Dephosphorylation by protein phosphatase 2A regulates visual pigment regeneration and the dark adaptation of mammalian photoreceptors

Alexander V. Kolesnikov, Tivadar Orban, Hui Jin, Celine Brooks, Lukas Hofmann, Zhiqian Dong, Maxim Sokolov, Krzysztof Palczewski and Vladimir J. Kefalov

Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, MO 63110; Department of Pharmacology, Case Western Reserve University, Cleveland, OH 44106; Department of Ophthalmology, West Virginia University, Morgantown, WV 26506; and Department of Medical Devices, Polgenix, Inc., Cleveland, OH 44106

Edited by Theodore G. Wensel, Baylor College of Medicine, Houston, TX, and accepted by Editorial Board Member Jeremy Nathans September 29, 2017

(Published online October 23, 2017)

Rescinding G-protein–coupled receptors (GPCRs) from their active state back to their biologically inert ground state is an integral part of GPCR signaling. This “on–off” GPCR cycle is regulated by reversible phosphorylation. Retinal rod and cone photoreceptors arguably represent the best-understood example of such GPCR signaling. Their visual pigments (opsins) are activated by light, transduce the signal, and are then inactivated by a GPCR kinase and arrestin. Although pigment inactivation by phosphorylation is well understood, the enzyme(s) responsible for pigment dephosphorylation and the functional significance of this reaction remain unknown. Here, we show that protein phosphatase 2A (PP2A) acts as opsin phosphatase in both rods and cones. Elimination of PP2A substantially slows pigment dephosphorylation, visual chromophore recycling, and ultimately photoreceptor dark adaptation. These findings demonstrate that visual pigment dephosphorylation regulates the dark adaptation of photoreceptors and provide insights into the role of this reaction in GPCR signaling.

Significance

Rescinding G-protein–coupled receptors (GPCRs) from their active state to their biologically inert ground state driven by reversible phosphorylation and arrestin binding is an integral part of GPCR signaling. Visual pigments in retinal rod and cone photoreceptors represent a classic example of GPCR signaling. Although pigment inactivation by phosphorylation is well understood, the enzyme(s) responsible for pigment dephosphorylation and the functional significance of this reaction remain largely unknown. Here, we show that protein phosphatase 2A (PP2A) is expressed in vertebrate photoreceptors, including latent phosphatase 2 (17), protein kinase FA (17), calcium-activated opsin phosphatase (18), and protein phosphatase type 2C (19). Finally, based on enzymatic assays, the type 2A protein phosphatase (PP2A) also has been proposed to be the putative rhodopsin phosphatase (20–22). However, the rate of opsin dephosphorylation by PP2A observed in vitro was found to be lower than the rates for other PP2A substrates (23), raising doubt about the functional significance of this reaction. Other GPCRs, such as the β-adrenergic receptor, could also be dephosphorylated by PP2A (24, 25). Previous attempts at understanding the involvement of PP2A in the dephosphorylation of GPCRs have failed due to its embryonic lethality in mice with conventional knockout of its dominant catalytic subunit PP2A-Cα (26) or its major scaffolding subunit PP2A-Aα (27).

Here, we used a different approach to ablade PP2A-Cα selectively in mouse rod or cone photoreceptors. We then employed biochemical and physiological analyses to investigate the role of
this enzyme in both pigment dephosphorylation and in the function of photoreceptors. As PP2A has also been suggested to dephosphorylate another abundant rod phosphoprotein, phosphducin, in a light-dependent manner (23, 28), we also examined the state of phosphducin phosphorylation in rods lacking PP2A-Ca.

Results

Retinal Morphology in Rod-Specific PP2A-Ca Knockout Mice. Despite the fact that many protein phosphatases are present in mammalian retinal photoreceptors (29), the identity of the enzyme that dephosphorylates visual pigments following their activation by light in vivo remains uncertain. To investigate the role of the putative rhodopsin phosphatase PP2A in photoreceptors, we generated mice in which the major isoform of the catalytic subunit of PP2A (PP2A-Ca) was flanked by LoxP sites (Ppp2ca^{-/-}) (Fig. 1A). This allowed us to selectively target the expression of PP2A in rods by crossing PP2A-flanked mice with the rod-specific Cre mouse line iCre75 (30) to generate rod-specific PP2A conditional knockout (Ppp2ca^{-/-;iCre75}) mice.

In situ mRNA hybridization using an RNAscope assay produces a characteristic semiquantitative punctate staining generated by signal amplification from single-transcript molecules (31). Such an analysis of retinal sections demonstrated an abundant expression of PP2A-Ca transcripts throughout the retinas of control mice, including in their photoreceptor inner segment layer (Fig. 1B, Center). This result, consistent with previous studies (20–22), demonstrated the robust expression of PP2A in mammalian photoreceptors. A similar analysis in Ppp2ca^{-/-;iCre75} mice revealed that PP2A-Ca expression in the inner segment layer of their retinas was greatly reduced (Fig. 1B, Right). As rods represent the bulk of photoreceptors in mouse retina, this result clearly demonstrates that expression of PP2A was successfully eliminated from the rods of Ppp2ca^{-/-;iCre75} mice. The residual signal in the inner segment layer of these mutant mice likely reflects the expression of PP2A-Ca in the sparse cone photoreceptors. In contrast, PP2A-Ca expression in the inner retina was unaffected in Ppp2ca^{-/-;iCre75} mice, confirming the rod specificity of its ablation. Also consistent with the successful deletion of PP2A-Ca selectively in rods, qRT-PCR analysis demonstrated a significant reduction (34%, P < 0.01) in total PP2A-Ca mRNA in Ppp2ca^{-/-;iCre75} retinas compared with iCre75 controls, with the remaining 66% expression derived from cones and the inner retina (Fig. 1C, Left). Importantly, the minor PP2A-Cβ subunit transcript level was not up-regulated in response to the deletion of PP2A-Ca from rods (Fig. 1C, Right).

