Earliest hydraulic enterprise in China, 5,100 years ago

Bin Liu*, Ningyuan Wang*, Minghui Chen*, Xiaohong Wu (吴小红)*, Duowen Mo†, Jianguo Liud, Shijin Xue, and Yijie Zhuang†,‡

*Prehistoric Department, Zhejiang Provincial Institute of Cultural Relics and Archaeology, 310014 Hangzhou, China; †School of Archaeology and Museology, Peking University, 100871 Beijing, China; ‡College of Urban and Environmental Sciences, Peking University, 100871 Beijing, China; †Institute of Archaeology, Chinese Academy of Social Sciences, 100710 Beijing, China; §School of Earth Sciences and Engineering, Nanjing University, 210093 Nanjing, China; and †Institute of Archaeology, University College London, London WC1H 0PY, United Kingdom

Edited by Ofir Bar-Yosef, Harvard University, Cambridge, MA, and approved October 11, 2017 (received for review June 10, 2017)

Here we present one of the world’s oldest examples of large-scale and formalized water management, in the case of the Liangzhu culture of the Yangtze Delta, dated at 5,300–4,300 years cal B.P. The Liangzhu culture represented a peak of early cultural and social development predating the historically recorded Chinese dynasties; hence, this study reveals more about the ancient origins of hydraulic engineering as a core element of social, political, and economic developments. Archaeological surveys and excavations can now portray the impressive extent and structure of dams, levees, ditches, and other landscape-transforming features, supporting the ancient city of Liangzhu, with an estimated size of about 300 ha. The results indicate an enormous collective undertaking, with unprecedented evidence for understanding how the city, economy, and society of Liangzhu functioned and developed at such a large scale. Concurrent with the evidence of technological achievements and economic success, a unique relationship between ritual order and social power is seen in the renowned jade objects in Liangzhu elite burials, thus expanding our view beyond the practicalities of water management and rice farming.

The Liangzhu case may be considered among the many agrarian societies of Asia strongly influenced by monsoonal rainfall patterns. While the predictable monsoon rains in principle could sustain abundant wetland rice fields and other farmlands, too much dependency on such a system could prove devastating whenever the monsoon events occur earlier, later, lighter, or heavier. At the Liangzhu center and elsewhere in the world, such as South Asia and Mesopotamia, populations grew increasingly dense and socially complicated while taking advantage of the monsoonal rains, yet eventually many of these cities were rendered unsustainable and were abandoned, as evidently occurred at Liangzhu by 4,300–4,200 y B.P. Among the challenges for the people of Liangzhu and other Asian monsoon-region farming societies, middle-to-late Holocene aridification involved numerous short-term fluctuations of precipitation with potentially profound consequences, notably well illustrated at archaeological sites of South Asia (1). Some societies were resilient to periodic droughts and other stressful events by diversifying their crops and developing other mechanisms, as revealed by investigations of ancient Indus agricultural systems (2). Other population centers were abandoned during or after years of drought, sometimes followed by catastrophic floods. Archaeologists, historians, geographers, and others have noticed the key role of water management technology in the development of food-production systems (3, 4) and political complexities worldwide. Wittfogel was among the first to explicitly propose a formal “hydraulic hypothesis” (5), wherein the elites of Asian polities used water-control systems as a means to force their populations into labor against their own best interests, in essence creating despotic regimes in a model that he termed “Oriental Despotism.” This hypothesis has been elaborated and challenged by diverse scholars in their research of hydraulic systems across time and space (6–9), but it remains central in conceptualizing the interactive dynamics of social power, economic production, and landscape transformation. Helms (10) reported a late fourth millennium B.C. water supply system of reservoirs, pools, dams, canals, and conduits that supported extravagant societal growth in the arid setting of an early Bronze Age walled town of Jawa in Jordan. Although initially disputed, Helms’ early dating of approximately 5,600 B.P. now has been widely accepted (11). Slightly later but perhaps better-defined water systems can be found in Early Dynastic Mesopotamia at 4,900–4,350 B.P., characterized by lengthy and branching canals throughout the urban and rural landscapes. Their advantages in navigation, as well as irrigation and other functions, significantly shaped the urban development of ancient Mesopotamia (12, 13).

