Antagonistic actions of juvenile hormone and 20-hydroxyecdysone within the ring gland determine developmental transitions in *Drosophila*

Suning Liu\(^{a,b,c}\), Kang Li\(^{a,b,c}\), Yue Gao\(^{a,b}\), Xi Liu\(^d\), Weiting Chen\(^d\), Wei Ge\(^d\), Qili Feng\(^{a,b}\), Subba R. Palli\(^e\), and Sheng Li\(^{a,b,c}\)

*Guangzhou Key Laboratory of Insect Development Regulation and Application Research, School of Life Sciences, South China Normal University, Guangzhou, 510631, China; \(^1\)Institute of Insect Science and Technology, South China Normal University, Guangzhou, 510631, China; \(^2\)Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, China; \(^3\)Faculty of Health Science, University of Macau, Macau, 00853, China; and \(^4\)Department of Entomology, College of Agriculture, Food, and Environment, University of Kentucky, Lexington, KY 40546

Edited by David L. Denlinger, Ohio State University, Columbus, OH, and approved November 20, 2017 (received for review September 28, 2017)

In both vertebrates and insects, developmental transition from the juvenile stage to adulthood is regulated by steroid hormones. In insects, the steroid hormone, 20-hydroxyecdysone (20E), elicits metamorphosis, thus promoting this transition, while the sesquiterpenoid juvenile hormone (JH) antagonizes 20E signaling to prevent precocious metamorphosis during the larval stages. However, not much is known about the mechanisms involved in cross-talk between these two hormones. In this study, we discovered that in the ring gland (RG) of *Drosophila* larvae, JH and 20E control each other’s biosynthesis. JH induces expression of a Krüppel-like transcription factor gene *Kr-h1* in the prothoracic gland (PG), a portion of the RG that produces the 20E precursor ecysdysone. By reducing both steroidogenesis autoregulation and PG size, high levels of *Kr-h1* in the PG inhibit ecdysteroid biosynthesis, thus maintaining juvenile status. JH biosynthesis is prevented by 20E in the corpus allatum, the other portion of the RG that produces JH, to ensure the occurrence of metamorphosis. Hence, antagonistic actions of JH and 20E within the RG determine developmental transitions in *Drosophila*. Our study proposes a mechanism of cross-talk between the two major hormones in the regulation of insect metamorphosis.

Significance

In vertebrates, steroid hormones regulate developmental transition from juveniles to adults. Insect steroid hormone, 20-hydroxyecdysone (20E), coordinates with juvenile hormone (JH) to regulate metamorphosis; however, the precise cross-talk mechanism is not well understood. Here, we report that JH and 20E antagonize each other’s biosynthesis in a major endocrine organ of *Drosophila* larvae: JH suppresses ecdysone biosynthesis and inhibits metamorphosis, whereas 20E suppresses JH biosynthesis and promotes metamorphosis. These data answer a long-standing question on how the mutual antagonism between the two major insect hormones regulates metamorphosis and may help to understand the hormonal regulation of developmental transition in mammals.

Author contributions: S. Liu and S. Li designed research; S. Liu, K.L., Y.G., X.L., W.C., and W.G. performed research; S. Liu, K.L., Y.G., X.L., W.G., Q.F., S.R.P., and S. Li analyzed data; and S. Liu, Q.F., S.R.P., and S. Li wrote the paper.

The authors declare no conflict of interest.

This article is a PNAS Direct Submission. This open access article is distributed under Creative Commons Attribution-NonCommercial-NoDerivatives License 4.0 (CC BY-NC-ND).

\(^{a}\)To whom correspondence should be addressed. Email: lisheng@scnu.edu.cn.

This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10.1073/pnas.1716897115/-/DCSupplemental.

www.pnas.org/cgi/doi/10.1073/pnas.1716897115
comparatively subtle but crucial: JH prevents 20E-triggered programmed cell death of the larval fat body and differentiation of the optic lobe in the adult brain (3, 4, 33). Interestingly, the JH-deficient animals, Met gce double mutants, and Kr-h1 mutants die around pupation with delayed developmental timing (the period from egg laying to pupariation) (3, 4, 11, 21, 33, 35, 36). These results are in contrast with those in the beetle, Tri-
bolium castanuem, in which knockdown of Met or Kr-h1 by sys-
temic RNAi results in precocious metamorphosis (19, 22). It should be of great value to understand where and how JH sig-
naling prevents 20E-induced metamorphosis by using the classic genetic and developmental model insect Drosophila.

