College of Medicine, Department of Biochemistry, 155 Gaetbeol-ro, Yeonsu-gu, Incheon, 406-840, Korea
#Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
‡Department of Physiology, Keimyung University School of Medicine, Daegu 704-701, South Korea
§Department of Internal Medicine, Graduate School of Medicine, Kyungpook National University, Daegu 702-701, Korea
Materials and Methods

Antibodies, cell lines, and immunoblotting.

Tissues and cells were lysed with lysis buffer (Cell Signaling Technology), and equal amounts of protein were resolved on 4–12% gels and electrophoretically transferred to polyvinylidene difluoride (PVDF) membranes. The following antibodies were used for immunoblotting, confocal microscopy, and flow cytometry: Akt (C67E7, Cell signaling), hAkt PH domain (SKB1, Millipore), pAkt T308 (C31E5E, Cell Signaling), pAkt S473 (D9E, Cell Signaling), GSK3β (HPA002127, Atlas Antibodies), pGSK S9 (D85E12, Cell signaling), FOXO3 (ab12162, Abcam), pFOXO3 S253 (ab47285, Abcam), pAS160 T642 (#4288, Cell Signaling), AS160 (#2447, Cell Signaling), β-actin (AC-15, Sigma-Aldrich), and 6x histidine tag (GT359, Sigma-Aldrich). Cell lines obtained from the American Type Culture Collection (ATCC, Manassas, VA, USA) were authenticated by short tandem repeats (HEK293T and HepG2) or interspecies analysis (CHO-IR and Raw264.7) and were mycoplasma free.

Animal care and use.

C57Bl/6 male mice from Orient Bio Inc. (Korea) were studied under protocols approved by the animal ethics committee of Gachon University, Lee Gil Ya Cancer and Diabetes Institute, (LCDI-2014-0080). Mice were maintained with a 12-h light/12-h dark cycle and provided with food and water. For diet-induced obesity studies, male mice were placed on a 60% high fat diet or a 10% control diet (catalog no. D12492 and D12450B, respectively; Research Diets) at weaning for 8 weeks. Body weight and food intake were measured weekly. Food intake was measured for each cage (three mice per cage) and divided by mouse number to obtain total grams consumed per mouse per week.

Adenovirus

GCaMP6m adenovirus (#1909) was purchased from Vector Biolabs. Akt PH-mCherry was cloned into the pAdTrack-CMV shuttle vector. Adenoviral constructs were created by recombination of the shuttle vector and the pAdEasy vector by electroporation into BJ5183-AD-1 bacteria (Stratagene). Recombinant adenovirus (5 × 10^8 plaqueforming
units) was delivered by systemic tail-vein injection to C57BL/6J mice fed a 60% high-fat diet or a 10% control diet for 10 weeks. After 7 days of adenoviral infection, the livers were collected from mice following overnight fasting and from those that were subsequently re-fed with normal chow or HFD for 4 h.

Measurement of intracellular Ca\(^{2+}\) concentration

HepG2 cells were plated onto slide glass and incubated with 4 μM Fura-2-AM (Teflabs) in physiological salt solution (PSS) at room temperature in the dark and then washed for 10 min with PSS. Changes in intracellular Ca\(^{2+}\) concentration were determined by measuring the fluorescence intensities using dual excitation wavelengths of 340 and 380 nm, and an emission wavelength of 510 nm. Results are presented as fluorescence (F) ratios (Ratio = F340/380). Emitted fluorescence was monitored using a CCD camera (Photometrics, AZ) attached to an inverted microscope (Olympus, Japan) and analyzed with a MetaFluor system (Molecular Devices, PA). Fluorescence images were obtained at 1-s intervals and the background fluorescence at each excitation wavelength was subtracted from the raw signal. ΔCa\(^{2+}\) responses were calculated by the difference between basal Ca\(^{2+}\) levels and the maximum Ca\(^{2+}\) peak of stimulated state with or without palmitic acid. For immunofluorescence, isolated primary mouse hepatocytes or cells were plated onto slide glass and incubated with 5 μM Fluo-3 AM (Invitrogen) for 45 min. Then cells were counterstained with 4,6-diamidino-2-phenylindole (DAPI) to visualize the nuclei. After mounting, the sections were imaged with a Zeiss LSM 700 laser-scanning confocal microscope (Carl Zeiss) and analyzed with ZEN 2010 Software (Carl Zeiss). The quantification of intracellular Ca\(^{2+}\) was analyzed using NIH ImageJ software (https://imagej.nih.gov/ij/, 1997-2017). Data are presented as fold changes.