The 5,100-y-old water management system at Liangzhu may further alter our concepts of how and why water-control complexes originated and developed. Here we highlight the discoveries of the Liangzhu hydraulic system as a means to re-evaluate the classic hypotheses of the functional links among water management, farming economy, and political control that largely had been based on different examples in the Near East and Mesopotamia (6, 8, 12, 13). Among other concerns, a narrow interpretation of Wittfogel’s hydraulic hypothesis (5) as a technological phenomenon would disregard the potentially diverse pathways to power through ritual performance and religious ceremony of water management now strongly documented in Southeast Asian societies (7, 9). Accordingly, the Liangzhu archaeological findings reveal elaborate burial practice and other rituals, hinting at the religious beliefs concurrent with the development of the large-scale city, hydraulic system, and rice farming complex. In fact, Liangzhu was distinguished in Chinese archaeology primarily by its exquisite jade artifacts with meticulously carved motifs buried in elite graves (14).

Crucial for understanding the role of water management in Liangzhu at 5,300–4,300 y B.P., the site was situated in a naturally wetty setting of low-elevation marshlands bordering the

Significance

The recently excavated Liangzhu hydraulic system in the Yangtze Delta has pushed back the date of formalized water engineering in China to approximately 5,100 years ago. The results are unprecedented in learning about the timing, structure, and function of a large-scale complex of dams, levees, ditches, and other water-controlling features in ancient China. Together with the well-excavated remains of Liangzhu city and its rice fields, the new findings represent one of the largest efforts of hydraulic landscape engineering in the ancient world.

Author contributions: B.L., N.W., and Y.Z. designed research; B.L., N.W., M.C., D.M., and J.L. analyzed data; and B.L., N.W., M.C., and Y.Z. wrote the paper.

The authors declare no conflict of interest.

This article is a PNAS Direct Submission. Published under the PNAS license. See Commentary on page 13600.

www.pnas.org/content/early/10.1073/pnas.1710516114.full

This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10.1073/pnas.1710516114/-/DCSupplemental.
Yangtze Delta (Fig. 1A). A steady rise in postglacial sea level reached its peak around 6,500 cal B.P. (15). As it is known today, the Yangtze Delta thereafter formed with a steady supply of marine deposits coupled with river-transported sedimentation (16). During the time of the Liangzhu site occupation, however, the low-lying landforms mostly were inundated, and they were habitats for hydrophilic and salt-tolerant vegetation (17). In the sedimentary layers beneath and predating the Liangzhu settlement, deep marine deposits of grayish clay suggest that the area was estuarine marshes before the Liangzhu period (18). During the archaeologically defined Liangzhu period, people made use of the hillslopes and other elevated terrain, while they transformed the swampy lowlands into an inhabited landscape of artificial mounds, walls, and other man-made features. A fuller picture of the large-scale artificial transformation now has been possible with archaeological discoveries of the ancient water-management system and farmlands. Perhaps akin to the speed and scale of construction projects in modern-day China, ancient Liangzhu emerged as a radical creation (Fig. 1B and Fig. S1), prompting unprecedented social and economic change.

Defining the Liangzhu Hydraulic Landscape

Our studies in 2009–2013 confirmed and expanded on earlier reports of water-control features at Liangzhu, now understood as comprised of numerous interrelated components covering several dozens of hectares. Some of those constructions still are functional today (Fig. 2C and Figs. S2 and S3). Most impressive were the high and low dams, and the Tangshan levees at the basal slopes of Tianmu Mountain (Fig. 1B and Table S1). The high dams were built in the spots of low ground between isolated hilly formations, in total retaining several large reservoirs at the foot of the mountain. The Tangshan levees extend for at least 5 km, and they are 20–50 m in width and 2–7 m in height. In the middle section of the levees, two parallel dikes formed a ditch-like structure. These dikes may have allowed storage of water before being released into the redistribution outlets. Several artificial mounds were constructed to the east of Tangshan, separated by a hill running along the north–south direction. According to our excavations at the dams of Liyushan, Laohuling, and Mifenglong (Fig. S4), the low dams were built on swampy lands. The excavations revealed a bottom layer of iron-depleted whitish clay, caused by long-term inundation and leaching in water. Atop this light clay layer, people had posed...
bundles of grayish clay wrapped by grass leaves resembling “sand bags” (Fig. 3A), arranged as an artificial layering before the main body of the dams, was constructed by another layering of piles of pure yellowish clay (Figs. S4 and S7). Bundles of the yellowish clay as well had been wrapped by grass leaves in apparent sand bags, for example as seen in the walls of the Laohuling and Liyushan dams (Fig. 2D and Fig. S7).