We next investigated the expression of PP2A-Cα protein in photoreceptors by fluorescence immunohistochemistry, which produced a robust immunofluorescence signal within the photoreceptor layer of control mice (Fig. 1D, Left). Notably, most of the PP2A signal was located in the outer segment layer, an observation consistent with its proposed role of dephosphorylating the visual pigment. PP2A-Cα immunofluorescence was greatly reduced in the photoreceptor layer of Ppp2ca^{-/-;iCre75} retinas.
(Fig. 1D, Right), demonstrating the ablation of PP2A from rods. Similar to our in situ mRNA hybridization results, residual PP2A-Cα immunofluorescence was observed in some outer segments that most likely reflected the expression of PP2A in cones.

Finally, we investigated whether the rod-specific deletion of PP2A-Cα affects retinal morphology. Examination of retinal sections revealed normal outer retina morphology in PP2A-deficient mice. Even in 5-mo-old animals, the thickness of the outer nuclear layer, the inner segment layer, and the outer segment layer was comparable in control and Ppp2ca^{−/−} iCre75⁺ retinas (Fig. 1E). Thus, perhaps surprising considering the ubiquitous expression of this enzyme, the deletion of PP2A-Cα in rods did not cause detectable retinal degeneration. The lack of morphological changes or photoreceptor cell loss in Ppp2ca^{−/−} iCre75⁺ mice allowed a rigorous physiological and biochemical characterization of these animals to determine the role of PP2A in rod pigment and phosducin dephosphorylation as well as in rod function.

Phototransduction in PP2A-Cα-Deficient Rods. To determine whether the deletion of PP2A-Cα affects the phototransduction cascade of mouse rods and their physiological function, we first performed single-cell recordings from dark-adapted rods with a suction electrode (Fig. 2). If PP2A were the only enzyme dephosphorylating mouse rhodopsin, a significant fraction of the pigment would be expected to remain phosphorylated in PP2A-deficient rods, even after overnight dark adaptation. As rhodopsin phosphorylation reduces its efficiency of activating the phototransduction cascade (32), this would be expected to reduce the amplification of phototransduction and lower the photosensitivity of dark-adapted rods. These recordings also allowed an evaluation of the overall health of PP2A-deficient rods and their signaling.

In agreement with the similar lengths of their outer segments, dark-adapted Cre control and PP2A-deficient rods produced saturated responses of comparable amplitudes (Fig. 2A and B and Table 1). Notably, the photosensitivity of Ppp2ca^{−/−} iCre75⁺ rods was also normal after overnight dark adaptation (Fig. 2C and Table 1). The dim flash responses of rods lacking PP2A-Cα were comparable to those of control iCre75⁺ rods, with only a slight but statistically significant increase in the time to peak (Fig. 2D and Table 1). The reason for the slightly broader peak of dim flash responses in PP2A-deficient rods is unclear, and considering the ubiquitous regulatory nature of PP2A, it could be caused by slight changes in any of a number of phototransduction steps. As rhodopsin inactivation occurs significantly faster than the rate-limiting inactivation of rod transducin (50 vs. 200 ms; e.g., ref. 33), it is unlikely that the slight change in response kinetics reflects changes in rhodopsin inactivation kinetics. Importantly, both phototransduction activation, measured at the rising phase of the dim flash response, and its late inactivation, characterized by the response recovery time constant τ_{rec}, were unaffected by the deletion of PP2A-Cα (Fig. 2D and Table 1). Finally, the response recovery following saturating flashes was also normal in PP2A-deficient rods, as indicated by the comparable dominant recovery time constants (τ_{rec}) determined from a series of supersaturating flashes (Fig. 2D, Inset). Interestingly, our experimental τ_{rec} values for both control iCre⁺ and mutant Ppp2ca^{−/−} iCre75⁺ rods (89 and 95 ms, respectively) were substantially lower than those (~200 ms) typically reported for mouse rods (34). However, this difference can be attributed to the acceleration of phototransduction shutoff in iCre75⁺ mouse rods (35). Despite this complication, the use of proper Cre controls for our physiological recordings allowed a reliable evaluation of the effect of PP2A-Cα ablation on rod function. Taken together, these results indicate that elimination of the major catalytic subunit of PP2A in mouse rods does not compromise their phototransduction and signaling under dark-adapted conditions. The normal dark current and sensitivity in PP2A-deficient rods are consistent with the morphological data above and demonstrate that the deletion of PP2A-Cα does not affect rod overall health or survival. Finally, the normal dark-adapted sensitivity of PP2A-deficient rods indicates that, after overnight dark adaptation, their visual pigment is dephosphorylated despite the absence of PP2A.

Suppressed Rod Dark Adaptation in Mice with Rod-Specific Ablation of PP2A-Cα. The results above clearly demonstrate that deletion of PP2A-Cα does not affect the function of rods under dark-adapted conditions. To investigate whether dephosphorylation of visual pigment by PP2A is required for the timely dark adaptation of mouse rods, we next determined the kinetics of rod dark adaptation in vivo by electroretinography (ERG). Rod dark adaptation was measured by tracking the recovery of rod ERG a-wave amplitude and sensitivity after nearly complete (>90%) bleaching of the rod visual pigment. Under these in vivo conditions, dark adaptation of rods is driven by the efficient decay of visual pigment by PP2A.

