Dephosphorylation by protein phosphatase 2A regulates visual pigment regeneration and the dark adaptation of mammalian photoreceptors

Alexander V. Kolesnikov,1,2 Tivadar Orban,3 Hui Jin,3 Celine Brooks,5 Lukas Hofmann,4 Zhiqian Dong5, Maxim Sokolov;6 Krzysztof Palczewski7,8,1 and Vladimir J. Kefalov1,9

1Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, MO 63110; 2Department of Pharmacology, Case Western Reserve University, Cleveland, OH 44106; 3Department of Ophthalmology, West Virginia University, Morgantown, WV 26506; and 4Department of Medical Devices, Polgenix, Inc., Cleveland, OH 44106

Edited by Theodore G. Wensel, Baylor College of Medicine, Houston, TX, and accepted by Editorial Board Member Jeremy Nathans September 29, 2017 (received for review July 12, 2017)

Resetting of G-protein–coupled receptors (GPCRs) from their active state back to their biologically inert ground state is an integral part of GPCR signaling. This “on-off” GPCR cycle is regulated by reversible phosphorylation. Retinal rod and cone photoreceptors arguably represent the best-understood example of such GPCR signaling. Their visual pigments (opsins) are activated by light, transduce the signal, and are then inactivated by a GPCR kinase and arrestin. Although pigment inactivation by phosphorylation is well understood, the enzyme(s) responsible for pigment dephosphorylation and the functional significance of this reaction remain unknown. Here, we show that protein phosphatase 2A (PP2A) acts as opsin phosphatase in both rods and cones. Elimination of PP2A substantially slows pigment dephosphorylation, visual chromophore recycling, and ultimately photoreceptor dark adaptation. These findings demonstrate that visual pigment dephosphorylation regulates the dark adaptation of photoreceptors and provide insights into the role of this reaction in GPCR signaling.

Significance

Resetting G-protein–coupled receptors (GPCRs) from their active state to their biologically inert ground state driven by reversible phosphorylation and arrestin binding is an integral part of GPCR signaling. Visual pigments in retinal rod and cone photoreceptors represent a classic example of GPCR signaling. Although pigment inactivation by phosphorylation is well understood, the enzyme(s) responsible for pigment dephosphorylation and the functional significance of this reaction remain largely unknown. Here, we show that protein phosphatase 2A (PP2A) is expressed in mouse photoreceptors and that its targeted ablation compromises, but does not fully block, their pigment dephosphorylation, visual chromophore recycling, and dark adaptation after >90% bleach. We conclude that visual pigments are dephosphorylated by PP2A and that this reaction regulates dark adaptation of photoreceptors.

The authors declare no conflict of interest.

This article is a PNAS Direct Submission. T.G.W. is a guest editor invited by the Editorial Board.

Published under the PNAS license.

To whom correspondence may be addressed. Email: kxp65@case.edu or kefalov@vision.wustl.edu.

This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10.1073/pnas.1712405114/-/DCSupplemental.
this enzyme in both pigment dephosphorylation and in the function of photoreceptors. As PP2A has also been suggested to dephosphorylate another abundant rod phosphoprotein, phosphorycin, in a light-dependent manner (23, 28), we also examined the state of phosphorycin phosphorylation in rods lacking PP2A-Cα.

Results

Retinal Morphology in Rod-Specific PP2A-Cα Knockout Mice. Despite the fact that many protein phosphatases are present in mammalian retinal photoreceptors (29), the identity of the enzyme that dephosphorylates visual pigments following their activation by light in vivo remains uncertain. To investigate the role of the putative rhodopsin phosphatase PP2A in photoreceptors, we generated mice in which the major isoform of the catalytic subunit of PP2A (PP2A-Cα) was flanked by LoxP sites (Ppp2caf/+) (Fig. 1B). This allowed us to selectively target the expression of PP2A in rods by crossing PP2A-floxed mice with the rod-specific Cre mouse line iCre75 (30) to generate rod-specific PP2A conditional knockout (Ppp2caf/+ iCre75+) mice.

In situ mRNA hybridization using an RNAscope assay produces a characteristic semiquantitative punctate staining generated by signal amplification from single-transcript molecules (31). Such an analysis of retinal sections demonstrated an abundant expression of PP2A-Cα transcripts throughout the retinas of control mice, including in their photoreceptor inner segment layer (Fig. 1B, Center). This result, consistent with previous studies (20–22), demonstrated the robust expression of PP2A in mammalian photoreceptors. A similar analysis in Ppp2caf/+ iCre75+ mice revealed that PP2A-Cα expression in the inner segment layer of their retinas was greatly reduced (Fig. 1B, Right). As rods represent the bulk of photoreceptors in mouse retina, this result clearly demonstrates that expression of PP2A was successfully eliminated from the rods of Ppp2caf/iCre75+ mice. The residual signal in the inner segment layer of these mutant mice likely reflects the expression of PP2A-Cα in the sparse cone photoreceptors. In contrast, PP2A-Cα expression in the inner retina was unaffected in Ppp2caf/iCre75+ mice, confirming the rod specificity of its ablation. Also consistent with the successful deletion of PP2A-Cα selectively in rods, qRT-PCR analysis demonstrated a significant reduction (34%, P < 0.01) in total PP2A-Cα mRNA in Ppp2caf/iCre75+ retinas compared with iCre75+ controls, with the remaining 66% expression derived from cones and the inner retina (Fig. 1C, Left). Importantly, the minor PP2A-Cβ subunit transcript level was not up-regulated in response to the deletion of PP2A-Cα from rods (Fig. 1C, Right).

We next investigated the expression of PP2A-Cα protein in photoreceptors by fluorescence immunohistochemistry, which produced a robust immunofluorescence signal within the photoreceptor layer of control mice (Fig. 1D, Left). Notably, most of the PP2A signal was located in the outer segment layer, an observation consistent with its proposed role of dephosphorylating the visual pigment. PP2A-Cα immunofluorescence was greatly reduced in the photoreceptor layer of Ppp2caf/iCre75+ retinas.
(Fig. 1D, Right), demonstrating the ablation of PP2A from rods. Similar to our in situ mRNA hybridization results, residual PP2A-Cα immunofluorescence was observed in some outer segments that most likely reflected the expression of PP2A in cones.

Finally, we investigated whether the rod-specific deletion of PP2A-Cα affects retinal morphology. Examination of retinal sections revealed normal outer retina morphology in PP2A-deficient mice. Even in 5-mo-old animals, the thickness of the outer nuclear layer, the inner segment layer, and the outer segment layer was comparable in control and Ppp2caflα iCre75+ retinas (Fig. 1E). Thus, perhaps surprising considering the ubiquitous expression of this enzyme, the deletion of PP2A-Cα in rods did not cause detectable retinal degeneration. The lack of morphological changes or photoreceptor cell loss in Ppp2caflα iCre75+ mice allowed a rigorous physiological and biochemical characterization of these animals to determine the role of PP2A in rod pigment and phosducin dephosphorylation as well as in rod function.

Phototransduction in PP2A-Cα-Deficient Rods. To determine whether the deletion of PP2A-Cα affects the phototransduction cascade of mouse rods and their physiological function, we first performed single-cell recordings from dark-adapted rods with a suction electrode (Fig. 2). If PP2A were the only enzyme dephosphorylating mouse rhodopsin, a significant fraction of the pigment would be expected to remain phosphorylated in PP2A-deficient rods, even after overnight dark adaptation. As rhodopsin phosphorylation reduces its efficiency of activating the phototransduction cascade (32), this would be expected to reduce the amplification of phototransduction and lower the photosensitivity of dark-adapted rods. These recordings also allowed an evaluation of the overall health of PP2A-deficient rods and their signaling.