Superimposed over the Laohuling dam, our excavation found a Late Liangzhu period ditch dated to 4,800–4,300 cal B.P. The superimposed ordering suggests that the Laohuling dam had been constructed before the Late Liangzhu period. Similarly, atop the Tangshan levees, a jade and stone workshop and several elite burials were dated to the Late Liangzhu period, thus indicating an older age for the Tangshan levees. The chronological sequence of the features has been refined by direct accelerator mass spectrometry (AMS) radiocarbon dating of the annual grassy plants used in the sand bags and charcoal found inside 10 dams and 1 levee. Most of the dating results from the high dams cluster at 5,200–4,800 cal B.P., whereas most of the dates from the low dams and the levees cluster at 5,000–4,800 cal B.P. (see Fig. 5). These dates verify an Early Liangzhu association defined by pottery typology. The dating of the dams and levees before 4,800 y B.P. reveals that these features most likely existed before the construction of most of Liangzhu city dated at 4,900–4,600 cal B.P. (19). According to the newest results, the high dams were built first, followed by the construction of the low dams and the levees. The dates from the low dams are particularly tightly concentrated, indicating that the low dams were built within a narrow window of time. The high dams of Ganggongling, Laohuling, and Zhoujiafan were built at slightly different times, but the dams of Qiuwu, Shiwu, and Mifenglong yielded dating results consistently around 4,900 cal B.P., close to the age of the low dams and the Tangshan levees. Several outlier dates (e.g., Laohuling-BA120588 and Liyushan-BA120581) suggest a later period of reconstruction for certain dams or groups of dams. A number of spatial groupings can be ascertained in the overall mapped distribution (Fig. 1B), likely reflecting separate construction projects. Nevertheless, the piecemeal construction activities all functioned toward a coherent whole, suggestive of a central planning.

To the south and southeast of the hydraulic complex, earthen walls enclosed the city of Liangzhu in an area of about 300 ha (approximately 1.9 × 1.7 km). This early urban center was made with much the same architectural and engineering sophistication as seen in the water-controlling system, for example as employed for designing and building the large-scale artificial platforms, walls, and many other features (Fig. 1B). In the middle of the city, the Mojiaoshan palatial compound covered an artificial trapezoidal mound of enormous size, about 30 ha. Atop this mound, three smaller-sized palace foundations included the Damojaoshan mound, with parts up to 15-m high, as well as the Xiaomojiaoshan and Wuguishan mounds. Our excavations revealed some of the construction techniques in and around the Mojiaoshan palatial compound. A layer of grayish clay 8–9 m thick was piled up horizontally, and the edge was covered by another layer of 2–3 m of yellowish clay. Among the three artificial mounds was a plaza of 7 ha, built by sandy sediments removed...
tasks of digging, transporting, or repiling the clay or material per day, in the early phase (4,900–Liu et al. Table S3).

The immensity and internal complexity of the hydraulic system were consolidated by piles of sand bags (Fig. S6). In particular, at the Zhongjia-gang canal (Fig. S64), our excavation showed that the canal had been consolidated by piles of sand bags (Fig. S7C). Next to the river system outside the city, excavations uncovered two exceptional wooden constructions of the Bianjiashan Pier and the Meirendi Bank (Fig. 4).

Logistic Planning and Operation of the Liangzhu Hydraulic System

The immensity and internal complexity of the hydraulic system and city at Liangzhu undoubtedly required advanced planning, design, and logistics in construction, operation, and continual maintenance. The labor expended on each dam, canal, or other feature can be calculated numerically in terms of the person hours needed to move the volume (m3) of earth for each construction, with further consideration for the tasks of initial source material removal, transportation to the desired destination, and final positioning into the construction outcome. Complexities in design and operation, however, tend to be more qualitative than quantitative, although they can be estimated or inferred through the numbers of functional features, levels of hierarchy in houses and burial goods, and awareness of the how the hydraulic enterprise related with the religious, political, and other aspects of ancient Liangzhu.

We estimated that 3,000 people worked for nearly 8 y to move ~2.88 million cubic meters of earth when building the ancient dams at Liangzhu (Table S1). The late phase construction of the Tangshan levees and the low dams was of a significantly larger scale than the early phase construction of the high dams (Table S1). This indicates that after the initial push to build the high dams, there was also a draw-out process to accumulate more labor and other resources to expand the hydraulic system. More numerous laborers and specialized tools could have increased the pace of construction. On the other hand, the total calendar time may have been elongated due to the availability of most people only for a few months per year during the seasons when they were free from agricultural work. In any case, a multiyear undertaking may have accommodated incremental stages or phases of operation in ever-growing capacity, and perhaps the site complex would have continued to expand if not for its eventual abandonment. Our labor estimate was based on a number of assumptions, and varying results may follow different information about the hours needed for the individual work tasks. In our calculation, we assumed that people used hand-held stone tools and simple carrying equipment, without the aid of draft animals or specialized devices. We next assumed that a single person could be employed in one of three possible "assembly line" tasks of digging, transporting, or repiling the clay or other earthen material. For each such task, we estimated that one person could be responsible for handling 1 m3 of material per day, given 8–10 working hours per day. These parameters were comparable with the results of an experimental study with the clays in the same region (20), and they were more conservative than the independent estimates for building the ancient walled towns in other parts of China (21–24) and Mesopotamia (25).