Interestingly, we detected high levels of Kr-h1 in the pro-
theticoracic gland (PG), a portion of the ring gland (RG), which produces the 20E precursor ecdyson. The RG is the major endocrine organ in Drosophila larvae, which consists of the PG producing ecdysone, the corpus allatum (CA) producing JH, and the corpus cardiacum producing a number of peptides including the adipokine hormone. We further determined that a major target organ of JH signaling is the PG, in which Kr-h1 transduces JH signals to inhibit ecdyson biosynthesis. Moreover, we dis-
covered that JH and 20E, produced in the two different portions of the RG, inhibit each other’s biosynthesis. This study answers a long-standing question on how the mutual antagonism between JH and 20E regulates insect metamorphosis.

Results and Discussion
Drosophila PG Shows High Levels of Kr-h1 Expression When JH Titters Are High. We have previously generated a LacZ reporter JHRR-
LacZ based on the JHRR of Drosophila Kr-h1 promoter, which recapitulates the responsiveness of Kr-h1 to JH and Met/Gce (24). This reporter was employed to estimate the expression pattern of Kr-h1 during the early wandering stage when the JH titters are high (ref. 24 and references therein). JHRR-LacZ was detected in various larval tissues, including the fat body, salivary glands, PG, and the adult midgut progenitor cells (AMP), but not in the larval midgut cells (Fig. S1, Left). PBac{Met-GFP, FPTB} is a transgenic line that carries a genomic BAC con-
struct expressing the Drosophila Met protein that is C-terminally tagged with EGFP (Met-GFP), and this transgene is able to rescue the Met gce double mutants (Met/Gce; met-Gce) to adults. Consis-
tently, Met-GFP was also detected in the larval fat body, sali-
vary glands, PG, and AMP, but not in the larval midgut cells (Fig. S1, Right). As revealed by a recent study using Bac recombineering and transgenic knock-in techniques, both Met and gce showed expression patterns similar to those shown in Fig. S1 (37). These results are consistent with the well-recognized role of JH signaling in targeting larval tissues to suppress the 20E-induced programmed cell death and in regulating the for-
mation of adult organs during the larval–pupal metamorphosis (7, 8). Interestingly, we found that the PG shows abundant ex-
pession of JHRR-LacZ (Figs. S1, Left and S2 A and A′), but JHRR-LacZ was barely detected in the fat body and PG of the Met gce double mutants (24) (Fig. S2 B and B′). The expression of JHRR-LacZ in the PG was further confirmed by the colocalization of JHRR-LacZ with Spookier (Spok), a PG-specific en-
zyme catalyzing an essential step of ecdysone biosynthesis (38) (Fig. 1 A and A′). Similarly, Met-GFP is highly expressed and colocalized with Spok in the PG (Fig. 1 B and B′). Moreover, in situ hybridization revealed high Kr-h1 expression in the PG of the wild-type animals but no detectable Kr-h1 expression in the PG of the Met gce double mutants (Fig. 1 C and D′ and Fig. S2 C and C′). Given that JH has been shown to regulate 20E titer in both Drosophila and the silkworm Bombyx mori (9–12), our ob-
servations imply that JH may control 20E titer by regulating ecdysone biosynthesis in the PG. These data suggest that JH exerts its action by modulating gene expression in multiple tis-
ues, including the PG of Drosophila.