Fig. 2. Light responses of control and PP2A-Cα-deficient mouse rods. (A) Representative family of flash responses from a iCre75⁺ control mouse rod. Test flashes of 500-nm light with intensities of 2.2, 6.0, 19.0, 49.5, 157, 557, and 1,764 photons-μm^{−2} were delivered at time 0. (B) Representative family of flash responses from a Ppp2ca^{−/−} iCre75⁺ mouse rod. Test flashes of 500-nm light had the same intensities as in A. (C) Averaged rod intensity-response functions (mean ± SEM) for iCre75⁺ control (n = 16) and Ppp2ca^{−/−} iCre75⁺ (n = 15) mice. Hyperbolic Naka-Rushton fits yielded half-saturating intensities (I_{1/2}) of 32 and 29 photons-μm^{−2} for control and PP2A-Cα-deficient rods, respectively. (D) Kinetics of phototransduction activation and inactivation in iCre75⁺ control (n = 16) and Ppp2ca^{−/−} iCre75⁺ (n = 15) rods. Population-averaged (mean ± SEM) dim-flash responses to light intensity of 6.0 photons-μm^{−2} were normalized to their respective maximum dark currents (I_{dark}). The Inset shows determination of the dominant recovery time constant (τ_{rec}) from a series of supersaturating flashes. Linear fits of the data yielded τ_{rec} values of 89 and 95 ms for control and PP2A-deficient rods, respectively.
photoactivated visual pigment and its subsequent regeneration with fresh 11-cis-chromophore supplied by the retinal pigment epithelium (RPE).

First, we recorded rod-driven scotopic ERG responses in the dark and found that they were of similar waveforms and maximal amplitudes in control iCre75+ (296 ± 12 μV, n = 14) and mutant Ppp2ca−/− iCre75+ mice (328 ± 14 μV, n = 14; P > 0.05) (Fig. 3A). This finding once again indicates that the total number of rods is preserved and their signaling is not suppressed by the deletion of PP2A-Cx. Furthermore, Ppp2ca−/− iCre75+ mice produced normal ERG b-waves, suggesting that rod signal transmission to ON-bipolar cells is also normal in retinas with PP2A-deficient rods. Next, mice were exposed to brief bright light to bleach the bulk of their pigment, and then the recovery of their responses was monitored during the following dark-adaptation period. Immediately after a nearly complete pigment bleach, rods in both control iCre75+ and mutant Ppp2ca−/− iCre75+ mice produced barely detectable a-wave responses that were greatly desensitized, by >3 log units. Over the following 90 min of dark adaptation, photoresponses in both control and PP2A-deficient rods gradually recovered (Fig. 3A). The recovery of the averaged maximal ERG a-wave amplitude to a saturating flash intensity (Amax) in control rods could be described by a single-exponential function with a time constant of 18.8 ± 2.0 min (from 14 eyes), and its final level 90 min after the bleach was ~93% of its prebleach dark-adapted value (Fig. 3B, black symbols). Remarkably, although PP2A-deficient rods also demonstrated robust recovery after the bleach, the rate of their rod dark adaptation (28.4 ± 2.8 min, from 14 eyes) was significantly slower (Fig. 3B, red symbols) than that of control rods. A similar suppression of dark adaptation was observed in the recovery of rod-driven ERG a-wave sensitivity (Stot) following the same bleach (Fig. 3C). In these experiments, Stot is defined as the ratio of the dim flash response amplitude and its flash strength, and then normalized by the corresponding dark-adapted Afmax. These results clearly demonstrate that deletion of PP2A substantially delays the recovery of rod function after exposure to bright light. We conclude that PP2A is required for efficient dark adaptation of rods. Although our recordings were limited by the anesthetic to 90 min and the recovery did not reach 100%, likely due to the partial inhibition of pigment regeneration by anesthetics (36), the trend in the recovery of Ppp2ca−/− iCre75+ mice indicated that they would eventually reach the same final level of ERG a-wave maximal amplitude and sensitivity as their control counterparts. This concept is consistent with the comparable sensitivities of control and PP2A-deficient rods after overnight dark adaptation, as measured by either single-cell (Fig. 2C) or ERG (Fig. 3B) recordings.

Table 1. Parameters of single-cell responses from dark-adapted mouse rods

<table>
<thead>
<tr>
<th>Response parameter</th>
<th>Control rods (n = 16)</th>
<th>PP2A-deficient rods (n = 15)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Idark, pA</td>
<td>14.6 ± 0.3</td>
<td>14.8 ± 0.6 NS</td>
</tr>
<tr>
<td>Tpeak, ms</td>
<td>155 ± 4</td>
<td>178 ± 5 ***</td>
</tr>
<tr>
<td>Tintegr, ms</td>
<td>202 ± 11</td>
<td>216 ± 9 NS</td>
</tr>
<tr>
<td>S0, μm2 photon−1</td>
<td>1.8 × 10−2 ± 1.0 × 10−3</td>
<td>1.8 × 10−2 ± 1.0 × 10−3 NS</td>
</tr>
<tr>
<td>I0/0, photon-μm−2</td>
<td>32 ± 2</td>
<td>29 ± 2 NS</td>
</tr>
<tr>
<td>n(t1/2)</td>
<td>1.35 ± 0.02</td>
<td>1.34 ± 0.03 NS</td>
</tr>
<tr>
<td>τrec, ms</td>
<td>135 ± 10</td>
<td>140 ± 9 NS</td>
</tr>
</tbody>
</table>

Idark: dark current measured from saturated responses; time to peak (Tpeak), integration time (Tintegr), and normalized flash sensitivity (S0) refer to responses whose amplitudes were ~0.2 Idark and fell within the linear range; I0/0, half-saturating light intensity; n(t1/2), Hill coefficient in the Naka-Rushton equation; τrec, time constant of single-exponential decay of the dim flash response recovery phase. Data are given as mean ± SEM. Student’s t test, NS indicates P > 0.05; ***P < 0.001 compared with control values.