The requisite labor force numbered in the thousands, thus prompting questions about how the people were recruited and how they were organized. The workers most likely were among the population residing at Liangzhu, which reached 22,900–34,350 at its peak, according to the density of archaeological features (Fig. S5 and Table S3). In a rice-farming settlement such as at Liangzhu, however, most people were unavailable for construction work except for a few months per year, and some may have been unwilling or unsuitable for the labor. As a unified undertaking, the hydraulic enterprise brought benefits of supporting the rice farmlands and ability to feed the city's population as a whole. Archaeobotanical studies have confirmed the dominant role of rice in the local diet. A storage pit of 0.06 m3–0.07 ha at eastern Mojiangshan contained 10,000–15,000 kg of preserved rice, and it may have held more when full (Fig. 3B). Furthermore, the paddy fields at Maoshan increased in size dramatically from less than 30–40 m2 in the early phase (4,900–4,600 cal B.P.) to 0.1 ha or up to 0.2 ha in the later phase (4,600–4,300 cal B.P.). The later phase saw the application of manuring, burning, and frequent draining actions (26), as the region's hydrology was becoming wetter (27).

With the ability to control vast reservoirs and redirect water into specifically targeted locations and at any desired time, the unprecedented Liangzhu hydraulic system profoundly affected
the surrounding natural and economic landscape. It formed a 1,300-ha protective screen to the north and northwest of the city, and it influenced a total of 10,000 ha. The storage volume of the high and low reservoirs would have been about 1,498 and 5,072.4 million cubic meters, respectively (Table S4), forever altering the hydrology of the surrounding landscape while rendering the water itself into a controllable commodity and symbol of power. The sprawling network of channels and canals functioned along with strategically positioned gates, piers, and other constructions in support of the rice-farming economy, transport of goods and people, trade partnerships, and other goals. The waterways allowed several economic advantages that we are just now beginning to trace. For example, our petrological and experimental studies confirmed that the stones used in the base of the Liangzhu city walls (Fig. 2A) were quarried from the nearby mountains in the north and transported downstream into the city through the water system (28). In principle, key access points, such as gates and piers, could be controlled as pathways to power.

Conclusion

The excavated findings at Liangzhu now can allow a reevaluation of Wittfogel’s hydraulic hypothesis and related notions of the role of water management in social and political systems (5–9). The 5,100-year-old Liangzhu case demonstrates the link between an enormous hydraulic operation and a densely populated urban center with an intensive rice-farming economy, very different from other studies of surface-visible water temples, cisterns, and irrigation features (7, 29, 30). The scale of landscape transformation at Liangzhu indeed was unparalleled in its era, thereby opening a window into how such a system originated and developed largely in isolation, rather than as part of an expanding economic enterprise or empire.

The artificial control of water at Liangzhu enabled an unprecedented scale of rice farming and support of thousands of people within the city’s sphere of influence, but furthermore it represented an opportunity to consolidate political power. This political aspect cannot be observed directly in an ancient archaeological context without written records, yet it can be inferred through the numbers of functional elements in the Liangzhu hydraulic landscape, the scale and complexity of labor organization, and associated religious beliefs potentially reflecting social order and political authority. A labor force of thousands of people must have been organized in divisions and possible subdivisions by a central authority and likely an organizational hierarchy. Such a hierarchy would consist of authority figures, city planners, and others. According to the differential treatment of burials with a range of burial goods, some individuals could be viewed as elites with access to extravagant wealth, while others showed lesser degrees of status. This pattern reveals that the people of ancient Liangzhu adhered to a social hierarchy, even though we cannot reconstruct the precise social or political categories and relationships at this time.

The heavily engineered landscape of Liangzhu encompassed the inner city, outer circle, hydraulic system, and network of waterways, as well as the economic production areas that provided resources to support the center. Outside this core area, numerous small-scale settlements probably were subordinate to the center through specialized product manufacture and trade, for example involving the high quality of distinctive Liangzhu style jade objects (14). These core-periphery relations could be viewed as reflecting an early development of urbanism (31), in some ways similar to the functioning of a territorial state polity (24, 32). Regardless of however the political structure may be classified at Liangzhu, it can be recognized as having involved complex operations and organized management of multiple technological and economic components at a scale that was otherwise unknown in its time.