Protein expression and phospholipid binding specificity. The cDNA encoding the hAkt PH domain (residues 1–144) was subcloned into the pmCherry-C1 vector (TaKaRa Clontech). The cDNA encoding the hPLCd PH domain was purchased from Addgene. CHO cells were transfected using Lipofectamine (Life Technologies) and selected using blasticidin. cDNAs encoding PH domains from hAkt (1–144), hPLCd (1–174), and hIRS1 (9–156) were subcloned into the pET28a vector (Novagene);
recombinant proteins with C-terminal His6 tags were expressed in *Escherichia coli* and purified using Ni-NTA resin and gel filtration. Immobilized phospholipids (P-6001 PIP strips and P-6100 PIP arrays, Echelon Bioscience) were used to assess the binding specificity of recombinant PH domains from Akt, PLCδ, and IRS1 as described.

Isothermal titration calorimetry (ITC)

To measure the binding isotherms for Ca$^{2+}$ binding to PIPs or recombinant Akt PH domain, we performed isothermal titration calorimetric (ITC) experiments using a MicroCal 200 isothermal titration microcalorimeter (MicroCal), as previously described (1). Briefly, titrations entailed injecting 1–1.5 μL of 2 mM CaCl$_2$ into 0.1 mM PIPs in 10 mM HEPES, pH 7.0 at 25°C. Curves were fit using Origin Software (Microcal). Use of the appropriate model to fit the binding isotherm data provided information on the binding constant (K_a), change in enthalpy (ΔH), and stoichiometry of binding (n). The Gibbs free energy (ΔG) was calculated from the enthalpy change (ΔH) and binding constant (K_a) using the equation: $\Delta G = RT\ln K_a = \Delta H T S$, where R is the gas constant and T is the absolute temperature in degrees Kelvin. Liposomes were generated by mixing chloroform solutions of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) with 1-palmitolyl-2-oleoyl-sn-glycero-3-phosphoserine (POPS), 1,2-dipalmitoyl-sn-glycero-3-phosphatidylinositol-4,5-trisphosphate (PI(3,4)P$_2$), 1,2-dipalmitoyl-sn-glycero-3-phosphatidylinositol-4,5-trisphosphate (PI(4,5)P$_2$) or 1,2-dipalmitoyl-sn-glycero-3-phosphatidylinositol-3,4,5-trisphosphate (PI(3,4,5)P$_3$) (Cayman Chemicals, USA) in 80:20 molar ratios. Organic solvents were removed and phospholipids were vortexed to produce unilamellar vesicles in HEPES, pH 7.0.

Statistical analysis.

Unless otherwise noted, graphical presentations represent mean ± standard error margin (SEM). Differences between groups were examined for statistical significance using two-tailed unpaired Student’s t-tests and $P < 0.05$ as the cut-off value. The variances between groups were similar, as their coefficients of variation were similar when calculated by Graphpad Prism software (GraphPad Software, Inc., La Jolla, CA, USA).
Reference

Figure S1. Quantification of Akt phosphorylation at T308 and S473 in HepG2 cells treated with increasing concentrations of palmitic acid. Quantification of Akt phosphorylation was analyzed using imageQuant LAS 4000. Data represent means ± SEM (n = 3, *P < 0.05, **P < 0.01, ***P < 0.001)
Figure S2. Palmitic acid treatment increases intracellular Ca²⁺ levels. a. Mean traces of intracellular [Ca²⁺]i dynamics in Fura-2 AM-loaded HepG2 cells pretreated with palmitic acid for the indicated time periods. Data represent means ± SEM (n = 4, *P < 0.05). The values are presented as the ratio of fluorescence at 340 nm to that at 380 nm (340/380). Analysis of palmitic acid-induced basal and maximum [Ca²⁺]i peaks were determined using R340/380 fluorescence ratio. Data represent means ± SEM. *P < 0.05. b. Mean traces for the time-dependent changes in intracellular Ca²⁺ in Fura-2-loaded HepG2 cells pretreated with the indicated concentrations of palmitic acid for 24 h.
Figure S3. Quantification of the phosphorylation of Akt at T308 (a), S473 (b), FOXO3A (c), and AS160 (d) in HepG2 cells treated with increasing concentrations of PMA. Quantification of protein phosphorylation was analyzed using imageQuant LAS 4000. Data represent means ± SEM (n = 3, *P < 0.05, **P < 0.01, ***P < 0.001)
Figure S4. Representative Fluo-3 AM images of cytosolic Ca\(^{2+}\) and MitoTracker images of mitochondria in HepG2 cells pretreated with PMA or ionomycin.