Fig. 3. Suppressed rod dark adaptation in rod-specific Ppp2ca−/− knockout mice. (A) Representative scotopic ERG responses in the dark [dark-adapted (DA), Bottom] and at indicated time points after bleaching >90% of the rod pigment in iCre75+ control (Left) and Ppp2ca−/− iCre75+ (Right) mice. For each time point, Amax values were normalized to their corresponding AmaxDA value. (B) Recovery of scotopic ERG maximal a-wave amplitudes (Amax; mean ± SEM) after bleaching >90% of rhodopsin in iCre75+ control (n = 14) and Ppp2ca−/− iCre75+ (n = 14) mice. Bleaching was achieved by a 35-s illumination with bright 520-nm LED light at time 0. Averaged data points were fitted with single-exponential functions, yielding time constants of 18.8 ± 2.0 and 28.4 ± 2.8 min for control and PP2A-deficient mice, respectively. Final levels of response recovery by 90-min postbleach determined from exponential fits were 93% (iCre75+) and 81% (Ppp2ca−/− iCre75+). Two-way repeated-measures ANOVA showed overall significant effect of genotype [F(1,312) = 8.6; P = 0.007]. (C) Recovery of scotopic ERG a-wave flash sensitivity (S0; mean ± SEM) after bleaching >90% of rod pigment in iCre75+ control (n = 14) and Ppp2ca−/− iCre75+ (n = 14) mice. Animals and experimental conditions were the same as in B. Two-way repeated-measures ANOVA showed overall significant effect of genotype [F(1,312) = 10.2; P = 0.004].
Compromised Rhodopsin Dephosphorylation and Chromophore Recycling in Mice with Rod-Specific Ablation of PP2A-Cr. The importance of PP2A for the timely dark adaptation of rods raised the obvious possibility that this enzyme can dephosphorylate their pigment in vivo. To quantify the reversible rhodopsin phosphorylation in mouse rods, we used an assay based on a combination of rhodopsin cleavages to obtain its C-terminal peptides (unphosphorylated or phosphorylated) by reversed-phase HPLC and tandem mass spectrometry (MS/MS) developed previously (37).

We found that both control and PP2A-deficient rods of animals dark-adapted overnight contained predominantly unphosphorylated rhodopsin, along with ∼5% of monophosphorylated pigment (Fig. 4A). Notably, there was no difference in the level of phosphorylation in dark-adapted control and PP2A-deficient rods. This result, together with the finding that rod sensitivity in dark-adapted Ppp2ca−/− iCre75+/- mice is normal, suggest that rhodopsin dephosphorylation can proceed even in the absence of PP2A-Cr such that rhodopsin in PP2A-deficient rods becomes dephosphorylated after overnight dark adaptation. To determine whether PP2A plays a role in this process, we directly examined the kinetics of rhodopsin dephosphorylation. A few seconds after a 2-min exposure of control iCre75+/- mice to bright light bleaching essentially all of the pigment, phosphorylation by GRK1 produced ∼50% of mono-phosphorylated (Ser336) and double-phosphorylated (Ser336 and Ser353) rhodopsin. The fraction of double-phosphorylated rhodopsin was ∼20% of the total phosphorylated pigment, and triple-phosphorylated rhodopsin was negligible under our experimental conditions. As expected, following 3 h of dark adaptation, the fraction of light-generated phosphorylated rhodopsin in control mice decreased substantially and returned to baseline (Fig. 4A, black symbols). Thus, rhodopsin was dephosphorylated efficiently in control mice, resetting rods back to their dark-adapted prebleached state. Notably, gradual rhodopsin dephosphorylation in vivo was also observed in PP2A-deficient mice. However, the onset of this process was substantially delayed in the absence of PP2A so that rhodopsin phosphorylation continued to rise and peaked at 30 min after the bleach, reaching a level significantly higher than that in control rods (Fig. 4A, red symbols). Subsequent dephosphorylation was also greatly delayed so that even 2 h after the bleach, the level of rhodopsin phosphorylation in Ppp2ca−/− iCre75+/- mice remained higher than the peak level in iCre75+/- controls. In contrast, rhodopsin had been largely dephosphorylated in control rods at that time point. Thus, ablation of PP2A from rods dramatically suppressed the dephosphorylation of their visual pigment, demonstrating that PP2A plays a key role in rhodopsin dephosphorylation. However, rhodopsin dephosphorylation was still clearly ongoing in Ppp2ca−/− iCre75+/- mice, suggesting that this process can also be driven, albeit more slowly, by alternative means.