In agreement with the similar lengths of their outer segments, dark-adapted Cre control and PP2A-deficient rods produced saturated responses of comparable amplitudes (Fig. 2A and B and Table 1). Notably, the photosensitivity of Ppp2caflα iCre75+ rods was also normal after overnight dark adaptation (Fig. 2C and Table 1). The dim flash responses of rods lacking PP2A-Cα were comparable to those of control iCre75+ rods, with only a slight but statistically significant increase in the time to peak (Fig. 2D and Table 1). The reason for the slightly broader peak of dim flash responses in PP2A-deficient rods is unclear, and considering the ubiquitous regulatory nature of PP2A, it could be caused by slight changes in any of a number of phototransduction steps. As rhodopsin inactivation occurs significantly faster than the rate-limiting inactivation of rod transducin (50 vs. 200 ms; e.g., ref. 33), it is unlikely that the slight change in response kinetics reflects changes in rhodopsin inactivation kinetics. Importantly, both phototransduction activation, measured at the rising phase of the dim flash response, and its late inactivation, characterized by the response recovery time constant τrec, were unaffected by the deletion of PP2A-Cα (Fig. 2D and Table 1). Finally, the response recovery following saturating flashes was also normal in PP2A-deficient rods, as indicated by the comparable dominant recovery time constants (τD) determined from a series of supersaturating flashes (Fig. 2D, Inset). Interestingly, our experimental τD values for both control iCre75+ and mutant Ppp2caflα iCre75+ rods (89 and 95 ms, respectively) were substantially lower than those (~200 ms) typically reported for mouse rods (34). However, this difference can be attributed to the acceleration of phototransduction shutoff in iCre75+ mouse rods (35). Despite this complication, the use of proper Cre controls for our physiological recordings allowed a reliable evaluation of the effect of PP2A-Cα ablation on rod function. Taken together, these results indicate that elimination of the major catalytic subunit of PP2A in mouse rods does not compromise their phototransduction and signaling under dark-adapted conditions. The normal dark current and sensitivity in PP2A-deficient rods are consistent with the morphological data above and demonstrate that the deletion of PP2A-Cα does not affect rod overall health or survival. Finally, the normal dark-adapted sensitivity of PP2A-deficient rods indicates that, after overnight dark adaptation, their visual pigment is dephosphorylated despite the absence of PP2A.

Suppressed Rod Dark Adaptation in Mice with Rod-Specific Ablation of PP2A-Cα. The results above clearly demonstrate that deletion of PP2A-Cα does not affect the function of rods under dark-adapted conditions. To investigate whether dephosphorylation of visual pigment by PP2A is required for the timely dark adaptation of mouse rods, we next determined the kinetics of rod dark adaptation in vivo by electroretinography (ERG). Rod dark adaptation was measured by tracking the recovery of rod ERG a-wave amplitude and sensitivity after nearly complete (>90%) bleaching of the rod visual pigment. Under these in vivo conditions, dark adaptation of rods is driven by the efficient decay of
First, we recorded rod-driven scotopic ERG responses in the dark and found that they were of similar waveforms and maximal amplitudes in control iCre75+ (296 ± 12 μV, n = 14) and mutant Ppp2caf/f iCre75+ mice (328 ± 14 μV, n = 14, P > 0.05) (Fig. 3A). This finding once again indicates that the total number of rods is preserved and their signaling is not suppressed by the deletion of PP2A-Cα. Furthermore, Ppp2caf/f iCre75+ mice produced normal ERG b-waves, suggesting that rod signal transmission to ON-bipolar cells is also normal in retinas with PP2A-deficient rods. Next, mice were exposed to bright light to bleach the bulk of their pigment, and then the recovery of their responses was monitored during the following dark-adaptation period. Immediately after a nearly complete pigment bleach, rods in both control iCre75+ and mutant Ppp2caf/f iCre75+ mice produced barely detectable a-wave responses that were greatly desensitized, by >3 log units. Over the following 90 min of dark adaptation, photoresponses in both control and PP2A-deficient rods gradually recovered (Fig. 3A). The recovery of the averaged maximal ERG a-wave amplitude to a saturating flash intensity (A_{max}) in control rods could be described by a single-exponential function with a time constant of 18.8 ± 2.0 min (from 14 eyes), and its final level 90 min after the bleach was ∼93% of its prebleach dark-adapted value (Fig. 3B, black symbols). Remarkably, although PP2A-deficient rods also demonstrated robust recovery after the bleach, the rate of their rod dark adaptation (25.4 ± 2.8 min, from 14 eyes) was significantly slower (Fig. 3B, red symbols) than that of control rods. A similar suppression of dark adaptation was observed in the recovery of rod-driven ERG a-wave sensitivity (S_t) following the same bleach (Fig. 3C). In these experiments, S_t is defined as the ratio of the dim flash response amplitude and its flash strength, and then normalized by the corresponding dark-adapted A_{max}. These results clearly demonstrate that deletion of PP2A substantially delays the recovery of rod function after exposure to bright light.

We conclude that PP2A is required for efficient dark adaptation of rods. Although our recordings were limited by the anesthetic to 90 min and the recovery did not reach 100%, likely due to the partial inhibition of pigment regeneration by anesthetics (36), the trend in the recovery of Ppp2caf/f iCre75+ mice indicated that they would eventually reach the same final level of ERG a-wave maximal amplitude and sensitivity as their control counterparts. This concept is consistent with the comparable sensitivities of control and PP2A-deficient rods after overnight dark adaptation, as measured by either single-cell (Fig. 2C) or ERG (Fig. 3A) recordings.

Table 1. Parameters of single-cell responses from dark-adapted mouse rods

<table>
<thead>
<tr>
<th>Response parameter</th>
<th>Control rods (n = 16)</th>
<th>PP2A-deficient rods (n = 15)</th>
</tr>
</thead>
<tbody>
<tr>
<td>I_{dark}, pA</td>
<td>14.6 ± 0.3</td>
<td>14.8 ± 0.6 NS</td>
</tr>
<tr>
<td>T_{peak}, ms</td>
<td>155 ± 4</td>
<td>178 ± 5 NS</td>
</tr>
<tr>
<td>T_{integ.}, ms</td>
<td>202 ± 11</td>
<td>216 ± 9 NS</td>
</tr>
<tr>
<td>S_t, μm^{2} photon^{-1}</td>
<td>1.8 × 10^{-2} ± 1.0 × 10^{-3}</td>
<td>1.8 × 10^{-2} ± 1.0 × 10^{-3} NS</td>
</tr>
<tr>
<td>I_{0a}, photon-μm^{-2}</td>
<td>32 ± 2</td>
<td>29 ± 2 NS</td>
</tr>
<tr>
<td>n(I_{1/2})</td>
<td>1.35 ± 0.02</td>
<td>1.34 ± 0.03 NS</td>
</tr>
<tr>
<td>τ_{rec}, ms</td>
<td>135 ± 10</td>
<td>140 ± 9 NS</td>
</tr>
</tbody>
</table>

I_{dark}, dark current measured from saturated responses; time to peak (T_{peak}), integration time (T_{integ.}), and normalized flash sensitivity (S_t) refer to responses whose amplitudes were −0.2 I_{dark} and fell within the linear range; I_{0a}, half-saturating light intensity; n(I_{1/2}), Hill coefficient in the Naka–Rushton equation; τ_{rec}, time constant of single-exponential decay of the dim flash response recovery phase. Data are given as mean ± SEM. Student’s t test, NS indicates P > 0.05; ***P < 0.001 compared with control values.

