High-temperature charge density wave correlations in La$_{1.875}$Ba$_{0.125}$CuO$_4$ without spin–charge locking

H. Miao$^{1,3}$, J. Lorenzana$^3$, G. Seibold$^1$, Y. Y. Peng$^{d,e}$, A. Amorese$^f$, F. Yakhou-Harris$^i$, K. Kummer$^j$, N. B. Brookes$^f$, R. M. Konik$^k$, V. Thampy$^g$, G. D. Gu$^3$, G. Ghiringhelli$^{d,e}$, L. Braicovich$^{d,e}$, and M. P. M. Dean$^{a,1}$

*Condensed Matter Physics and Materials Science Department, Brookhaven National Laboratory, Upton, NY 11973; $^1$Istituto dei Sistemi Complessi- CNR (Consiglio Nazionale delle Ricerche), Dipartimento di Fisica, Università di Roma “La Sapienza,” 00185 Roma, Italy; $^2$Institut für Physik, Brandenburgische Technische Universität Cottbus–Senftenberg, 03013 Cottbus, Germany; $^3$Dipartimento di Fisica, Politecnico di Milano, 20133 Milano, Italy; $^4$CNR-SPIN, Politecnico di Milano, 20133 Milano, Italy; and $^5$European Synchrotron Radiation Facility, F-38043 Grenoble Cedex, France

Edited by Steven A. Kivelson, Stanford University, Stanford, CA, and approved October 6, 2017 (received for review May 23, 2017)

Although all superconducting cuprates display charge-ordering tendencies, their low-temperature properties are distinct, impeding efforts to understand the phenomena within a single conceptual framework. While some systems exhibit stripes of charge and spin, with a locked periodicity, others host charge density waves (CDWs) without any obviously related spin order. Here we use resonant inelastic X-ray scattering to follow the evolution of charge correlations in the canonical stripe-ordered cuprate La$_{1.875}$Ba$_{0.125}$CuO$_4$ across its ordering transition. We find that high-temperature charge correlations are unlocked from the wavevector of the spin correlations, signaling analogies to CDW phases in various other cuprates. This indicates that stripe order at low temperatures is stabilized by the coupling of otherwise independent charge and spin density waves, with important implications for the relation between charge and spin correlations in the cuprates.

charge density waves | stripes | high-temperature superconductivity | cuprates | X-rays

When holes are doped into the Mott insulating parent compounds of the cuprates, multiple competing interactions conspire to form a rich phase diagram. In the underdoped regime, holes can save energy by clustering together on neighboring sites to minimize the number of broken magnetic bonds, but, by doing so, they pay an extra energy cost of the increased intersite Coulomb repulsion and reduced kinetic energy. Several early theoretical works suggested that frustration between these different ordering tendencies generates an instability toward spin density wave (SDW) order (1–5), and low-energy incommensurate SDW correlations were indeed observed around the same temperature phase of the canonical stripe-ordered cuprate BSCCO$_{2212}$, and HgBa$_2$CuO$_{4+δ}$ (HBCO1201), so the discovery of charge density wave (CDW) correlations in these systems generated great interest (11–19). While the similarity of CDW phase diagrams in these materials may indicate a unified CDW mechanism (20, 21), many of the CDW properties reported in these materials were notably different from that in La$_{1.875}$Ba$_{0.125}$CuO$_4$ (LBCO 1/8). The CDW incommensurability in YBCO is 0.3 rather than 1/4 at 1/8 doping (11, 12); the CDW ordering seems to compete with SDW ordering (22–24); and the CDW incommensurability decreases weakly with doping, rather than increasing (16, 20, 23, 24). On this basis, concepts such as nesting and electron–phonon coupling for CDW formation in YBCO, BSCCO, and HBCO were discussed extensively, impeding efforts to understand these cuprates using similar mechanisms that were discussed for 214 systems (15, 20, 25–27). Here we use new resonant inelastic X-ray scattering (RIXS) instrumentation to discover CDW correlations in the high-temperature phase of the canonical stripe-ordered cuprate LBCO 1/8 (10, 28–31). We find that these high-temperature CDW correlations exist without related SDW correlations at half their wavevector and that the correlations evolve with temperature, away from an incommensurability of 1/4. These observations show that stripe order is stabilized by locking of the charge and spin correlations that occurs at low temperatures and suggest that both charge density waves and stripes in cuprates should be understood within the same framework.