To determine whether slower rhodopsin dephosphorylation in PP2A-Cr−/− deficient rods affects the recycling of visual chromophore and the regeneration of rod pigment, we quantified the levels of visual cycle retinoids in whole mouse eyes by HPLC, first in the dark and then at several time points after a >90% rod pigment bleach. Importantly, the same animals and bleaching conditions used for the rhodopsin phosphorylation analysis described above were employed in this experiment (one eye being used for each of the two measurements). As expected, photoactivation of rhodopsin in control mice immediately converted its chromophore from 11-cis-retinal to the all-trans-configuration, causing substantial accumulation of all-trans-retinal at the first time point after the bleach (Fig. 4B, black symbols). After the decay of photoactivated rhodopsin and the release of all-trans-retinal, it was rapidly reduced to all-trans-retinol, which also showed a statistically significant increase right after the bleach (Fig. 4C, black symbols) compared with controls. The unaccounted difference (150 pmol of retinoid) between the levels of bleached 11-cis-retinal and the sum of all-trans-retinol and all-trans-retinal can be attributed to levels of retinyl esters formed during the bleaching, extraction, and processing of the samples. It is unlikely that such esters would affect our findings as their formation occurs in RPE cells, where PP2A expression is not altered, and only after the release of all-trans-retinol from photoreceptors. Eventually, 11-cis-retinal levels were restored in control

![Fig. 4. Compromised rhodopsin dephosphorylation and visual cycle in rod-specific PP2A-Cr knockout mice. (A) Total rhodopsin phosphorylation levels (mean ± SEM) in the dark and at different times after >90% pigment bleach in whole eyes of iCre75+/- control (n = 5 for each time point) and Ppp2ca−/− iCre75+/- (n = 5 for each time point) mice. Live animals were exposed to white light (5,000 lx) for 2 min at time 0. Basal (prebleached) levels of rhodopsin phosphorylation were 5%. Two-way repeated-measures ANOVA showed no overall significant effect of genotype [F(1,10) = 110.1; P < 0.001]. (B) Light-induced changes of all-trans-retinal amounts (mean ± SEM) in whole eyes of iCre75+/- control (n = 5 for each time point) and Ppp2ca−/− iCre75+/- (n = 5 for each time point) mice. Animals and bleaching conditions were the same as in A. Two-way repeated-measures ANOVA showed overall significant effect of genotype [F(1,10) = 20.3; P = 0.004]. Bonferroni post hoc analysis demonstrated that only first postbleach data at 0 min was significantly different (***P < 0.001). (C) Light-induced changes of all-trans-retinol levels (mean ± SEM) in whole eyes of iCre75+/- control (n = 5 for each time point) and Ppp2ca−/− iCre75+/- (n = 5 for each time point) mice. Animals and bleaching conditions were the same as in A. Two-way repeated-measures ANOVA did not reveal overall significant effect of genotype [F(1,10) = 3.0; P = 0.132]. Bonferroni post hoc analysis demonstrated that the first postbleach data point was significantly different between control and mutant mice (***P < 0.001). All “between” and “within” genotype post hoc comparisons of the data at 60 min postbleach and after showed no statistical difference. (D) Regeneration of 11-cis-retinal in whole eyes of iCre75+/- control (n = 5 for each time point) and Ppp2ca−/− iCre75+/- (n = 5 for each time point) mice. Animals and bleaching conditions were the same as in A. Data represent mean ± SEM. Two-way repeated-measures ANOVA showed overall significant effect of genotype [F(1,10) = 14.0; P = 0.001].]
bleached eyes, as it was recycled by the RPE (Fig. 4D, black symbols). Notably, the recycling of 11-cis-retinal was substantially delayed in the absence of PP2A-Cα, but it still eventually reached its dark levels (Fig. 4D, red symbols). The compromised regeneration of visual chromophore was accompanied by very slow production of all-trans-retinol in Ppp2ca+/Cre75α mice (Fig. 4C, red symbols). Instead, in mutant retinas, we observed a statistically significant (compared with controls) buildup of its immediate precursor, all-trans-retinal, at the early postbleach times (Fig. 4B, red symbols). Thus, the conversion of all-trans-retinal to all-trans-retinol in rods appeared suppressed in the absence of PP2A, causing a delay in the recycling of chromophore and, ultimately, in the regeneration of rod visual pigment.

Taken together, these findings clearly demonstrate that PP2A serves as rhodopsin phosphatase in vivo, so that ablation of its major catalytic subunit results in compromised pigment dephosphorylation, delayed recycling of visual chromophore, and slower pigment regeneration. Equally important, these data demonstrate the existence of additional phosphatase(s) capable of deposphorylating rhodopsin in the absence of PP2A-Cα.

Phosducin Dephosphorylation in Mice with Rod-Specific Ablation of PP2A-Cα. In addition to rhodopsin dephosphorylation, PP2A has also been proposed to be involved in the dephosphorylation of another abundant phosphoprotein, phosducin (Pdc). To determine whether PP2A is an innate Pdc phosphatase, we compared the kinetics of light-dependent Pdc phosphorylation in Ppp2ca+/Cre75α mice and control iCre75α animals. Phosphorylation of serine 71 (Fig. 5A), a prominent Pdc phosphorylation site (28, 38), was monitored by Western blotting with a previously characterized phosphospecific Pdc71p antibody (39). In the eye, Pdc is predominantly expressed in rod and cone photoreceptors of the retina and is virtually undetectable in other cell types. Thus, probing whole-eye extracts revealed the phosphorylation status of Pdc in retinal photoreceptors, specifically in the dominating rods.