Fig. 3. Suppressed rod dark adaptation in rod-specific PP2A-Cα knockout mice. (A) Representative scotopic ERG responses in the dark [dark-adapted (DA), Bottom] and at indicated time points after bleaching >90% of the rod pigment in iCre75+ control (Left) and Ppp2caf/f iCre75+ (Right) mice. For each time point, A_{max} values were normalized to their corresponding A_{max,DA} value. (B) Recovery of scotopic ERG maximal a-wave amplitudes (A_{max} mean ± SEM) after bleaching >90% of rhodopsin in iCre75+ control (n = 14) and Ppp2caf/f iCre75+ (n = 14) mice. Bleaching was achieved by a 35-s illumination with bright 520-nm LED light at time 0. Averaged data points were fitted with single-exponential functions, yielding time constants of 18.8 ± 2.0 and 28.4 ± 2.8 min for control and PP2A-deficient mice, respectively. Final levels of response recovery by 90-min postbleach determined from exponential fits were 93% (iCre75+5) and 81% (Ppp2caf/f iCre75+). Two-way repeated-measures ANOVA showed overall significant effect of genotype [F_{1,312} = 8.6, P = 0.007]. (C) Recovery of scotopic ERG a-wave flash sensitivity (S_t; mean ± SEM) after bleaching >90% of rod pigment in iCre75+ control (n = 14) and Ppp2caf/f iCre75+ (n = 14) mice. Animals and experimental conditions were the same as in B. Two-way repeated-measures ANOVA showed overall significant effect of genotype [F_{1,312} = 10.2, P = 0.004].
Compromised Rhodopsin Dephosphorylation and Chromophore Recycling in Mice with Rod-Specific Ablation of PP2A-Cα. The importance of PP2A for the timely dark adaptation of rods raised the obvious possibility that this enzyme can dephosphorylate their pigment in vivo. To quantify the reversible rhodopsin phosphorylation in mouse rods, we used an assay based on a combination of rhodopsin cleavages to obtain its C-terminal peptides (unphosphorylated or phosphorylated) by reversed-phase HPLC and tandem mass spectrometry (MS/MS) developed previously (37).

We found that both control and PP2A-deficient rods of animals dark-adapted overnight contained predominantly unphosphorylated rhodopsin, along with ~5% of monophosphorylated pigment (Fig. 4A). Notably, there was no difference in the level of phosphorylation in dark-adapted control and PP2A-deficient rods. This result, together with the finding that rod sensitivity in dark-adapted Ppp2ca-/- iCre75 mice is normal, suggest that rhodopsin dephosphorylation can proceed even in the absence of PP2A-Cα such that rhodopsin in PP2A-deficient rods becomes dephosphorylated after overnight dark adaptation. To determine whether PP2A plays a role in this process, we directly examined the kinetics of rhodopsin dephosphorylation. A few seconds after a 2-min exposure of control iCre75 mice to bright light bleaching essentially all of the pigment, phosphorylation by GRK1 produced ~50% of mono- and double-phosphorylated (Ser541 and Ser296) rhodopsin. The fraction of double-phosphorylated rhodopsin was ~20% of the total phosphorylated pigment, and triple- or higher-order pigment phosphorylations were negligible under our experimental conditions. As expected, following 3 h of dark adaptation, the fraction of light-generated phosphorylated rhodopsin in control mice decreased substantially and returned to baseline (Fig. 4A, black symbols). Thus, rhodopsin was dephosphorylated efficiently in control mice, resetting rods back to their dark-adapted prebleached state. Notably, gradual rhodopsin dephosphorylation in vivo was also observed in PP2A-deficient mice. However, the onset of this process was substantially delayed in the absence of PP2A so that rhodopsin phosphorylation continued to rise and peaked at 30 min after the bleach, reaching a level significantly higher than that in control rods (Fig. 4A, red symbols). Subsequent dephosphorylation was also greatly delayed so that even 2 h after the bleach, the level of rhodopsin phosphorylation in Ppp2ca-/- iCre75 mice remained higher than the peak level in iCre75 controls. In contrast, rhodopsin had been largely dephosphorylated in control rods at that time point. Thus, ablation of PP2A from rods dramatically suppressed the dephosphorylation of their visual pigment, demonstrating that PP2A plays a key role in rhodopsin dephosphorylation. However, rhodopsin dephosphorylation was still clearly ongoing in Ppp2ca-/- iCre75 mice, suggesting that this process can also be driven, albeit more slowly, by alternative means.

To determine whether slower rhodopsin dephosphorylation in PP2A-Cα-deficient rods affects the recycling of visual chromophore and the regeneration of rod pigment, we quantified the levels of visual cycle retinoids in whole mouse eyes by HPLC, first in the dark and then at several time points after a >90% rod pigment bleach. Importantly, the same animals and bleaching conditions used for the rhodopsin phosphorylation analysis described above were employed in this experiment (one eye being used for each of the two measurements). As expected, photoactivation of rhodopsin in control mice immediately converted its chromophore from 11-cis-retinal to the all-trans-configuration, causing substantial accumulation of all-trans-retinal at the first time point after the bleach (Fig. 4B, black symbols). After the decay of photoactivated rhodopsin and the release of all-trans-retinal, it was rapidly reduced to all-trans-retinol, which also showed a statistically significant increase right after the bleach (Fig. 4C, black symbols) compared with controls. The unaccounted difference (150 pmol of retinoid) between the levels of bleached 11-cis-retinal and the sum of all-trans-retinol and all-trans-retinal can be attributed to levels of retinyl esters formed during the bleaching, extraction, and processing of the samples. It is unlikely that such esters would affect our findings as their formation occurs in RPE cells, where PP2A expression is not altered, and only after the release of all-trans-retinol from photoreceptors. Eventually, 11-cis-retinal levels were restored in control rods, reaching a level that was still significantly higher than that of bleached control rods (Fig. 4D, red symbols). Subsequent dephosphorylation was also greatly delayed so that even 2 h after the bleach, the level of rhodopsin phosphorylation in Ppp2ca-/- iCre75 mice remained higher than the peak level in iCre75 controls. In contrast, rhodopsin had been largely dephosphorylated in control rods at that time point. Thus, ablation of PP2A from rods dramatically suppressed the dephosphorylation of their visual pigment, demonstrating that PP2A plays a key role in rhodopsin dephosphorylation. However, rhodopsin dephosphorylation was still clearly ongoing in Ppp2ca-/- iCre75 mice, suggesting that this process can also be driven, albeit more slowly, by alternative means.

![Fig. 4](https://example.com/figure4.png)
bleached eyes, it was set free by the RPE (Fig. 4D, black symbols). Notably, the recycling of 11-cis-retinal was substantially delayed in the absence of PP2A-Cα, but it still eventually reached its dark levels (Fig. 4D, red symbols). The compromised regeneration of visual chromophore was accompanied by very slow production of all-trans-retinol in Ppp2ca+/iCre75 mice (Fig. 4C, red symbols). Instead, in mutant retinas, we observed a statistically significant (compared with controls) buildup of its immediate precursor, all-trans-retinal, at the early postbleach times (Fig. 4B, red symbols). Thus, the conversion of all-trans-retinal to all-trans-retinol in rods appeared suppressed in the absence of PP2A, causing a delay in the recycling of chromophore and, ultimately, in the regeneration of rod visual pigment.

Taken together, these findings clearly demonstrate that PP2A serves as rhodopsin phosphatase in vivo, so that ablation of its major catalytic subunit results in compromised pigment dephosphorylation, delayed recycling of visual chromophore, and slower pigment regeneration. Equally important, these data demonstrate the existence of additional phosphatase(s) capable of dephosphorylating rhodopsin in the absence of PP2A-Cα.