Results

In this work, we use Cu L$_2$ edge RIXS to achieve very high sensitivity to weak charge correlations. This works by choosing a photon energy that resonances with a Cu L$_2$ → 3d core level transition to enhance scattering from valence electrons, while using a spectrometer to reject the strong X-ray fluorescence that

Significance

Charge correlations have now been identified in the low-temperature phase of essentially all families of underdoped cuprates, but in two apparently distinct types. The first hosts locked charge and spin stripes of which the material La$_{1.875}$Ba$_{0.125}$CuO$_4$ (LBCO 1/8) is a paradigmatic example. In the second type, a charge density wave (CDW) exists without any obviously related spin correlations. Here we report the discovery of high-temperature CDW correlations that exist at temperatures above the CDW transition in the canonical striped cuprate LBCO 1/8. We find that the high-temperature CDW is decoupled from the fluctuating spin density wave, lessening apparent differences in behavior among different materials and setting important constraints for how we understand their electronic states.
limits the sensitivity of traditional resonant soft X-ray scattering experiments. Fig. 1A shows scattering geometry used here. Fig. 1B depicts the locations of the charge and spin ordering Bragg peaks for 214-type cuprates within the 2D Brillouin zone labeled \( Q_{\text{CDW}} \approx (0.24, 0) \) and \( Q_{\text{SDW}} \approx (0.38, 0.5) \) in reciprocal lattice units (r.l.u.). We start by choosing \( \sigma \)-polarized incident X-rays to enhance our sensitivity to charge scattering (11, 32, 33). Fig. 1C and D plots the quasi-elastic scattering intensity around \( Q_{\text{CDW}} \) along the \( H \) and the \( K \) directions. A clear peak is observed at base temperature corresponding to the known CDW with a wavevector of \((0.235, 0)\) and a correlation length of \(207(5)\) Å (28, 29, 31). As established in previous studies, the low-temperature CDW peak intensity drops with increasing temperature and seems to disappear around \(55\) K (28, 29, 31).

Having established the low-temperature CDW properties, we scanned large regions of reciprocal space at temperatures above the nominal transition. Fig. 2A–F plots RIXS intensity maps that reveal broad momentum-dependent scattering. The quasi-elastic intensity in these maps shows broad peaks around \((H, K) = (0.24, 0)\) for temperatures of \(54\) K to \(59\) K, while, at higher temperatures, it peaks at larger \(H\) while remaining centered at \(K = 0\). Although the close match in the wavevectors between the low-temperature and high-temperature scattering already indicates an intimate connection between this scattering and the low-temperature CDW, it is important to justify the electronic origin of the broad peak. Fig. 2C (Inset) and G shows the off-resonance RIXS intensity map and integrated RIXS intensity along \(H\). Both the inelastic excitations and the quasi-elastic remnant intensity are significantly suppressed when changing the incident energy, proving that the signal is dominated by the X-ray resonant process. The flat 2.8(0.3) counts per second off-resonant intensity also confirms the constant spectrometer acceptance. We also see, in Fig. 2F, that the peak has the same width in \(H\) and \(K\), consistent with the behavior of the low-temperature CDW (Fig. 1C and D). It is also worth noting that X-ray self-absorption effects (see SI Appendix, Fig. S2) and the Cu \(L_2\) RIXS cross-section are known to vary monotonically in this scattering geometry (11, 32). Based on all these experimental observations, we conclude that the observed broad peak represents a direct observation of the high-temperature CDW correlations discussed extensively ever since the discovery of the low-temperature CDW (9, 34–37).