The kinetics of Pdc dephosphorylation could not be monitored directly because the tissue collection protocol was longer than the ~2 min required for complete dephosphorylation of Pdc in vivo (39). As an alternative, we measured the kinetics of Pdc phosphorylation in the dark, which is substantially slower. The rationale was that the addition of phosphate groups would occur faster in the absence of PP2A-Cα, which removes these groups. In both Ppp2ca+/Cre75α and iCre75α mice, Pdc underwent robust dephosphorylation during the 10 min of exposure to dim 10 lx light (Fig. 5B, time point 0 min). Within 10 min of subsequent dark adaptation, Pdc regained its phosphorylated state (Fig. 5B, time points 10 and 30 min). No statistically significant difference in the kinetics of Pdc phosphorylation in control and PP2A-deficient rods was observed at any time point (Fig. 5B), indicating that the predicted increase in Pdc phosphorylation in the absence of its phosphatase. Finally, the level of Pdc phosphorylation was also comparable in control and PP2A-deficient mice after overnight dark adaptation. Thus, perhaps surprisingly, these results demonstrate that PP2A-Cα is not required for the dephosphorylation of Pdc in retinal rod photoreceptors, leaving the identity of the enzyme responsible for catalyzing this reaction unknown.

Impaired Cone Dark Adaptation in Mice with Cone-Specific Ablation of PP2A-Cα. Phosphorylation of photoactivated visual pigment also takes place in vertebrate cones (40), but the enzyme that subsequently dephosphorylates cone pigments has not been identified. It also is unknown whether cone pigment dephosphorylation plays a role in regulating the function of mammalian cones by affecting their pigment regeneration or dark adaptation. Our in situ mRNA hybridization analysis demonstrated the expression of the Ca-subunit of PP2A in cone-like photoreceptors of Nrlα+ mouse retina, suggesting that PP2A is present in mouse cones as well (Fig. 6A). Also consistent with PP2A expression in cones is the residual expression of PP2A observed in a small fraction of photoreceptors in Ppp2ca+/Cre75α mice (Fig. 1B and D). Thus, to investigate the potential role of PP2A in cone function, we crossed our PP2A-floxed mice with the transgenic HRGP-Creα line expressing Cre recombinase selectively in cones (41) to generate cone-specific PP2A conditional knockout (Ppp2ca+/HRGP-Creα) mice. To facilitate recordings specifically from cones, mice were derived on a Gnat1+/− background that eliminates the rod component of the light response without affecting cone morphology or function (42).

Because the bulk of immunohistochemical PP2A staining in the photoreceptor layer originates in rod cells, it is rather challenging to confirm the elimination of PP2A protein from the cones, which represent only a minor (~3%) fraction of photoreceptors in mouse retina (43). However, as the rod results above demonstrate, conditional knockout of PP2A-Cα by Cre-mediated recombination effectively ablates PP2A-Cα expression. Therefore, we sought to confirm the robust expression of Cre recombinase in the cones of Ppp2ca+/HRGP-Creα mice. Cones were identified by immunolabeling with cone arrestin antibody (Fig. 6B; see Materials and Methods for details). Analysis of the expression of Cre recombinase in Ppp2ca+/HRGP-Creα mouse retina revealed immunolabeling selectively in cones at the top of the outer nuclear layer (Fig. 6B, Right), indicating that Cre is indeed expressed in their cone nuclei. This result, together with the robust functional phenotype of Ppp2ca+/HRGP-Creα mice described below, demonstrate the successful ablation of PP2A-Cα in their cones.

To address the possible role of PP2A in cone phototransduction and dark adaptation, we performed a series of physiological experiments in both isolated retinas and live animals. The analysis was limited to M-opsin-expressing cones, which can be selectively stimulated with visible green light. ERG recordings from isolated retinas in the presence of postsynaptic blockers revealed that, under dark-adapted conditions, the flash responses of M-cones from Ppp2ca+/HRGP-Creα mice had amplitudes (Fig. 6C and D), sensitivity (Fig. 6E), and kinetics (Fig. 6F) comparable to those of M-cone responses...
from control HRGP-Cre+ mice. These results demonstrate that, as in the case of rods, deletion of PP2A-Cα in cones did not produce adverse effects on their cell number, overall health, or photo-transduction in dark-adapted conditions. However, ERG recordings from live animals showed that M-cone dark adaptation (estimated to 90% of cone visual pigment in HRGP-Cre+ control (n = 10) and Ppp2ca+/HRGP-Cre+ (n = 12) mice. Bleaching was achieved by a 35-s illumination with bright 520-nm LED light at time 0. Final levels of sensitivity recovery at 60 min postbleach were 70% (HRGP-Cre+) and 54% (Ppp2ca+/HRGP-Cre+). Two-way repeated-measures ANOVA showed overall significant effect of genotype (F(2,26) = 35.7, P < 0.001).

Discussion

Reversible phosphorylation is one of the key cellular mechanisms allowing recurrent GPCR signaling. The state of phosphorylation, which regulates the activity of many GPCRs, is controlled by two enzymatic groups, protein kinases and phosphatases (44–46). In retinal photoreceptor neurons, continuous detection of light requires the timely shutoff of their highly specialized GPCRs, visual pigments, and the rapid inactivation of their phototransduction cascade. Similar to other G-protein cascades, partial inactivation of visual pigment is initiated by the multiple phosphorylation of its C terminus that in rods is mediated by GRK1 (10, 47). This phosphorylation is regulated by calcium via the calcium-binding protein recoverin in both rods (48) and cones (49). Subsequent binding of arrestin fully inactivates the pigment and results in the eventual termination of the light response (12, 13).