Fig. 1. Expression of JHRR-LacZ, Met-GFP, and Kr-h1. (A–B′) Spok colo-
alizes with JHRR-LacZ and Met-GFP in the PG. (Scale bar, 40 μm.) (A′–A′′′) Spok (red), JHRR-LacZ (green), DAPI (blue). (B–B′) Spok (red), Met-GFP (green), DAPI (blue). (C–F) Kr-h1 expression in the PG is significant in the wild-type larvae (C and C′) but decreased in the Met gce double mutant (D and D′), it is also decreased when Met and Gce or Kr-h1 was knocked down by RNAi (E–F). In situ hybridization was performed using antisense probes of Kr-h1. Kr-h1 antisense (red), DAPI (blue). Knockdown of Met and gce or Kr-h1 in the PG Triggers Initiation of Metamorphosis. We then sought to investigate the possible roles of different target tissues in mediating JH actions. As reported previously (3, 4, 11, 21, 33, 35, 36), the JH-deficient animals Aug21-Gal4;UAS-grim, the double mutant Met27 gce2.5K animals, and the Kr-h1K04411 mutants die around pupation with delayed rather than precocious developmental timing. Meanwhile, all of the three genotypes failed to undergo normal head evis
erion (Fig. 2 A–C). To investigate the function of JH signaling in different target tissues, we depleted expression of Met and gce or Kr-h1 tissue-specifically using RNAi. Several Gal4 lines, including the PTTH-producing neuron-specific PTTH-Gal4, the fat body-
specific Lsp2-Gal4 and Ppl-Gal4, the AMP-specific Esg-Gal4, the salivary gland-specific FKH-Gal4, and the PG-specific Phm-
Gal4, were individually crossed with UAS-Met-RNAi, UAS-gce-
RNAi, or UAS-Kr-h1-RNAi. Knockdown of Met and gce or Kr-h1 in PTTH-producing neurons, fat body, AMP, or salivary glands neither caused lethality nor significantly affected developmental timing (Fig. S3). In contrast, knockdown of Met and gce or of Kr-h1 in the PG (Fig. 1 E and F) resulted in complete lethality and failure of head eversion during the pupal stage, showing lethal phenotypes similar to Aug21-Gal4;UAS-grim, Met+27 gce+2.5K, or Kr-h1K04411 ani-
mals (Fig. 2 D–F). Consistent with our observations, a recent PG-
specific RNAi screen study also showed that knockdown of Kr-h1 in the PG resulted in pupal lethality (39). Moreover, knockdown of Met and gce or Kr-h1 in the PG resulted in smaller body sizes and pupariation ~36 h and 24 h earlier, respectively, compared with the pupariation time in wild-type animals (Fig. 2 D–G). Therefore, attenuation of JH signaling specifically in the PG accelerates larval development resulting in precocious meta-
morphosis, unlike in the JH-deficient animals, Met gce double mutants, and Kr-h1 mutants. The tissue-specific RNAi results suggest that Drosophila PG is a key target organ mediating JH
and larvae (Aug21-Gal4 0.05).<ref>larvae were first reared at a permissive temperature before the Kr-h1 overexpression, and the Spok protein became undetectable in the PG (Fig. 3). At the restrictive temperature, ecdysteroid titers remained low and did not show an increase in the Kr-h1-overexpressing animals (Fig. 3D). At 168 h AEL, expression of Spok, Dib, and Sad was significantly inhibited by Kr-h1 overexpression, and the Spok protein became undetectable in the PG (Fig. 3E–G). Moreover, expression of EcR, USP, and the other 20E-primary response genes tested decreased in the whole body of the Kr-h1-overexpressing animals (Fig. 3E). However, their effects on developmental timing were not fully understood. A number of studies have demonstrated that developmental timing depends on 20E and insulin/ILP signals, which mainly control growth period and growth rate, respectively. Moreover, triangular interplays might exist among 20E, ILPs, and JH in insects. For example, ILPs promote ecdysone biosynthesis, forming a positive feedback loop (11, 45–47). Therefore, we compared whether the depletion of JH signaling in the PG and the absence of JH signaling in the whole animals differently affect ILP biosynthesis and thus insulin/ILP signaling (IIS; high expression of IIS)).