(We chose the term “high-temperature CDW correlations” as the most generic way to refer to valence charge modulations with a different periodicity to the underlying lattice.) Compared with the low-temperature CDW, the high-temperature CDW has a far lower peak intensity (13 vs. 467 counts per second) but a much broader line width (about a factor of 16). As a result, this diffuse high-temperature scattering comprises \(\sim 7\) times larger 2D momentum and energy-integrated spectral weight than the sharp low-temperature CDW peak that emerges on top of the diffuse scattering below \(54\) K.

Upon cooling through the \(54\) K transition, no changes are observed in the diffuse tail of intensity. Although this is opposite to what is expected in a disorder-free phase transition, in which all high-temperature correlations would be expected to condense into a sharp CDW peak, such behavior is expected in the presence of disorder (38, 39). Cuprates are known to host appreciable disorder (24, 40–42), and this is the likely cause of the observed phenomenology, particularly in view of the match between the structural and CDW correlation length in LBCO \(1/8\) under pressure (41).

High-temperature CDW correlations in 214 cuprates are often argued to be dynamic (34, 35, 43), and such a view is supported by transport measurements (44). Notably, long-range ordered static low-temperature tetragonal (LTT) octahedral tilts, often thought to be coupled to the CDW at low temperatures, are found to become dynamic and correlated over a \(\sim 10\)-Å length scale above the transition, similar to the high-temperature CDW correlation length detected here (45, 46). On the basis of the resolution-limited energy width we observe (see SI Appendix, Fig. S4), we conclude that the high-temperature CDW is static on a timescale of \(\sim 100\) fs, but slow fluctuations are nonetheless possible and can, in principle, be directly measured by other techniques (30).

Fig. 3 shows the temperature dependence of the CDW correlations as determined by fitting Lorentzian-squared functions to the diffuse CDW peak intensity present at all temperatures and the sharp CDW peak that emerges at low temperatures (see SI Appendix, Figs. S5 and S6). The correlation length of the high-temperature CDW of \(13(2)\) Å is much shorter than that in the low-temperature state (207 Å) and substantially shorter than YBCO (60 Å) (11), but is of the same order of magnitude as several other cuprates systems such as \(\text{Bi}_2\text{Sr}_{2-x}\text{La}_x\text{CuO}_{4+d}\) (BSLCO2201) (12 Å) (15), \(\text{Bi}_{2-x}\text{Sr}_2\text{CuO}_4\) (<24 Å) (18), \(\text{La}_{2-x}\text{Sr}_x\text{CuO}_4\) (LSCO) (35 Å) (17), and \(\text{HBCO}_{1201}\) (20 Å) (19), hinting that the high-temperature CDW properties may help reconcile the difference between different cuprates. Further clues are evident in the wavevector behavior...
Inset (D and Q at low temperature, but range (see K and B). In Fig. 4 above that is dominated by damped spin wave excitations called paramagnons (49–52). In Fig. 4A displays an intensity map at 90 K taken with a different off-resonant X-ray energy to reduce the sensitivity to the valence electrons. This was multiplied by a factor of 10 to make the signal visible on the same color scale. (G and H) The quasi-elastic intensity calculated by integrating A–F, confirming the presence of the peak. (I) Comparison of scans in the H and K directions showing similar widths parallel and transverse to the CDW, similar to the low-temperature behavior (Fig. 1 A and D). As discussed in Results, this scattering demonstrates the presence of high-temperature CDW correlations. Error bars in G–I come from Poisson counting statistics.

allowing the association of the high temperature state observed here with the low-temperature behavior of other compounds. As can be seen in Fig. 3B, for temperatures below 55 K, the incommensurability of the CDW and SDW appears to be locked by a factor of two, which is a well-known property of 214-type cuprates (7–10, 28). Upon heating above 55 K, we see strong violation of this relation [Fig. 3B]: The CDW correlations evolve away from \( H \approx 1/4 \) and away from twice the incommensurability of the SDW (i.e., the CDW and SDW decouple) (10).