The role of visual pigment phosphorylation has been well characterized. Its blockade by either deletion of GRK1 (11), truncation of the opsins C terminus containing the targeted Ser/Thr residues (50), or mutation of these residues themselves (51), greatly delays the shutoff of the light response and causes persistent phototransduction activity and light-dependent retinal degeneration (11). In addition, the timely phosphorylation of rhodopsin controls the reproducibility of rod responses to light (52, 53). Notably, phosphorylated rhodopsin activates the phototransduction cascade with...
mRNA is coupled cellular receptors, this and its subsequent regeneration with 11-cis-retinal (55, 56), as well as their opsin dephosphorylation (40, 57), proceed significantly faster than in rods, the identity of the cone pigment phosphatase is also unknown.

Here, we determined that the ubiquitously expressed enzyme PP2A is the pigment phosphatase in mammalian rods and cones (20, 22, 23) and demonstrated the significance of pigment dephosphorylation in the function of photoreceptors. Based on previous RNA-sequencing analysis, PP2A-Cα mRNA is ~2.3-fold more abundant than PP2A-Cβ mRNA in wild-type mouse retinas (58). This finding suggests that, in as most other tissues, PP2A-Cα is the primary PP2A catalytic subunit in mammalian photoreceptors. Thus, we generated two unique conditional knockout mouse lines, with either rod- or cone-specific ablation of PP2A-Cα.

We show that PP2A-Cα is indeed expressed in both photoreceptors (Fig. 2 A and D and 6A). Despite the ubiquitous nature of PP2A-Cα, its ablation from mouse rods and cones does not affect their overall morphology (Figs. 1E and 6B) or signaling efficiency (Figs. 2 and 6C–F). However, in both rods and cones, the deletion of PP2A-Cα suppresses their dark adaptation following a nearly complete pigment bleach (Figs. 3 and 6G). In the case of rods, this delay is associated with compromised pigment dephosphorylation (Fig. 4A). Moreover, the lack of PP2A-mediated rhodopsin dephosphorylation significantly delays the recycling of 11-cis-retinal visual chromophore (Fig. 4D). This process, which begins with the release of the photosomerized chromophore, all-trans-retinal, from photoreceptors, followed by its conversion back to the 11-cis-form in the RPE (for both rods and cones) or in Müller cells (for cones only) (59–61). The recycled chromophore then is returned to photoreceptors, where it combines with apo-opsin to regenerate the visual pigment. Currently, it is not possible to biochemically characterize the recycling of visual chromophore in mouse cones due to their scarcity in the retina. However, the substantial delay of M-cone dark adaptation in the absence of PP2A-Cα indicates that the PP2A-driven dephosphorylation of opsin is a critical step in the dark adaptation of M-cone photoreceptors. Indeed, the recycling of chromophore of rod pigment with 11-cis-retinal phosphatase revealed the role of this process in rod and cone dark adaptation. One of two mechanisms could cause the delay in photoreceptor dark adaptation observed in PP2A-Cα knockout mice. First, pigment regeneration could take place normally in the absence of PP2A-Cα, but the residual pigment phosphorylation could suppress its full capacity to activate the phototransduction cascade (54).

Materials and Methods
Generation of PP2A Conditional Knockout Mouse Lines. All experiments were approved by the Washington University Animal Studies Committee and the Case Western Reserve University Animal Care Committee. Unless otherwise specified, all control and experimental mice of either sex were used at 2–5 mo of age. Ppp2ca-floxed mice were generated by recombineering methods.
Following successful germline transmission and FLP-mediated elimination of the Neo cassette, both confirmed by PCR, they were bred to homozygosity. For rod-specific elimination of the Pp2ca-Cre (iCre75) mice were used in preliminary experiments with rhodopsin-Cre (iCre75) mice (30) and finally inbred to produce homozygous Pp2ca-Cre (iCre75) mice. For all rod-related experiments, littermate Pp2ca-Cre (iCre75) mice were used as controls. To detect Pp2ca-Cre exclusively in M-cones, Pp2ca-floxed mice were bred with human red/green pigment gene promoter Cre (HRGP-Cre+) mice that express Cre recombine selectively in cones (41). These animals were further bred with rod transducin α-subunit knockout (Gnat1−/−) mice, which lack functional rod phototransduction (82). The resulting Pp2ca-CreGnat1−/−HRGP-Cre+ mice were used for all cone-related electrophysiological experiments, with Pp2ca-CreGnat1−/−HRGP-Cre+ or Pp2ca-CreGnat1−/−HRGP-Cre- mice employed as controls.

All Pp2ca mice were homozygous for the Met-450 isoform of RPE65 (71) and were free of the Crb1rd8 mutation (72). Nrl−/− mice used to detect Pp2ca-Cre mRNA in cones have been described earlier (73). Housing conditions, detailed procedures for generation of Pp2ca conditional knockout mouse lines, and genotyping are described in SI Materials and Methods.

Light Microscopy. Five-month-old mice were killed by CO2 asphyxiation, and their eyes were enucleated and immersion-fixed for 4 h in PBS (pH 7.4) containing 2% glutaraldehyde and 2% paraformaldehyde, at 4 °C. After dehydration, eyecups were embedded in an EPON-Araldite mixture, and 1-μm sections were cut dorsal to ventral through the optic nerve and stained with hematoxylin and eosin (H&E). Images were acquired from the central retina near the optic nerve head.