Kr-h1 Overexpression in the PG Inhibits Ecdysone Biosynthesis and Blocks Metamorphosis. To complement the loss-of-function studies, we tested whether PG-specific Kr-h1 overexpression before the larval-pupal transition is sufficient to repress ecdysone synthesis and thus prevent metamorphosis. For this purpose, Phm-Gal4 was combined with the temperature-sensitive Gal80 line Tub-Gal80ts and then used to drive the expression of a UAS-Kr-h1 transgene. Both Phm-Gal4,Tub-Gal80ts and Phm-Gal4,Tub-Gal80ts;UAS-Kr-h1 larvae were first reared at a permissive temperature of 18°C until 120 h after egg laying (AEL) when they reached mid-third instar, showing normal larval development. The larvae were then shifted to a restrictive temperature of 29°C. The control animals began to pupariate at 24 h after the shift, whereas the Kr-h1-overexpressing animals were arrested at the third instar, survived about 2 wk with overgrowth phenotypes, and never showed wandering behavior (Fig. 3A–C). Following the addition of 20E to the diet at 144 h AEL, the Kr-h1-overexpressing animals initiated wandering behavior and pupariated within 24 h (Fig. 3C). At the restriction temperature, ecdysteroid titers remained low and did not show an increase in the Kr-h1-overexpressing animals (Fig. 3D). At 168 h AEL, expression of Spok, Dib, and Sad was significantly inhibited by Kr-h1 overexpression, and the Spok protein became undetectable in the PG (Fig. 3E–G). Moreover, expression of EcR, USP, and the other 20E-primary response genes tested decreased in the whole body of the Kr-h1-overexpressing animals (Fig. 3E). However, their effects on developmental timing were not fully understood. A number of studies have demonstrated that developmental timing depends on 20E and insulin/ILP signals, which mainly control growth period and growth rate, respectively. Moreover, triangular interplays might exist among 20E, ILPs, and JH in insects. For example, ILPs promote ecdysone biosynthesis, forming a positive feedback loop (42–44). JH and 20E mutually affect each other's biosynthesis (9–14). JH and ILPs mutually promote each other's biosynthesis, forming a positive feedback loop (11, 45–47). Therefore, we compared whether the depletion of JH signaling in the PG and the absence of JH signaling in the whole animals differently affect ILP biosynthesis and thus insulin/ILP signaling (IIS; high expression of IIS)).

JH Signaling in the PG Does Not Affect ILP Biosynthesis. In agreement with a previous study showing a premature increase in ecdysteroid titers in Aug21-Gal4;UAS-grim larvae (11), we also observed an increase in ecdysteroid titers in both Met′ gce′ and Kr-h1K04411 larvae (Fig. S4). Thus, either the complete absence of JH signaling or the depletion of JH signaling in the PG causes a premature increase in ecdysteroid titers. However, their effects on developmental timing were not fully understood. A number of studies have demonstrated that developmental timing depends on 20E and insulin/ILP signals, which mainly control growth period and growth rate, respectively. Moreover, triangular interplays might exist among 20E, ILPs, and JH in insects. For example, ILPs promote ecdysone biosynthesis, and 20E inhibits ILP biosynthesis, forming a negative feedback loop (42–44). JH and 20E mutually affect each other's biosynthesis (9–14). JH and ILPs mutually promote each other's biosynthesis, forming a positive feedback loop (11, 45–47). Therefore, we compared whether the depletion of JH signaling in the PG and the absence of JH signaling in the whole animals differently affect ILP biosynthesis and thus insulin/ILP signaling (IIS; high expression of IIS)).