We further tested the nature of the CDW/SDW state and its charge–spin coupling by changing the RIXS geometry to measure the magnetic excitation spectrum in the same \( Q \) range (see SI Appendix, Fig. S1) (32). Inelastic neutron scattering has been applied extensively to study the magnetic excitations around \( Q_{\text{CDW}} \), finding an “hourglass”-shaped dispersion (35, 47, 48). RIXS can study the magnetic spectrum around \( Q_{\text{CDW}} \), a region of reciprocal space in which stripe-related effects have never been observed. Fig. 4 A and B shows the resulting spectral intensity above that is dominated by damped spin wave excitations called paramagnons (49–52). In Fig. 4C, we fit the paramagnon dispersion (see SI Appendix for more details) and compared it to the dispersion expected for a standard Néel antiferromagnet (AF), finding a softening of the excitation energy over a broad range of reciprocal space around \( Q_{\text{CDW}} \). The significant deviation observed at low temperatures shows that stripe formation modifies the short-range spin correlations around \( Q_{\text{CDW}} \) at low temperature, but this coupling is much reduced at higher temperatures, consistent with a weakened charge–spin coupling above the transition. There have been extensive efforts to model such stripe-related modifications in the spin excitation spectrum, as this provides a means to develop detailed models for the character of the ground state 

Fig. 2. Identification of the high-temperature CDW. (A–F) RIXS intensity at 54, 59, and 90 K cutting through the observed peak in the quasi-elastic intensity as a function of \( H (A–C) \) and \( K (D–F) \). A peak in the quasi-elastic intensity is seen in the vicinity of \( Q_{\text{CDW}} \) alongside an increase in the inelastic intensity. Inset in C displays an intensity map at 90 K taken with a different off-resonant X-ray energy to reduce the sensitivity to the valence electrons. This was multiplied by a factor of 10 to make the signal visible on the same color scale. (G and H) The quasi-elastic intensity calculated by integrating A–F, confirming the presence of the peak. (I) Comparison of scans in the H and K directions showing similar widths parallel and transverse to the CDW, similar to the low-temperature behavior (Fig. 1 C and D). As discussed in Results, this scattering demonstrates the presence of high-temperature CDW correlations. Error bars in G–I come from Poisson counting statistics.
Fig. 3. Decoupling of the CDW and SDW in the high-temperature phase. (A–C) The results of fitting the quasi-elastic intensity showing (A) the full width at half maximum, (B) the incommensurability, and (C) the intensity at the peak. The black dashed line at 54 K corresponds to the LTT–LTO (low-temperature orthorhombic) structural phase transition which is depicted in B, and blue and yellow code temperatures below and above this threshold (29). The orange dashed line at 42 K in C represents the static SDW transition. The behavior of the SDW, taken from inelastic neutron scattering results at 3 and 6 meV energy transfer from ref. 10, are included on A and B. We see that the CDW and SDW incommensurabilities evolve in different directions above 54 K, which indicates a decoupling of the charge and spin degrees of freedom. We also note that the high-temperature CDW width and intensity show no detectable changes through the LTT–LTO transition (any possible changes would be smaller than our error bars, which are obtained from the least-squares fitting algorithm).

Discussion
Our results have important implications for the relationship between stripe order in 214-type cuprates and CDW order in non-214 cuprates (58). We show that the high temperature state of LBCO $\frac{1}{8}$ hosts CDW correlations at a wavevector unlocked from the SDW wavevector. This establishes an appealing analogy to non-214 systems, which also host CDW correlations without any obviously related SDW correlations. Indeed, stripe order in LBCO $\frac{1}{8}$ appears to form via locking of the CDW and SDW at low temperatures. A remaining discrepancy, however, is that pristine non-214 systems tend to exhibit a spin gap not present in 214 systems (59–62). Substituting 2% Zn for Cu in YBa$_2$Cu$_3$O$_{6.6}$ is known to close the spin gap and stabilize SDW order with an incommensurability of 0.1, but this remains unlocked from the CDW incommensurability of 0.3 (63). We furthermore demonstrate that the wavevector of the