Phosphoducin Dephosphorylation in Mice with Rod-Specific Ablation of PP2A-Cα. In addition to rhodopsin dephosphorylation, PP2A has also been proposed to be involved in the dephosphorylation of another abundant phosphoprotein, phosducin (Pdc). To determine whether PP2A is an innate Pdc phosphatase, we compared the kinetics of light-dependent Pdc phosphorylation in Ppp2ca+/iCre75 mice and control iCre75+ animals. Phosphorylation of serine 71 (Fig. 5A), a prominent Pdc phosphorylation site (28, 38), was monitored by Western blotting with a previously characterized antibody (39). In the eye, Pdc is predominantly expressed in rod and cone photoreceptors of the retina and is virtually undetectable in other cell types. Thus, probing whole-eye extracts revealed the phosphorylation status of Pdc in retinal photoreceptors, specifically in the dominating rods.

The kinetics of Pdc dephosphorylation could not be monitored directly because the tissue collection protocol was longer than the ~2 min required for complete dephosphorylation of Pdc in vivo (39). An alternative, we measured the kinetics of Pdc phosphorylation in the dark, which is substantially slower. The rationale was that the addition of phosphate groups would occur faster in the absence of PP2A-Cα, which removes these groups. In both Ppp2ca+/iCre75+ and iCre75+ mice, Pdc underwent robust dephosphorylation during the 10 min of exposure to dim 10 lx light (Fig. 5B, time point 0 min). Within 10 min of subsequent dark adaptation, Pdc regained its phosphorylated state (Fig. 5B, time points 10 and 30 min). No statistically significant difference in the kinetics of Pdc phosphorylation in control and PP2A-deficient rods was apparent in any time. This result is in contrast to the predicted increase in Pdc phosphorylation in the absence of its phosphatase. Finally, the level of Pdc phosphorylation was also comparable in control and PP2A-deficient mice after overnight dark adaptation. Thus, perhaps surprisingly, these results demonstrate that PP2A-Cα is not required for the dephosphorylation of Pdc in retinal rod photoreceptors, leaving the identity of the enzyme responsible for catalyzing this reaction unknown.

Impaired Cone Dark Adaptation in Mice with Cone-Specific Ablation of PP2A-Cα. Phosphorylation of photoactivated visual pigment also takes place in vertebrate cones (40), but the enzyme that subsequently dephosphorylates cone pigments has not been identified. It also is unknown whether cone pigment dephosphorylation plays a role in regulating the function of mamalian cones by affecting their pigment regeneration or dark adaptation. Our in situ mRNA hybridization analysis demonstrated the expression of the Ca-subunit of PP2A in cone-like photoreceptors of Nrl−/−mouse retina, suggesting that PP2A is present in mouse cones as well (Fig. 6A). Also consistent with PP2A expression in cones is the residual expression of PP2A observed in a small fraction of photoreceptors in Ppp2ca+/iCre75+ mice (Fig. 1B and D). Thus, to investigate the potential role of PP2A in cone function, we crossed our PP2A-Afoxed mice with the transgenic HRGP-Cre+ line expressing Cre recombinase selectively in cones (41) to generate cone-specific PP2A conditional knockout (Ppp2ca+/ HRGP-Cre+) mice. To facilitate recordings specifically from cones, mice were derived on a Gnat1+ background that eliminates the rod component of the light response without affecting cone morphology or function (42).

Because the bulk of immunohistochemical PP2A staining in the photoreceptor layer originates in rod cells, it is rather challenging to confirm the elimination of PP2A protein from the cones, which represent only a minor (~3%) fraction of photoreceptors in mouse retina (43). However, as the rod results above demonstrate, conditional knockout of PP2A-Cα by Cre-mediated recombination effectively ablates PP2A-Cα expression. Therefore, we sought to confirm the robust expression of Cre recombinase in the cones of Ppp2ca+/ HRGP-Cre+ mice. Cones were identified by immunolabeling with cone arrestin antibody (Fig. 6B; see Materials and Methods for details). Analysis of the expression of Cre recombinase in Ppp2ca+/ HRGP-Cre+ mouse retina revealed immunolabeling selectively in cones at the top of the outer nuclear layer (Fig. 6B, Right), indicating that Cre is indeed expressed in their cone nuclei. This result, together with the robust functional phenotype of Ppp2ca+/ HRGP-Cre+ mice described below, demonstrate the successful ablation of PP2A-Cα in their cones.

To address the possible role of PP2A in cone phototransduction and dark adaptation, we performed a series of physiological experiments in both isolated retinas and live animals. The analysis was limited to M-opsin–expressing cones, which can be selectively stimulated with visible green light. ERG recordings from isolated retinas in the presence of postsynaptic blockers revealed that, under dark-adapted conditions, the flash responses of M-cones from Ppp2ca+/ HRGP-Cre+ mice had amplitudes (Fig. 6C and D), sensitivity (Fig. 6E), and kinetics (Fig. 6F) comparable to those of M-cone responses.

Fig. 5. Normal phosducin phosphorylation in rod-specific PP2A-Cα knockout mice. (A) Monitoring phosphorylation status of phosducin in retinal photoreceptors by Western blotting. Dark-adapted mice were exposed to white light (10 lx) for 10 min, and then returned to darkness. At times indicated (0, 3, 10, 30 min), mice were killed, and their eyes were collected and flash-frozen. Levels of phosphorylated phosducin in whole-eye extracts were determined by Western blotting with Pdc-pan antibody. Total levels of phosphorylated Pdc were determined with Pdc-pan antibody after diluting the original extracts 100 times. 1, Control iCre75+ sample; 2, Ppp2ca+/iCre75+ sample. (B) Kinetics of Pdc phosphorylation upon the onset of darkness. Fluorescence values of Pdc71p bands were divided by those of the corresponding Pdc-pan band and plotted as a function of the time mice spent in the dark (mean ± SEM; n = 4, for both control and mutant lines). Two-way repeated-measures ANOVA did not reveal overall significant effect of genotype (F1,20) = 1.6; P = 0.23. Data were fitted with a sigmoidal curve for illustration.
from control HRGP-Cre+ mice. These results demonstrate that, as in the case of rods, deletion of PP2A-Cα in cones did not produce adverse effects on their cell number, overall health, or phototransduction in dark-adapted conditions. However, ERG recordings from live animals showed that M-cone dark adaptation (estimated from the recovery of cone ERG b-wave flash sensitivity) after near-complete bleaching of cone visual pigment was severely suppressed in Ppp2caf/HRGP-Cre+ mice (Fig. 6C). These findings indicate that, similar to rods, PP2A is the pigment phosphatase in mammalian M-cones as well, and its deletion significantly compromises the dark adaptation of mouse cone photoreceptors.

Discussion

Reversible phosphorylation is one of the key cellular mechanisms allowing recurrent GPCR signaling. The state of phosphorylation, which regulates the activity of many GPCRs, is controlled by two enzymatic groups, protein kinases and phosphatases (44–46). In retinal photoreceptor neurons, continuous detection of light requires the timely shutoff of their highly specialized GPCRs, visual pigments, and the rapid inactivation of their phototransduction cascade. Similar to other G-protein cascades, partial inactivation of visual pigment is initiated by the multiple phosphorylation of its C terminus that in rods is mediated by GRK1 (10, 47). This phosphorylation is regulated by calcium via the calcium-binding protein recoverin in both rods (48) and cones (49). Subsequent binding of arrestin fully inactivates the pigment and results in the eventual termination of the light response (12, 13).

