THE GENERALITY OF FINITE ABSTRACT COMPLEXES

By W. W. Flexner

The Department of Mathematics, Cornell University, and Institute for Advanced Study

Communicated November 10, 1939

1. Let A be a finite abstract complex as defined by S. Lefschetz following A. W. Tucker, W. Mayer and J. W. Alexander. An open subcomplex C of an abstract complex D is a subset of D (order, dimensions and incidences in C determined by those in D) such that $x \in C$ and $y > x$ implies $y \in C$. It will be shown here that for every A there is an open subcomplex B of a simplicial complex such that the following homology groups using integer coefficients are isomorphic:

$$H^q(A) \cong H^q + \alpha(B), \quad q \text{ arbitrary},$$

where $\alpha = 0$ if A has no elements of negative dimension and no zero-dimensional torsion coefficients and otherwise $\alpha > 0$. A result of Steenrod's shows that relation (1) then holds for any coefficient group. One of the principal uses of an abstract complex being to carry a homology theory, the present result shows that in this respect and for the finite case simplicially realizable complexes are as general as any abstract complexes.

2. Let $\| b_{ij} \|$ be the normal form of the $p, p - 1$ incidence matrix of A, and give each row of this matrix a name, E^p_i, and each column a name E^{p-1}_j. If this is done for each row and column of all the simultaneously reduced incidence matrices of A, the set $\{E\}$ may be made an abstract complex C by defining as incidence relations $[E^p_i : E^{p-1}_j] = b_{ij}$. Obviously

$$H^q(A) \cong H^q(C), \quad q \text{ arbitrary}.$$

Because the normal matrices are diagonal and $FF = 0$ in C, $[E^p_i : E^{p-1}_j] \neq 0$ implies that all other incidence relations involving either E^p_i or E^{p-1}_j are zero.

3. Suppose that for some i $[E^p_i : E^{p-1}_j] = k \neq 0, 1, -1$. This cannot happen in a simplicial complex, so to make C simplicial each such pair
E_i^p, E_i^{p-1} must be replaced by a complex D_i^p with the same homology groups and no incidence relations of absolute value greater than 1. The situation described in the last sentence of No. 2 makes it possible to do this without disturbing the rest of C.

I. The following adaptation to abstract complexes of "Subdivision by Section" replaces a complex G by a complex G' with the same homology groups: If $E^p \in G$ and $F E^p = C_1^p - 1 + C_2^p - 1$ where $C_i^p - 1$ are $(p - 1)$-chains of G, E^p is replaced by e_1^p, e_2^p, e_i^{p-1} to form G', incidences being given by

$$F e_i^{p-1} = F C_i^{p-1}$$
$$F e_1^p = C_1^p - 1 + e_i^{p-1}$$
$$F e_2^p = C_2^p - 1 - e_i^{p-1}$$
$$[E^p + 1, e_i^p] = [E^p + 1, E^p], i = 1, 2$$

and all other incidences (not involving E^p) are the same in G' as in G.

II. Without loss of generality k may be assumed > 1 and the subscripts i may be omitted from the E's. Using I replace E^p by g_i^p, e_i^p, e_i^{p-1} so that $F e_i^{p-1} = 0, F e_i^p = E^p - 1 + e_i^{p-1}, F g_i^p = (k - 1) E^p - 1 - e_i^{p-1}, [E^p + 1, g_i^p] = [E^p + 1, e_i^p] = [E^p + 1, E^p] = 0$. Then unless $k - 1 = 1$ replace g_i^p by g_i^p, e_i^p, e_i^{p-1}, etc., until after $n = k - 1$ steps

$$F e_i^{p-1} = F C_i^{p-1}$$
$$F e_i^p = E^p - 1 - e_i^{p-1} + e_i^{p-1}$$

where $e_i^{p-1} = e_i^{p-1} = 0$ and $e_i^p = g_i^p$, all other incidences involving these elements being zero. The situation is now as follows: k new elements e_i^p and $k - 1$ new elements e_i^{p-1} have replaced e_i^p. Examination of formula 3 shows that the incidence $[E^p : E^p - 1] = k > 1$ has been replaced by several incidences all of absolute value 1; e_i^p and e_{i+1}^{p-1} have the two common faces $E^p - 1$ and e_i^{p-1}; e_i^{p-1} is oriented to e_i^p oppositely than to e_{i+1}^{p-1}, the last two of which circumstances are incompatible with simpliciality and impose the following changes:

III. Subdivide each e_i^p twice more by means of I, finally getting the set \[\{ s_i^p, t_i^p, u_i^p, e_i^{p-1} \} = D_i^p, i = 1, 2, \ldots, k \] with incidences given by

$$F e_i^{p-1} = F t_i^{p-1} = F s_i^{p-1} = 0$$
$$F u_i^p = -e_i^{p-1} + s_i^{p-1} + t_i^{p-1}$$
$$F t_i^p = -t_i^{p-1} - s_i^{p-1}$$
$$F s_i^p = E^p - 1 + s_i^{p-1}$$

all other incidences involving elements of D_i^p being zero.

IV. Clearly D_i^p is incidence-equivalent to an open 2-subcomplex K^2 of a simplicial complex where s_i^p, t_i^p, u_i^p are represented by 2-simplexes and e_i^{p-1},
$s_i^p - 1, t_i^p - 1$ by suitably chosen 1-simplexes on the boundaries of the 2-simplexes. K^2 has no vertices and some of the 1-simplexes on boundaries of 2-simplexes are missing so it is simplicially open.

V. In order to preserve dimension as far as possible, a technique for raising the dimension of K^2 is needed. If $\alpha \geq 0$ is an integer let $L^p + \alpha$ be the join $K^2 \bowtie \sigma$ where σ is a new open $(p + \alpha - 3)$-simplex ($\sigma^{-1} = 1$). If now s_i^p is replaced by $s_i^p \bowtie \sigma$ and similarly for all simplexes of K^2 the incidence formulas 4–7 remain unchanged, so $H_i^q + \alpha(L^p + \alpha)$ is isomorphic to the qth homology group of the complex $\{E_i^p, E_i^p - 1\}$.

4. The final complex B is obtained as follows:

a. If the minimum dimension, m, of any element of A is ≥ 0 and A has no zero-dimensional torsion coefficient, let $\alpha = 0$. If $m < 0$ and A has no m-dimensional torsion coefficient, let $\alpha = -m$. If $m \leq 0$ and A has an m-dimensional torsion coefficient let $\alpha = -m + 1$.

b. To each D_i^p (corresponding to a pair $E_i^p, E_i^p - 1$ such as considered in No. 3) assign its $L_i^p + \alpha$. To each E_i^p of C with $FE_i^p = 0$ assign an open $(p + \alpha)$-simplex $W_i^p + \alpha$ such that neither W nor its boundary FW meets any previously assigned simplex. The set $B = \{L_i^p + \alpha, W_i^p + \alpha\}$ is an open complex of a simplicial complex and

$$H_i^q + \alpha(B) \approx H_i^q(A). \quad (1)$$

To see the latter notice that B has the same structure (except for dimension if $\alpha > 0$) as C with regard to all elements E_i^p of C which do not have the property $FE_i^p = \neq E_i^p - 1$. These E_i^p are omitted from representation in B because they have no effect on the homology groups of C. Hence by formula 2,

$$H_i^q + \alpha(B) \approx H_i^q(C) \approx H_i^q(A)$$

which gives formula 1.