The ultimate decline and abandonment of Liangzhu can be linked to the burial of the site beneath 1 m of light yellowish clayey deposits (Fig. S6 B and C). This widespread clayey horizon represents massive flooding in the region, possibly occurring in multiple events starting around 4,200 y B.P. or shortly thereafter. Excavations have shown scattered instances of in situ Liangzhu artifacts embedded inside this clayey horizon, indicative of limited occupation at some locations until eventually even these small-scale efforts were no longer sustainable by approximately 3,800 cal B.P. In this regard, some of the highest mounds and largest river channels may have continued to function in limited capacity after the flooding. Even today, the Qiuwu dam is used for many purposes by the local community (Fig. S3), although these later contexts have not involved the full operation of the ancient hydraulic system. While continuing studies will reveal more details about Liangzhu’s ancient hydraulic engineering landscape, our findings so far illustrate a vivid material example of relevance to the global urgency of developing sustainable water systems that can survive through changing climate and increasing population density. The Liangzhu case was successful...
at an impressive scale for some centuries, yet eventually it could not be sustained through a period of environmental catastrophe. In this regard, more knowledge about the operational capacity and internal maintenance requirements of ancient Liangzhu can help to overcome current and future management crises in modern systems.

Methods and Materials

One of the high dams, the Ganggongling dam, was found accidently by local farmers when they were digging earth from a small "hill." This important clue led to the discovery of several high dams that still stand today, including the Laohuling, Zhoujiafan, Qiuwu, and Shishu dams. The low dams were recognized by careful examination of the Remote Sensing Data, assisted by the analysis of high-resolution Corona and Google Earth images and coring survey data. On the ground, cores were taken from the suspected dams identified by the satellite images. Once confirmed by careful examining and comparing the coring sediments, more cores were taken both vertically and horizontally along the dams. More than 500 cores have been taken and examined to date.

ACKNOWLEDGMENTS. We thank the editor and the three anonymous reviewers for constructive guidance to improve the manuscript. Dr. Mike Carson, Professor Dame Jessica Rawson, Professor Janice Stargardt, and Mr. Andrew Robinson have read the draft and given us useful comments; Dr. Chris Stevens helped with the redrawing of Fig. 5.

ARCGIS and Digital Elevation Model technologies were applied to reconstruct precise elevations at different points of the dams. The resulting data were used to calculate the storage volumes of the reservoirs formed by these dams based on the principle that water flows from higher to lower ground. A small drone was used for photographing and digital measurement during the excavations. The information was used to reconstruct the excavation areas in 3D.

Remains of annual grassy plants and bamboo were collected from the dams during excavations and coring surveys. They were sent to the laboratory at the School of Archaeology and Museology, Peking University, for AMS dating. The dates were calibrated using the OxCal online software OxCal v4.3.2 using the IntCal13 atmospheric curve (33) and 5,568-y half-life (Fig. 5 and Table S2).

ACKNOWLEDGMENTS. We thank the editor and the three anonymous reviewers for constructive guidance to improve the manuscript. Dr. Mike Carson, Professor Dame Jessica Rawson, Professor Janice Stargardt, and Mr. Andrew Robinson have read the draft and given us useful comments; Dr. Chris Stevens helped with the redrawing of Fig. 5.

ARCGIS and Digital Elevation Model technologies were applied to reconstruct precise elevations at different points of the dams. The resulting data were used to calculate the storage volumes of the reservoirs formed by these dams based on the principle that water flows from higher to lower ground. A small drone was used for photographing and digital measurement during the excavations. The information was used to reconstruct the excavation areas in 3D.

Remains of annual grassy plants and bamboo were collected from the dams during excavations and coring surveys. They were sent to the laboratory at the School of Archaeology and Museology, Peking University, for AMS dating. The dates were calibrated using the OxCal online software OxCal v4.3.2 using the IntCal13 atmospheric curve (33) and 5,568-y half-life (Fig. 5 and Table S2).

ACKNOWLEDGMENTS. We thank the editor and the three anonymous reviewers for constructive guidance to improve the manuscript. Dr. Mike Carson, Professor Dame Jessica Rawson, Professor Janice Stargardt, and Mr. Andrew Robinson have read the draft and given us useful comments; Dr. Chris Stevens helped with the redrawing of Fig. 5.