Fig. 4. Magnetic excitation spectrum and charge–spin coupling. (A and B) RIXS intensity maps measured in a geometry that couples to the paramagnon excitation at 23 K in the low-temperature CDW phase and at 60 K in the high-temperature CDW phase. Purple squares and red circles are the extracted peak positions from fitting the paramagnon lineshape (see SI Appendix, Fig. S7). (C) Comparison of the peak positions obtained by fitting the data in A and B to the dispersion expected from spin wave theory (SWT) in an AF without stripes. (D) Inset shows the theoretical charge configuration for one realization of the meandering stripes which mimics the experimental charge structure factor at 23 K. Stripes with a width of two sites with increased hole concentration are shown in blue. The main plot shows an average of the magnetic dynamic structure factor for 10 such configurations as described in Materials and Methods. The purple dashed curve connects the points of maximum intensity at each H value. Such a picture qualitatively captures the observed dispersion in C.
high-temperature CDW correlations in LBCO 1/8 is not uniquely defined by the doping level, contrary to what is seen in the low-temperature state (7–10, 28). Indeed, the high-temperature wavevector of \( Q_{\text{CDW}} = 0.272(2) \) is closer to what is seen in 1/8 doped YBCO and BSCCO2201, which is 0.32 and 0.27, respectively, than the low-temperature wavevector of 0.235 (11, 15). Temperature-dependent wavevectors have been predicted in Landau–Ginzberg modeling of stripe ordering scenarios (39, 64). In these models, the CDW wavevector is determined by competition between the CDW’s intrinsic ordering wavevector and coupling between the CDW and another degree of freedom, such as the SDW. The low-temperature wavevector may consequently not reflect the formation mechanism for these phases. Another unresolved discrepancy is that low-temperature CDW incommensurability in LBCO 1/8 increases with temperature (10, 28), distinct from the weak decrease in CDW incommensurability seen in YBCO and other non-214 systems (22–24). It will be important for future studies to measure whether the high-temperature CDW correlations in La\(_{2-x}\)Ba\(_x\)CuO\(_4\) increase or decrease with \( x \). Here we show that the CDW incommensurability in LBCO 1/8 changes by 0.04 r.l.u. (from 0.235 to 0.272) with temperature, i.e., on thermal energy scale of order 10 meV. We note that this is about the same magnitude as the doping-induced change in YBCO (from 0.34 at 0.09 hole concentration to 0.30 at 0.16 hole concentration) (23, 24).

We end by discussing different ways to reconcile the phenomenology observed here with that seen in other cuprate materials. One option is to assume that 214 and non-214 cuprates host completely different types of CDW. Alternatively, one can posit a universal CDW formation mechanism in which many states with different ordering wavevectors and different interplane stacking configurations can exist with only small energy differences. The widely discussed strongly correlated mechanisms are examples of this, as the wavevector is determined by a balance of different competing interactions (1–5, 34, 35, 56, 65, 66), in contrast to nesting in which the wavevector is expected to correspond to parallel features in the Fermi surface (67). In this universal scenario, low-temperature ordering wavevector in 214 systems would then be defined by coupling between the CDW and the SDW condensing a relatively small fraction of the available low-energy fluctuations together into well-correlated CDW order and establishing the factor-of-two relationship between the CDW and SDW incommensurabilities. In non-214 systems, this mechanism does not occur, due to the spin gap and the absence of the LTT structure, which is believed to play an important role in stabilizing the CDW (9). In this case, other details may be relevant for determining the low-temperature wavevector. Several researchers have pointed to analogies between Fermi surface features and the CDW wavevector in this case (11, 15, 16, 19, 68). A common origin for CDW correlations in all cuprates also naturally explains why the onset temperature peaks at around 1/8 doping in all families.

Conclusions

We exploited the high sensitivity of RIXS to discover charge correlations in the high-temperature state of LBCO 1/8. These correlations show that La-based 214-type cuprates can host CDW correlations that are unlocked from the SDW, suggesting stripes form via the locking of the charge and spin wavevectors at low temperatures. This establishes shared properties between different cuprates, constraining models for the normal states from which high-temperature superconductivity emerges.