The role of visual pigment phosphorylation has been well characterized. Its blockade by either deletion of GRK1 (11), truncation of the opsin C terminus containing the targeted Ser/Thr residues (50), or mutation of these residues themselves (51), greatly delays the shutoff of the light response and causes persistent phototransduction activity and light-dependent retinal degeneration (11). In addition, the timely phosphorylation of rhodopsin controls the reproducibility of rod responses to light (52, 53). Notably, phosphorylated rhodopsin activates the phototransduction cascade with...
reduced efficiency (32) and lowers the sensitivity of mammalian rods (54). Thus, a critical but often overlooked step in resetting the ground state of the visual pigment is its dephosphorylation needed to fully recover the receptor’s ability to repeatedly trigger phototransduction. However, despite the remarkable progress in understanding G-protein signaling in general and phototransduction in particular, the mammalian rod enzyme(s) responsible for catalyzing this reaction in vivo has remained unknown (16). Furthermore, although in vertebrate cones both the decay of photoactivated pigment and its subsequent regeneration with 11-cis-retinal (55, 56), as well as their opsin dephosphorylation (40, 57), proceed significantly faster than in rods, the identity of the cone pigment phosphatase is also unknown.

Here, we determined that the ubiquitously expressed enzyme PP2A is the pigment phosphatase in mammalian rods and cones (20, 22, 23) and demonstrated the significance of pigment dephosphorylation in the function of photoreceptors. Based on previous RNA-sequencing analysis, PP2A-α mRNA is ∼2.3-fold more abundant than PP2A-β mRNA in wild-type mouse retinas (58). This finding suggests that, as in most other tissues, PP2A-α is the primary PP2A catalytic subunit in mammalian photoreceptors. Thus, we generated two unique conditional knockout mouse lines, with either rod- or cone-specific ablation of PP2A-α.

We show that PP2A-α is indeed expressed in both photoreceptor types (Figs. 1C and D and 6A). Despite the ubiquitous nature of PP2A, its ablation from rod or cones does not affect their overall morphology (Figs. 1E and 6B) or signaling efficiency (Figs. 2 and 6C–F). However, in both rods and cones, the deletion of PP2A-α suppresses their dark adaptation following a nearly complete pigment bleach (Figs. 3 and 6G). In the case of rods, this delay is associated with compromised pigment dephosphorylation (Fig. 4A). Moreover, the lack of PP2A-mediated rhodopsin dephosphorylation significantly delays the recycling of 11-cis-retinal visual chromophore (Fig. 4D). This process begins with the release of phototransduced chromophore, all-trans-retinol, from photoreceptors, followed by its conversion back to the 11-cis-form in the RPE (for both rods and cones) or in Müller cells (for cones only) (59–61). The recycled chromophore then is returned to photoreceptors, where it combines with apo-opsin to regenerate the visual pigment.

Currently, it is not possible to biochemically characterize the recycling of visual chromophore in mouse cones due to their scarcity in the retina. However, the substantial delay of M-cone dark adaptation in the absence of PP2A-α indicates that the PP2A-driven dephosphorylation of opsin is a critical step in the dark-adaptation process independent of cones. However, we also found that the visual pigment eventually is reset to its ground (dephosphorylated) state even in the absence of PP2A. Thus, our results also suggest the existence of additional mechanisms for dephosphorylation of visual pigments (e.g., by PP2A-β or other cellular phosphatases).

One important issue related to dark adaptation that remains to be resolved is whether visual opsin is dephosphorylated before or after its recombination with 11-cis-retinal, that is, what is the rate-limiting step in this process? Previous studies have shown that, for rhodopsin, the rate of phosphatase removal from the more proximally located Ser334 is slower than dephosphorylation of the more distal Ser338 and Ser343 residues (62), and that this correlates with the overall rate of dark adaptation of rods in vivo (63). The latter study also attempted to determine whether recycling of visual chromophore through the RPE visual cycle and its subsequent delivery to rods is a prerequisite for dephosphorylation of rod opsin. The authors measured the rate of rhodopsin dephosphorylation in mice lacking the RPE cellular retinaldehyde-binding protein (CRALBP), which results in substantially slower recycling of chromophore by the RPE visual cycle (64). Rhodopsin dephosphorylation in these mice was found to be normal, suggesting that dephosphorylation is independent of the recombination of apo-opsin with 11-cis-retinal (63). This conclusion is also supported by more recent work on purified carp rod and cone outer segment membranes in which dephosphorylation of rod or cone opsins was unaffected by the regeneration of both pigments, as measured by an excess of 11-cis-retinal (ref. 57; see also ref. 65). Arrestin binding also inhibits rhodopsin dephosphorylation (66, 67), implying that the dephosphorylation step is most likely occurs following the thermal decay of photoactive rhodopsin. Moreover, under prolonged bright illumination, the subsequent recovery of rod current in the dark correlates closely with both rhodopsin regeneration and its biphasic dephosphorylation (68), thus supporting the idea that regeneration of rod pigment with 11-cis-retinal is needed to release bound arrestin, thereby allowing the dephosphorylation reaction to occur.

While informative, these studies do not address the functional significance of visual pigment dephosphorylation in photoreceptor cells. Instead, our approach of genetically ablating a candidate pigment phosphatase revealed the role of this process in rod and cone dark adaptation. One of two mechanisms could cause the delay in photoreceptor dark adaptation observed in PP2A-α knockout mice. First, pigment regeneration could take place normally in the absence of PP2A-α, but the residual pigment phosphorylation could suppress its full capacity to activate the phototransduction cascade (54). Alternatively, if dephosphorylation is required for the efficient decay or eventual regeneration of visual pigment, suppressed dephosphorylation in the absence of PP2A could directly affect the rate of pigment regeneration in vivo. Our biochemical analysis of PP2A-deficient rods allowed discrimination between these two scenarios. The present results clearly show that the normally rapid conversion of all-trans-retinal to all-trans-retinol (56, 69) is suppressed in PP2A-deficient rods (Fig. 4B and C), and this results in slower recycling of 11-cis-retinal by the RPE visual cycle (Fig. 4D) and delayed rod dark adaptation (Fig. 3). Although direct regulation of enzymes involved in rod visual cycle or generation of retinol dehydrogenase cofactor NADPH cannot be ruled out, the simplest explanation for these findings is that the suppression of visual pigment dephosphorylation in PP2A-deficient rods delays the decay of photoactivated pigment and is responsible for the delay in rod adaptation. Consistent with this notion, a recent study found that the decay of photoactivated mouse rhodopsin is accelerated in the absence of rhodopsin phosphorylation by GRK1 (70). Thus, the present results suggest that the timely dephosphorylation of the visual pigment is required for the rapid release of spent chromophore from opsin. This represents a unique mechanism of regulation of the visual cycle by PP2A that ultimately affects the kinetics of dark adaptation of rod and cone photoreceptors.

Previous biochemical work has suggested that the dephosphorylation of phosducin (a modulator of light-dependent transducin translocation) is another target of PP2A in photoreceptors (23, 28). However, we found that deletion of PP2A-α from rods does not abolish dephosphorylation of phosducin upon light exposure and has no significant effect on the kinetics of phosducin phosphorylation in the dark (Fig. 5). Thus, the balance between phosphorylation and dephosphorylation of phosducin was not affected in the absence of PP2A-α. This surprising result suggests that another, yet-unidentified enzyme is responsible for phosducin dephosphorylation in vivo. Future studies should help to identify the responsible phosphatase and ultimately determine the functional significance of the phosphorylation state of phosducin.

In summary, this study establishes a role for PP2A as the visual pigment phosphatase that resets the ground state of rod and cone pigments after their photoactivation. As visual pigments represent prototypical G-protein–coupled cellular receptors, this work sheds light on the general mechanism of recycling of activated GPCRs, a process essential for their resensitization and continuous signaling.