Antibodies and Immunohistochemistry. After removal of the cornea and lens, the remaining mouse eye was fixed in freshly prepared 4% paraformaldehyde in 0.1 M PBS at pH 7.4 for 2 h at 4 °C. Details on the protocols and antibodies used are described in SI Materials and Methods.

In Situ mRNA Hybridization. Expression of Pp2ca-Cre mRNA in mouse rods and cones was visualized by in situ mRNA hybridization in control and Nrl−/− retinas, respectively. Mouse Pp2ca target oligonucleotide probes for manual assays were designed and produced by Advanced Cell Diagnostics. The RNAscope 2.5 HD Red Assay Kit (ACD) was used for in situ mRNA hybridization and additional controls were carried out according to the manufacturer’s RNAscope Technology protocol (31).

qRTPCR. Mouse retinas were promptly homogenized and passed through a QIAshredder column (Qiagen) to further homogenize the eye tissues. Total RNA was then purified with the RNeasy Mini Kit (Qiagen) along with on-column DNase treatment (Qiagen) as per the manufacturer’s directions. Total RNA from mouse retinas was reverse-transcribed with a high-capacity cDNA reverse transcription kit (Applied Biosystems) and used as a template for a qRTPCR with TaqMan Gene Expression Assays (Applied Biosystems) following the manufacturer’s instructions. Details on the protocol and probes used are described in SI Materials and Methods.

Rhodopsin Phosphorylation Analysis. The method for the separation of rhodopsin phospho- and nonphosphopeptides by reversed-phase HPLC in combination with MS/MS has been described previously (37, 63). Dark-adapted or light-exposed (5,000 lx white light, 2 min) mice were killed by cervical dislocation at specified postbleach times, and their right eyes were immediately removed, flash-frozen in liquid N2, and homogenized in 700 μl of 7 M urea in 10 mM Tris-HCl, pH 7.4. All procedures for separation and quantification of rhodopsin phosphopeptides are described in SI Materials and Methods.

Quantification of Visual Cycle Retinoids. After pigment bleaching and the killing of animals as described in a previous section, left eyes of the same dark-adapted mice were flash-frozen in liquid N2 and thoroughly homogenized in 1 ml of ice-cold buffer containing 50 mM Mops, pH 7.0, 10 mM NH4OH, and 50% ethanol. Retinoids were identified and quantified by comparison with authentic standards, as described previously (74). Details on the quantification of retinoids are provided in SI Materials and Methods.

Single-Cell Rod Suction Electrode Recordings. Control and rod-specific Pp2A mutant animals were dark-adapted overnight and killed by CO2 asphyxiation, and their retinas were removed under infrared illumination, chopped into small pieces, and transferred into a perfusion chamber located on the stage of an inverted microscope. A single rod outer segment was drawn into a glass microelectrode filled with Locke’s physiological solution, for recordings. Test flashes (20 ms) of calibrated 500-nm light were delivered by an optical bench. Details on the recordings and the data analysis are described in SI Materials and Methods.

Ex Vivo Cone Recordings from Isolated Mouse Retinas. Control and rod-specific Pp2A mutant mice were dark-adapted overnight and killed by CO2 asphyxiation, and the whole retina was removed from each mouse eye cup under infrared illumination and stored in oxygenated aqueous L15 (13.6 mMg1/2, pH 7.4) solution (Millipore Sigma) containing 0.1% BSA, at room temperature (RT). The retina was oriented with its photoreceptor side up and placed into a perfusion chamber (75) between two electrodes connected to a differential amplifier. The specimen was perfused with Locke’s solution supplemented with 1.5 mM l-glutamate and 40 μM 2-aminophosphonobutyric acid to block post-synaptic components of the photoresponse (76), and with 70 μM BaCl2 to suppress the slow glial PiII component (77). The perfusion solution was continuously bubbled with a 95% O2/5% CO2 mixture and heated to 36–37 °C. Light stimulation was applied in 20-ms test flashes of calibrated 550-nm LED light. Other details are provided in SI Materials and Methods.

In Vivo ERG. Dark-adapted mice were anesthetized with an i.p. injection of a mixture of ketamine (100 mg/kg) and xylazine (20 mg/kg). Pups were diluted with a drop of 1% atropine sulfate. Mouse body temperature was maintained at 37 °C with a heating pad. ERG responses were measured from both eyes by contact corneal electrodes held in place by a donor of Gonak solution (Akorn). Full-field ERGs were recorded with a UTAS BigShott apparatus (LKC Technologies) using Ganzfeld-derived test flashes of calibrated green 530-nm LED light. Details on the recordings, dark adaptation test, and data analysis are described in SI Materials and Methods.

Statistics. For all experiments, data were expressed as mean ± SEM and analyzed with the independent two-tailed Student t test (using an accepted significance level of P < 0.05) or two-way repeated-measures ANOVA (with genotype as main factor and time as repeated measures factor). In the latter case, pairwise comparisons were performed using the Bonferroni post hoc test, and P < 0.05 was considered significant.

ACKNOWLEDGMENTS. We are thankful to the V.J.K. and K.P. laboratories for comments on the manuscript. Especially, we thank Drs. Ning Zhang and Jiayue Zhang for their help during this study. This work was supported by NIH Grants EY022675 (to V.J.K. and K.P.), EY019312 (to V.J.K.), and EY02687 (Department of Ophthalmology and Visual Sciences, Washington University), and by Research to Prevent Blindness. L.H. is supported by a Swiss National Science Foundation Doc.Mobility Fellowship (P1SPK3_158634). K.P. is John H. Nord Professor of Pharmacology.