JH Represses Ecdysone Biosynthesis in the PG. It is well documented that the timing of metamorphosis is coordinated by the rise in 20E titers (16). Therefore, we tested whether JH inhibits ecdysone biosynthesis in the PG and thus prevents premature pupariation (9–12). Indeed, knockdown of Met and gce or Kr-h1 in the PG dramatically induced a premature increase in ecdysone (mainly 20E and ecdysone) titers (Fig. 2H). This premature increase in ecdysteroid titers is most likely due to an increase in ecdysone biosynthesis in the PG, as we detected an increase in mRNA levels of three Halloween genes (Spok, Dib, and Sad) (ref. 38 and references therein) as well as the protein level of Spok in response to the PG-specific knockdown of Met and gce or Kr-h1 (Fig. 2 I–N). Consistent with the increase in ecdysteroid titers, expression of EcR, USP, and several 20E primary-response genes (Br-C, E74, E75, and E93) in the whole body as well as the Br-C protein levels in the fat body were elevated in Met gce or Kr-h1 RNAi animals (Fig. 2 I, J, and O–R′). These data show that JH normally represses ecdysone biosynthesis in the PG to prevent premature pupariation.
JH Signaling Suppresses Ecdysone Biosynthesis by Reducing Both Steroidogenesis Autoregulation and PG Size. We next pursued the mechanisms by which JH signaling inhibits ecdysone biosynthesis. It is well documented that a fine regulatory loop exists between ecdysone biosynthesis and 20E signaling in *Drosophila* and *Bombyx* (48–52). At least EcR, Br-C, and E75 are involved in the feedback regulation of Halloween gene expression and thus ecdysone biosynthesis in *Drosophila* PG (48–50). The feedback regulation of ecdysone biosynthesis by 20E signaling is often referred to as steroidogenesis autoregulation, which plays a key role in 20E signaling during metamorphosis (16). We thus wondered whether JH modulates ecdysone biosynthesis at the level of steroidogenesis autoregulation. Indeed, up-regulation of JH signaling by *Kr-h1* overexpression resulted in a significant decrease in the protein levels of EcR-B1 and Br-C in the PG (Fig. 3 J–M'). Conversely, knockdown of *Met* and gce or *Kr-h1* in the PG led to an increase in the protein levels of EcR-B1 and Br-C in the PG (Fig. S5). In *Drosophila* Kc cells, *Kr-h1* overexpression directly inhibits expression of *EcR*, *Br-C*, and E75, irrespective of whether 20E is absent or present in the medium (Fig. S6). Therefore, through *Kr-h1*, JH signaling inhibits ecdysone biosynthesis in *Drosophila* PG by reducing the positive feedback.

Previous studies have shown that the normal PG size is critical for ecdysone biosynthesis (43, 44, 53). The PG size was significantly reduced by *Kr-h1* overexpression (Fig. 3 F, G', and J–O'), accompanied by reduced CycE protein level and cell size (Fig. 3 N–O' and Fig. S7 A–C). Interestingly, *EcR* RNAi in the PG did not affect the organ size, CycE protein level, and cell size, but knockdown of *EcR* in the PG that overexpressed *Kr-h1* reduced all three parameters, similarly to those in the PG that overexpressed *Kr-h1* alone (Fig. S8). Nevertheless, PG size was normal in *Aug21-Gal4; UAS-grim*, *Met²⁷* gce^{2.5K}, and *Kr-h1^{50EE41}* animals (3, 4, 11, 21, 33, 35, 36). Consistently, PG size was not affected by PG-specific knockdown of *Met* and gce or *Kr-h1* (Figs. S5 and S7D). These results suggest that high JH signaling is able to reduce PG size in a *Kr-h1*-dependent but 20E-independent manner. The detailed molecular mechanisms of *Kr-h1*-mediated reduction in PG size warrant further investigation, although CycE protein level is involved in regulating the endocycling of PG cells (53). Hence, JH signaling reduces steroidogenesis autoregulation by suppressing 20E signaling in the PG, while JH signaling reduces PG size independently of 20E signaling.

Taken together, our results show that one of the major target organs of JH signaling is the PG, in which *Kr-h1* mediates JH signaling to inhibit ecdysone biosynthesis through a reduction in both steroidogenesis autoregulation and PG size.

20E Prevents JH Biosynthesis in the CA to Permit Metamorphosis. Having demonstrated that JH inhibits ecdysone biosynthesis in the PG, we examined whether vice versa, 20E also targets the CA to regulate JH biosynthesis in *Drosophila*, as observed in other insects (13, 14). *Jhamt-Gal4*, which has a more robust CA-specific expression than *Aug21-Gal4* (33, 36), was crossed with *UAS-EcR-RNAi* to specifically reduce *EcR* expression in the CA by RNAi (Fig. S9 C and D'). Surprisingly, knockdown of *EcR* in the CA resulted in complete lethality during the pupal stage (Fig. 4D). However, expression of ILPs either increased or decreased in this mutant (Fig. 4D'). These results show that in the complete absence of JH signaling, ecdysone biosynthesis is enhanced, but IIS is reduced, thus developmental timing is delayed. Besides the PG, there should be another target tissue that mediates JH signaling to regulate growth rate and developmental timing. The data also imply that besides altering expression of ILPs, JH might alter IIS through regulating other physiological processes, such as feeding behavior and nutrient status.
A regulatory network of biosynthesis and action of 20E and JH in the Drosophila F-vol. 115 | C-over-JHRR-LacZ
EcR
and Jhamt-Gal4 em-Gal4. S9
January 2, 2018 was crossed with and no. 1 genetics were used. Immunostaining, in situ hybridization, and Down-regulation of EcR and Jhamt expression in the PG for a period of 48 h during the third larval instar (Fig. 3). Importantly, the lethality caused by knockdown of EcR in the CA was partially rescued by the simultaneous knockdown of Jhamt in the CA (Fig. 4 C and C′), which strongly supports the conclusion that elevated JH prevents normal development upon knockdown of EcR in the CA. Consistently, low ecdysteroid titers and 20E signaling caused by CA-specific EcR RNAi were rescued by concurrent Jhamt RNAi (Fig. S10). These results suggest that blocking 20E signaling in the CA results in elevated JH biosynthesis, which, in turn, leads to enhanced JH signaling in the PG, thus preventing ecdysone biosynthesis and 20E-induced metamorphosis. This study demonstrates 20E as an extracellular signal to regulate JH biosynthesis in Drosophila.