Materials and Methods

Generation of PP2A Conditional Knockout Mouse Lines. All experiments were approved by the Washington University Animal Studies Committee and the Case Western Reserve University Animal Care Committee. Unless otherwise specified, all control and experimental mice of either sex were used at 2–5 mo of age. Ppp2ca-floxed mice were generated by recombineering methods.
Following successful germline transmission and FLPe-mediated elimination of the Neo cassette, both confirmed by PCR, they were bred to homozygosity. For rod-specific elimination of the PP2A-C, five-month-old mice were killed by CO2 asphyxiation, and mouse lines, and genotyping are described in SI Materials and Methods. Detailed procedures for generation of PP2A conditional knockout mouse lines, and genotyping are described in SI Materials and Methods.

Quantification of Visual Cycle Retinoids. After pigment bleaching and the killing of animals as described in a previous section, left eyes of the same dark-adapted mice were flash-frozen in liquid N2 and thoroughly homogenized in 1 mL of ice-cold buffer containing 50 mM Mops, pH 7.0, 10 mM NH4OH, and 50% ethanol. Retinoids were identified and quantified by comparison with authentic standards, as described previously (74). Details on the quantification of retinoids are provided in SI Materials and Methods.

Single-Cell Rod Suction Electrode Recordings. Control and rod-specific PP2A mutant animals were dark-adapted overnight and killed by CO2 asphyxiation, and their retinas were removed under infrared illumination, chopped into small pieces, and transferred into a perfusion chamber located on the stage of an inverted microscope. A single rod outer segment was drawn into a glass microelectrode filled with Locke’s physiological solution, for recordings. Test flashes (20 ms) of calibrated 500-nm light were delivered by an optical bench. Details on the recordings and the data analysis are described in SI Materials and Methods.

Ex Vivo Cone Recordings from Isolated Mouse Retinas. Control and rod-specific PP2A mutant mice were dark-adapted overnight and killed by CO2 asphyxiation, and the whole retina was removed from each mouse eye cup under infrared illumination and stored in oxygenated aqueous L15 (13.6 mMgCl2, pH 7.4) solution (Millipore Sigma) containing 0.1% BSA, at room temperature (RT). The retina was oriented with its photoreceptor side up and placed into a perfusion chamber (75) between two electrodes connected to a differential amplifier. The specimen was perfused with Locke’s solution supplemented with 1.5 mM L-glutamate and 40 μM 2-aminophosphonobutyric acid to block postsynaptic components of the photoreceptor (76), and with 70 μM BaCl2 to suppress the slow glial PII component (77). The perfusion solution was continuously bubbled with a 95% O2/5% CO2 mixture and heated to 36–37 °C. Light stimulation was applied in 20-ms test flashes of calibrated 530-nm LED light. Other details are provided in SI Materials and Methods.

In Vivo ERG. Dark-adapted mice were anesthetized with an i.p. injection of a mixture of ketamine (100 mg/kg) and xylazine (20 mg/kg). Pupils were dilated with a drop of 1% atropine sulfate. Mouse body temperature was maintained at 37 °C with a heating pad. ERG responses were measured from both eyes by contact corneal electrodes held in place by a drop of Gonak solution (Akorn). Full-field ERGs were recorded with a UTAS Bighot apparatus (LKC Technologies) using Ganzfeld-derived test flashes of calibrated green 530-nm LED light. Details on the recordings, dark adaptation test, and data analysis are described in SI Materials and Methods.

Statistics. For all experiments, data were expressed as mean ± SEM and analyzed with the independent two-tailed Student t test (using an accepted significance level of P < 0.05) or two-way repeated-measures ANOVA (with genotype as main factor and time as repeated measures factor). In the latter case, pairwise comparisons were performed using the Bonferroni post hoc test, and P < 0.05 was considered significant.

ACKNOWLEDGMENTS. We are thankful to the V.J.K. and K.P. laboratories for comments on the manuscript. Especially, we thank Drs. Ning Zhang and Jiayue Zhang for their help during this study. This work was supported by NIH Grants EY026675 (to V.J.K. and K.P.), EY019312 (to V.J.K.), and EY020678 (Department of Ophthalmology and Visual Sciences, Washington University), and by Research to Prevent Blindness L.H. is supported by a Swiss National Science Foundation Doc.Mobility Fellowship (P1SKP3_158634), K.P. is John H. Lord Professor of Pharmacology.

Supporting Information

Kolesnikov et al. 10.1073/pnas.1712405114

SI Materials and Methods

Generation of PP2A Conditional Knockout Mouse Lines. All experiments were approved by the Washington University Animal Studies Committee and the Case Western Reserve University Animal Care Committee. Unless otherwise specified, all control and experimental mice of either sex were used at 2–5 mo of age. Animals were fed with standard chow (LabDiet 5053; Purina Mills) and kept under standard 12-h dark/light cyclic conditions. Ppp2ca-flaxed mice were generated by the Molecular Genetics Core at Washington University. The Ppp2ca gene contains seven exons and six introns (78, 79). The targeting vector for the Ppp2ca gene encoding the major α-form of the catalytic subunit of PP2A (PP2α-Ca) was constructed by recombination methodology (80) using the strategy shown in Fig. 1. The targeting construct was designed to replace the first Ppp2ca exon with an excisable Neo cassette to eliminate the coding region of Ppp2ca-Ca. The first step was the retrieval of the entire length of the construct from the BAC (RP23-46N3) plasmid. Next, the lone LoxP site was inserted 624 bp upstream of the Ppp2ca gene exon 1. The last step was the insertion of the second LoxP site and Frt-flanked Neo cassette with a BGH polyadenylation signal in intron 1, 551 bp downstream of exon 1. Thus, the construct contained a 3′ homology arm, a conditional arm with a single LoxP site upstream of it, a PGK promoter-driven Frt-Neo-Frt cassette with a LoxP site downstream of it, and finally a 3′ homology arm (Fig. 1A). The 5′ arm started at 5,247 bp upstream of exon 1 and was 4,623 bp in length. The conditional arm was 1,645 bp long and contained exon 1. The 3′ arm started 551 bp downstream of exon 1 and was 2,479 bp in length. The linearized targeting vector was electroporated into 129 × 1Sl/E1 ES cells (SCC10 line; Siteman Cancer Center Embryonic Stem Cell Core at Washington University) and the recombination event in selected G418-resistant clones was confirmed by Southern blotting and PCR. Positive ES cells were microinjected into C57BL/6J mouse embryos that were then implanted into surrogate mothers (The Jackson Laboratory). The resulting chimeras were bred with C57Bl/6j mice to generate heterozygous Ppp2ca+/Ppp2ca (+/Neo) mice.

Germline transmission in F1 and all subsequent generations was confirmed by PCR using primers P1 (5′-TTTCCAGGC-AGGAAACATTCAAGCTCCACCA-3′) and P2 (5′-TGCGCC- TGGCA-GGCCCTTATATAATTGCTA-3′) for the Ppp2ca-LoxP allele (PCR product of 619 bp) and the Ppp2ca-WT allele (PCR product of 524 bp). To remove the Frt-flanked Neo cassette, heterozygous Ppp2ca+/Ppp2ca (+/Neo) mice were bred with a highly efficient germline Neo-deleter strain B6(C3)-Tg(Pgk1-FLPo)10Syrkr/J mice expressing FLPo recombinase (81). Genotyping for the determination of the presence of FLPo transgene in these mice was performed according to The Jackson Laboratory web protocol. Excision of the Frt-Neo-Frt cassette was confirmed by PCR with primers P3 (5′-TGAGAGGGTACCTGTCCGGTGC-CTG-3′) and P4 (5′-ATATTGGT-CCACGCCAAAGTCCTTACACGAC-3′), resulting in the appearance of a PCR product of 410 bp (vs. a 309-bp product for the WT allele). For rod-specific elimination of the Ppp2Ca-Ca, Ppp2ca+/Ppp2ca (−/Neo) mice were bred with rhodopsin-Cre (iCre75 −/+) mice (30) and finally inbred to produce homozygous Ppp2ca+/iCre75 −/+ mice. All for rod-related experiments, littermate Ppp2ca+/+ and Ppp2ca+/− mice were used as controls. To delete Ppp2α-Ca exclusively in M-cones, Ppp2ca+/Neo −/+ mice were bred with human red/green pigment gene promoter Cre (HRGP-Cre −/) mice that express Cre recombinase selectively in cones (41). These animals were further bred with rod transducin α-subunit knockout (Gnat1 −/−) mice, which lack functional rod phototransduction (42). The resulting Ppp2ca+/Gnat1 −/−/HRGP-Cre −/ mice were used for all cone-related electrophysiological experiments, with Ppp2ca+/ Gnat1 −/−/HRGP-Cre −/ or Ppp2ca+/+Gnat1 −/−/HRGP-Cre −/ mice employed as controls. Genotyping for the presence of iCre75 or HRGP-Cre transgenes in each generation was performed according to protocols designed by Transnetyx.