Representative Fluo-3 AM images of cytosolic Ca\(^{2+}\) and MitoTracker images of mitochondria in HepG2 cells pretreated with PMA or ionomycin. To confirm whether imaging patterns of intracellular Ca\(^{2+}\) with Fluo-3 AM differ from those of mitochondria, we compared their staining with a double-staining approach by labeling the cells with both MitoTracker and Fluo-3 AM after pretreating the HepG2 cells with PMA or ionomycin. HepG2 cells were incubated with the calcium indicator Fluo-3 AM (4 μM) and MitoTracker red (500 nM) for 45 min and the images were visualized using confocal microscopy (scale bar = 10 μM). Confocal images show Fluo-3 AM localized to the cytoplasm as a punctate distribution but not overlapping significantly with the mitochondria. Imaging of intracellular Ca\(^{2+}\) stains with Fluo-3 AM showed a punctate distribution, distinct from that of mitochondria in HepG2 cells (Fig. S5), indicating that the images with Fluo-3 AM may reflect intracellular free Ca\(^{2+}\).
Figure S5. The effects of ionomycin on insulin-stimulated phosphorylation of Akt.
Quantification of phosphorylation of Akt at T308 (a), S473 (b), FOXO3A (c), and AS160 (d) in HepG2 cells treated with increasing concentration of ionomycin. Quantification of protein phosphorylation was analyzed using imageQuant LAS 4000. Data represent means ± SEM (n = 3, *P < 0.05, **P < 0.01, ***P < 0.001)
Figure S6. The catalytic activity of Akt is modulated by the intracellular Ca²⁺ concentration. **a, b.** Immunoblot analysis of phosphorylation states of Akt and total amounts of the indicated proteins in CHO-IR cells. Cells were incubated for 30 min with various concentrations of PMA (**a**) or ionomycin (**b**), followed by treatment with 100 nM insulin for 15 min.
Figure S7. The effects of verapamil on Akt phosphorylation in HepG2 cells.

Immunoblot analysis of the phosphorylation states of Akt and the total amounts of the indicated proteins in HepG2 cells. Cells were incubated for 1 h with the indicated concentrations of verapamil, followed by treatment with 10 nM insulin for 15 min. b. Immunoblot analysis of the phosphorylation states and the total amounts of Akt in HepG2 cells. After a 24 h pretreatment of HepG2 cells with 0.3 mM palmitic acid, cells were incubated for 6 h with 200 nM of verapamil, followed by treatment with 100 nM insulin for 15 min. c. After pretreating HepG2 cells with 0.3 mM palmitic acid for 24 h, cells were incubated for 6 h with 200 nM of verapamil, followed by treatment with 100 nM insulin for 15 min. Quantification of Akt phosphorylation was analyzed using imageQuant LAS 4000. Data represent means ± SEM (n = 3, *P < 0.05, **P < 0.01)
Figure S8. Higher intracellular Ca2+ concentrations prevent membrane localization of PH domain proteins. **a.** Representative fluorescence images of endogenous Akt in CHO-IR cells. CHO-IR cells were serum-starved for 3 h, followed by pretreatment with or without ionomycin for 30 min before a 15-min stimulation with 100 nM insulin. Cells were stained with anti-Akt PH domain antibody and visualized with FITC-conjugated secondary antibody. **b.** Representative fluorescence images of endogenous IRS1 in CHO-IR cells. CHO-IR cells were serum-starved for 3 h, followed by pretreatment with or without ionomycin for 30 min before a 15-min stimulation with 100 nM insulin. Cells were stained with anti-IRS1 antibody and visualized with FITC-conjugated secondary antibody.

<table>
<thead>
<tr>
<th></th>
<th>Control</th>
<th>Insulin</th>
<th>Ionomycin</th>
<th>Insulin</th>
</tr>
</thead>
<tbody>
<tr>
<td>DAPI</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Endo-Akt-PH</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Merge</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Merge/DIC</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Endogenous Akt PH

<table>
<thead>
<tr>
<th></th>
<th>Control</th>
<th>Insulin</th>
<th>Ionomycin</th>
<th>Insulin</th>
</tr>
</thead>
<tbody>
<tr>
<td>DAPI</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Endo-IRS1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Merge</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Merge/DIC</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Endogenous IRS1
Figure S9. The effects of higher intracellular Ca²⁺ on EGF signaling and EGF-stimulated membrane localization of endogenous Akt.

a, b. Immunoblot analysis of the phosphorylation states of Akt, FOXO3A, and AS160, and the total amounts of the indicated proteins in HaCaT cells. Cells were incubated for 30 min with the indicated concentrations of PMA (a) or Ionomycin (b), followed by treatment with EGF (100 ng/ml) for 15 min.

c. Representative fluorescence images of endogenous Akt in HaCaT cells. Cells were serum-starved for 3 h, followed by pretreatment with or without PMA/ionomycin for 30 min before a 15-min stimulation with EGF (100 ng/ml). Cells were stained with anti-Akt PH domain antibody and visualized with FITC-conjugated secondary antibody.