Materials and Methods

An LBCO 1/8 single crystal was grown using the floating zone method and cleaved ex situ to reveal a face with a [001] surface normal. The wavevectors used here are described using the high-temperature tetragonal (4/mmm) space group with \( a = 3.78 \text{ Å} \) and \( c = 13.28 \text{ Å} \). Correlation length is defined as 1/HHWM, where HHWM is the half width at half maximum of the peak in r.l.u.

RIXS measurements were performed at the 1D32 beamline of the European Synchrotron Radiation Facility (ESRF). The resonant condition was achieved by tuning the incident X-ray energy to the maximum of the Cu L\(_2\) absorption peak around 931.5 eV. The scattering geometry is shown in Fig. 1A. The \( \sigma \) and \( \pi \) X-ray polarizations are defined as perpendicular and parallel to the scattering plane, respectively. \( H \) and \( K \) scans are achieved by rotating the sample around the \( \theta \) and \( \chi \) axes, without changing 2\( \theta \), thus changing the in-plane component of the momentum transfer \( Q = k_x - k_y \). By doing this, we are assuming that the scattering is independent of \( L \), which is reasonable, as the interlayer coupling in the cuprates is known to be weak (28, 29, 51). Positive (negative) \( H \) corresponds to larger (smaller) \( \theta \) values. The horizontal and vertical momentum resolution was 0.008 \text{ Å}^{-1} and 0.001 \text{ Å}^{-1}, respectively, and all intensities are normalized to beam current and counting time. Two different geometries are used here to provide sensitivity to charge and spin degrees of freedom (11, 32). For the charge scattering, we used \( \pi \)-polarized incident X-rays and negative \( H \) values. The spectrometer angular scattering angle (2\( \theta \)) was fixed at 118° such that \( L \approx 1.5 \), and the total instrumental energy resolution (full width at half maximum) was set to 90 meV to increase the counting rate. The quasi-elastic intensity was obtained by integrating the RIXS spectrum in an energy window of \( \pm 150 \text{ meV} \) around 0 meV. To measure the spin excitation spectra, we used \( \pi \)-polarized incident X-rays and positive \( H \) values. The scattering angle (2\( \theta \)) was set at the maximum value of 149° to access higher \( H \) values, and the total instrumental energy resolution was set to 70 meV. The elastic energy was determined by measuring the diffuse scattering from carbon tape for every spectrum obtained.

We performed our calculations of the spin excitation spectrum in the CDW state starting with an initially ordered set of charge stripes on a 40 × 40 site lattice. We then used a Monte Carlo algorithm to disorder the stripes until the charge structure factor matched the measured CDW peak shape, and we computed the magnetic excitation spectrum of the disordered state using the Heisenberg Hamiltonian (53). It is assumed that the charge stripes define domain walls across which magnetic exchange \( J \) is replaced by a ferromagnetic exchange \( J_r \). \( J_r = 165 \text{ meV} \) was chosen to match our observed zone boundary magnon energy, and \( J_r = -0.09 \) was chosen to obtain the correct energy for the neck of the hourglass in ref. 69. The magnetic excitation spectrum of the system with the domain walls is computed under the SWT approximation and averaged over the expected different domain configurations. Such a treatment is sufficient to reproduce the observed magnetic peak dispersion, even without including other effects such as fermionic excitations (35, 48).

Acknowledgments.

We thank E. Bozin, C. Mazzioli, T. M. Rice, J. Tranquada, and S. Wilkins for discussions and J. Pellicciari for assistance. H.M. and M.P.M.D. are supported by the Center for Emergent Superconductivity, an Energy Frontier Research Center funded by the US Department of Energy, Office of Basic Energy Sciences. Work at Brookhaven was supported by the US DOE (Contract DE-SC00112704). Theoretical work by J.L. is supported by the Italian Ministero degli Affari Esteri (Projects SUPERTOP-PGR04879 and AR17M07). The experiment was performed at the 1D32 beamline of the European Synchrotron Radiation Facility.

17. Thampy V, et al. (2014) Rotated stripe order and its competition with superconductivity in La$_{0.84}$Sr$_{0.15}$CuO$_2$. Phys Rev B 90:100510.