All Ppp2α mice were homozgyous for the Met-450 isoform of RPE65 (71) and were free of the Crr1/rd8 mutation (72). Ndt −/− mice used to detect PP2A-Cα mRNA in cones have been described earlier (73).

Light Microscopy. Five-month-old mice were killed by CO2 asphyxiation, and their eyes were enucleated and immersion-fixed for 24 h in PBS (pH 7.4) containing 2% glutaraldehyde and 2% paraformaldehyde, at 4 °C. After dehydration, eyecups were embedded in an EPON-Araldite mixture, and 1-μm sections were cut dorsal to ventral through the optic nerve and stained with H&E. Images were acquired from the central retina near the optic nerve head.

Antibodies and Immunohistochemistry. After removal of the cornea and lens, the remaining mouse eyecup was fixed in freshly prepared 4% paraformaldehyde in 0.1 M PBS at pH 7.4 for 2 h at 4 °C. The eyecup was then washed once in PBS for 10 min and dehydrated with 30% sucrose buffered with PBS overnight at 4 °C. Next, the eyecup was embedded in Optimal Cutting Temperature compound (Ted Pella), flash-frozen in 2-methylbutane (Millipore Sigma) on dry ice, and cut with a cryo-microtome (CM1850; Leica) to produce 12-μm sections from the central retinal region immediately ventral to the optic nerve head. Sections were dried for 30 min at room temperature (RT), gently washed in deionized water for 10 min, dried again for 10 min at RT, and blocked for 1 h at RT with a solution containing either 1% BSA, 1% donkey serum or 1.5% goat serum, and 0.1–0.25% Triton X-100 (all from Millipore Sigma) in PBS. Sections were then incubated overnight at 4 °C with the appropriate primary antibodies (PPI2α-Ca, ABIN319372, antibodies-online.com; or cone arrestin, AB15282; EMD Millipore) diluted in a solution containing 0.1% Triton X-100 in PBS. Next, sections were washed once in PBS and then incubated with secondary antibodies, AlexaFluor 488 (Life Technologies), or a combination of AlexaFluor 488, 532, and 647 (Life Technologies) with DAPI (4′,6-diamidino-2-phenylindole, dihydrochloride). Images were acquired from the optic nerve head. Sections near the optic nerve head were captured with a CCD camera (Retiga Exi Fast 1394; QImaging) attached to a fluorescence microscope (CTR 6000; Leica).

In Situ mRNA Hybridization. Expression of PP2A-Cα mRNA in mouse rods and cones was visualized by in situ mRNA hybridization in control and Nrt −/− retinas, respectively. Mouse Ppp2ca target oligonucleotide probes for manual assays were designed and produced by Advanced Cell Diagnostics (ACD). The RNA-scope 2.5 HD Brown Assay Kit (ACD) was used for in situ mRNA hybridization, and all procedures were carried out according to the manufacturer’s RNAscope Technology protocol (31).

qRT-PCR. Mouse retinas were promptly homogenized and passed through a QIAshredder column (Qiagen) to further homogenize the eye tissues. Total RNA was then purified with the RNeasy Mini Kit (Qiagen) along with on-column DNase treatment (Qiagen) as per the manufacturer’s directions. Total RNA from
mouse retinas (~1 μg after DNase treatment) was reverse-transcribed with a high-capacity cDNA reverse transcription kit (Applied Biosystems) in a total volume of 20 μL. Then, 1% of this reaction mixture was used as a template for a qRT-PCR with TaqMan Gene Expression Assays (Applied Biosystems) following the manufacturer’s instructions. The Mm00479816_m1 probe set was used to probe Ppp2ca and the Mm00479549_ml set was used to probe Ppp2cb, with the 18S rRNA (Mm03928890_g1) probe set (Applied Biosystems) employed as an endogenous control. All real-time experiments were done with a Step-One Plus qRT-PCR machine (Applied Biosystems).

Rhodopsin Phosphorylation Analysis. This method for separation of rhodopsin phospho- and nonphosphopeptides by reversed-phase HPLC in combination with tandem mass spectrometry (MS/MS) has been described previously (37, 63). Briefly, dark-adapted or light-exposed (5,000-lx white light, 2 min) mice were killed by cervical dislocation at specified postbleach times, and their right eyes were immediately removed, flash-frozen in liquid N₂, and homogenized in 700 μL of 7 M urea in 10 mM Tris-HCl, pH 7.4. Eyes were homogenized with a biomasher tube and pestle with three rotations followed by sonication (QSonica). Each sample was centrifuged at 55,000 × g for 1 h at 4 °C, and the supernatant was discarded, and the precipitate was washed three times with 700 μL of deionized H₂O (Milli-Q). The sample was then suspended in 80 μL of deionized H₂O and digested with 20 μL of 20 μg/mL Asp-N enzyme (Promega) for 17 h in the dark at RT. Next, the sample was spun at 55,000 × g for 1 h at 4 °C, and supernatant was removed. After acidification with 10 μL of 0.1% formic acid, 10 μL of the supernatant was loaded onto an Onyx Monolithic C18 100 × 3.0-mm reverse-phase column (Phenomenex), and rhodopsin peptides were eluted using a 2–98% acetonitrile gradient in 0.1% formic acid for 45 min. Eluents were directed into a LTO Velos mass spectrometer (Thermo Scientific) operated in positive ionization mode. Ionization was achieved using a temperature-controlled electrospray.

Selected ion monitoring was set up for the unphosphorylated C terminus peptide of mouse rhodopsin obtained by cleavage (identical to systemic peptide DDDASDATAKTETSOQVAPA) together with its monophosphorylated, double-phosphorylated, and triple-phosphorylated counterparts, with m/z of 933.95, 973.95, 1,013.95, and 1,053.95, respectively. The percentage of rhodopsin phosphorylation was evaluated using the following equation:

\[\% P = \frac{\sum P_i}{\sum P_i} \times 100\% \]

where \%P is the percentage of rhodopsin phosphorylation, and \(P_i \) (i = 0, 3) are areas of peaks corresponding to unphosphorylated, monophosphorylated, double-phosphorylated, and triple-phosphorylated rhodopsin peptides, respectively.