In summary, JH signaling through Kr-h1 inhibits ecdysone biosynthesis in the PG to prevent metamorphosis, and vice versa, 20E prevents JH biosynthesis in the CA to ensure the occurrence of metamorphosis. JH and 20E, the two most important insect hormones regulating major developmental transitions, mutually inhibit the biosynthesis of each other, thus forming a regulatory network controlling metamorphosis (Fig. 5). Hence, antagonistic hormone actions within the RG determine developmental transitions in Drosophila. Since Krüppel-like factors are essential effectors of nuclear receptor signaling (55), it will be of great interest to examine whether Krüppel-like factors also mediate sex steroid signals to regulate developmental transitions from the juvenile stage to adulthood in mammals.

Materials and Methods
A detailed description of the materials and methods used in this study is provided in SI Materials and Methods. A number of fly strains and Drosophila genetics were used. Immunostaining, in situ hybridization, and

Fig. 5. A regulatory network of biosynthesis and action of 20E and JH in the RG. Green: CA producing JH; yellow: PG producing ecdysone; CA and PG are two portions of the RG. JH signaling through Kr-h1 inhibits ecdysone biosynthesis in the PG to prevent metamorphosis, while 20E signaling prevents JH biosynthesis in the CA to permit metamorphosis. Thus, antagonistic hormone actions within the RG determine developmental transitions in Drosophila.

Fig. 4. Down-regulation of EcR in the CA increases JH biosynthesis, which decreases and delays ecdysone biosynthesis and prevents metamorphosis. (A–C) CA-specific EcR depletion resulted in complete animal lethality at the pupal stage, which was partially rescued by concurrent Jhamt depletion. Note: 60 out of 100 animals were rescued to the pharate adult stage (C′) and three to the adult stage (C′′). (D) CA-specific Jhamt overexpression resulted in complete animal lethality at the pupal stage. (E) Developmental timing and percentage of pupariation. (F) qRT-PCR measurements of gene expression in the brain-RG complex. Fold changes are relative to control. (G–I) JHAMT protein level in the CA. JHAMT (green), DAPI (blue). (J–L) JHRR-LacZ (Kr-h1) expression in the PG. JHRR-LacZ (red), DAPI (blue). For the t test: *P < 0.05.
We thank Drs. Marek Jindra, Stephen S. Tobe, and Yonggang Zheng for helpful comments on this manuscript. We also thank Drs. Michael O’Connor and Tetsu Shinoda for providing important reagents. This study was supported by the National Science Foundation of China (Grant 3160103917), the National Key Research and Development Program of China (Grant 2016YFD0010900), the Chinese Academy of Sciences (Grant 17317600100162007), and the National Science Foundation of China (Grants 31330072 and 31572325) (to S. Li).

ACKNOWLEDGMENTS. We thank Drs. Marek Jindra, Stephen S. Tobe, and Yonggang Zheng for helpful comments on this manuscript. We also thank Drs. Michael O’Connor and Tetsu Shinoda for providing important reagents. This study was supported by the National Science Foundation of China (Grant 3160103917), the National Key Research and Development Program of China (Grant 2016YFD0010900), the Chinese Academy of Sciences (Grant 17317600100162007), and the National Science Foundation of China (Grants 31330072 and 31572325) (to S. Li).

P R A Y S