Quantification of Visual Cycle Retinoids. After pigment bleaching and the killing of animals, as described in a previous section, left eyes of the same dark-adapted mice were flash-frozen in liquid N₂, and thoroughly homogenized in 1 mL of ice-cold buffer containing 50 mM Mops, pH 7.0, 10 mM NH₄OH, and 50% ethanol. Each eye was homogenized until no visible sign of tissue remained, incubated for 20 min at RT, and gently vortexed with 4 mL of ice-cold hexane for 1 min to extract the retinoids. The sample was centrifuged for 10 min until phase separation occurred. Capped tubes wrapped in aluminum foil were used to protect retinoids from light exposure. The sample was subjected to centrifugation at 4,000 × g for 5 min using an Eppendorf centrifuge, and the upper organic phase was collected. The extraction steps were repeated three times. The resulting hexane fractions were pooled and dried in a SpeedVac for 1 h at RT. The dried retinoids were dissolved in 300 μL of hexane/ethyl acetate (90:10) solvent, separated by normal-phase HPLC (1100 series; Agilent Technologies) on a 5-μm, 4.6 × 250-mm Zorbax Sil column (Agilent Technologies) at a flow rate of 1.4 mL/min, using the same solvent as a mobile phase, and analyzed by monitoring their absorbance at both 325 and 360 nm. Retinoids were identified and quantified by comparison with authentic standards, as described previously (74).

Single-Cell Rod Suction Electrode Recordings. Control and rod-specific PP2A mutant animals were dark-adapted overnight and killed by CO₂ asphyxiation, and their retinas were removed under infrared illumination, chopped into small pieces, and transferred into a perfusion chamber located on the stage of an inverted microscope. A single rod outer segment was drawn into a glass microelectrode filled with Locke’s solution containing 140 mM NaCl, 3.6 mM KCl, 2.4 mM MgCl₂, 1.2 mM CaCl₂, 3 mM Hepes (pH 7.4), 0.02 mM EDTA, and 10 mM glucose. The perfusion solution contained 112.5 mM NaCl, 3.6 mM KCl, 2.4 mM MgCl₂, 1.2 mM CaCl₂, 10 mM Hepes (pH 7.4), 20 mM NaHCO₃, 3 mM Na succinate, 0.5 mM Na glutamate, 0.02 mM EDTA, and 10 mM glucose. The solution was bubbled with a 95% O₂/5% CO₂ mixture and heated to 37–38 °C.

Test flashes (20 ms) of calibrated 500-nm light were delivered by an optical bench. The stimulating light intensity was controlled by neutral density filters in 0.5 log unit steps. Intensity–response relationships were fitted with Naka–Rushton hyperbolic functions, as follows:

\[R = R_{\text{max}} \times \frac{I^n}{I^n + I_{1/2}^n} \]

where R is the transient-peak amplitude of the response, \(R_{\text{max}} \) is the maximal response amplitude, \(I \) is the flash intensity, \(n \) is the Hill coefficient, and \(I_{1/2} \) is the half-saturating light intensity.

Photoresponses were amplified, low-pass filtered (30 Hz, eight-pole Bessel), and digitized (1 kHz). Normalized rod dim flash fractional sensitivity (S₀) was calculated from the linear region of the intensity–response curve as the ratio of the response amplitude to a given flash strength and then normalized by the amplitude of the saturated response. Half-saturating light intensity (\(I_{1/2} \)) was calculated from the intensity–response relationship as the test flash intensity required to produce a response with an amplitude equal to one-half of the amplitude of the corresponding saturated response. Integration time (\(T_{\text{integr.}} \)) was calculated as the integral of the dim flash response with the transient peak amplitude normalized to unity. The time constant for the dim flash response recovery (\(t_{\text{rec}} \)) was derived from the best single-exponential fit to the declining phase of the response. The dominant recovery time constant (\(t_{\text{d}} \)) was determined from supersaturating flashes (82), by using a 10% criterion for photocurrent recovery from saturation. Data were analyzed with Clampfit 10.4 and Origin 8.5 software.

Ex Vivo Cone Recordings from Isolated Mouse Retinas. Control and rod-specific PP2A-mutant mice were dark-adapted overnight and killed by CO₂ asphyxiation, and the whole retina was removed from each mouse eyecup under infrared illumination and stored in oxygenated aqueous L15 (13.6 mg/mL, pH 7.4) solution (Millipore Sigma) containing 0.1% BSA, at RT. The retina was oriented with its photoreceptor side up and placed into a perfusion chamber (75) between two electrodes connected to a differential amplifier. The specimen was perfused with Locke’s solution supplemented with 1.5 mM t-glutamate and 40 μM t-taurine-4-phosphonobutyric acid to block postsynaptic components of the photoresponse (76).
and with 70 μM BaCl₂ to suppress the slow glial PIII component (77). The perfusion solution was continuously bubbled with a 95% O₂/5% CO₂ mixture and heated to 36–37 °C.

Light stimulation was applied in 20-ms test flashes of calibrated 505-nm LED light. To maintain light uniformity, a glass optical diffuser was placed between the LED and the retina. Stimulating light intensity was controlled by a computer in 0.5 log unit steps. Intensity–response relationships were fitted with Naka–Rushton hyperbolic functions, as noted in a previous section. Photoresponses were amplified by a differential amplifier (DP-311; Warner Instruments), low-pass filtered at 300 Hz (eight-pole Bessel), and digitized at 1 kHz. Normalized cone dim flash fractional sensitivity (Sf) and other relevant cone response parameters were determined similarly to those described above. Data were analyzed with Clampfit 10.4 and Origin 8.5 software.

In Vivo ERG. Dark-adapted mice were anesthetized with an i.p. injection of a mixture of ketamine (100 mg/kg) and xylazine (20 mg/kg). Pupils were dilated with a drop of 1% atropine sulfate. Mouse body temperature was maintained at 37 °C with a heating pad. ERG responses were measured from both eyes by contact corneal electrodes held in place by a drop of Gonak solution (Akorn). Full-field ERGs were recorded with a UTAS BigShot apparatus (LKC Technologies) using Ganzfeld-derived test flashes of calibrated green 530-nm LED light.

Rod a-wave flash sensitivity (Sf, calculated as described for suction recordings) in control and rod-specific PP2A-mutant animals was first determined in the dark (from an average of eight dim flash responses). In this case, normalization was done to the maximal rod-driven ERG a-wave response (Amax) determined at 23.5 cd·s·m⁻². Similarly, cone b-wave flash sensitivity (Sf) in dark-adapted control and rod-specific PP2A-mutant mice was determined from the average of up to 20 dim flash responses and normalized to the maximal b-wave amplitude obtained with the brightest white light stimulus from the xenon flash tube (700 cd·s·m⁻²). To monitor the postbleach recovery of either rod ERG Amax and rod Sf or cone Sf, >90% of the relevant visual pigment was bleached with a 30-s exposure to 520-nm LED light focused at the surface of the cornea. The bleached fraction was then estimated from the following equation:

$$F = 1 - \exp(-I \cdot P \cdot t)$$

where F is the fraction of pigment bleached, t is the duration of the light exposure (in seconds), I is the bleaching light intensity of 520-nm LED light (1.3 × 10⁸ photons·μm⁻²·s⁻¹), and P is the photosensitivity of mouse photoreceptors at the wavelength of peak absorbance [5.7 × 10⁻⁹ μm² for mouse rods (83) and 7.5 × 10⁻⁹ μm² for mouse cones (84)]. Mice were reanesthetized every 30–40 min with a lower dose of ketamine (approximately one-half of the initial dose), and a 1:1 mixture of PBS and Gonak solutions was gently applied to their eyes with a plastic syringe to protect them from drying and maintain electrode contacts.

Statistics. For all experiments, data were expressed as mean ± SEM and analyzed with the independent two-tailed Student’s t test (using an accepted significance level of P < 0.05) or two-way repeated-measures ANOVA (with genotype as main factor and time as repeated-measures factor). In the latter case, pairwise comparisons were performed using the Bonferroni post hoc test, and P < 0.05 was considered significant.