CONCERNING INTERSECTING CONTINUA

By R. L. Moore

Department of Pure Mathematics, University of Texas

Communicated November 2, 1942

In this paper a study is made of certain relationships involving (1) a
continuum M, (2) its boundary β, (3) the components of $M - \beta$, (4) the
components of the closures of the components of $M - \beta$ and (5) the common part of M and another continuum K. Numbered axioms and chapters referred to are axioms and chapters of the
author's book, "Foundations of Point Set Theory."

Theorem 1. If, in a space satisfying Axioms 0 and 1, M is a compact
continuum, with a boundary β such that, if D is a component of $M - \beta$, $\beta \cdot D$ is connected, and K is a continuum intersecting β, then $M \cdot K$ is a con-
tinuum.

Proof. By Theorem 3 of my paper, "Concerning a Continuum and Its
Boundary," β is connected. Hence so is $K + \beta$. If $M \cdot K$ is K or a
subset of β then $M \cdot K + \beta$ is $K + \beta$ or β. If $M \cdot K$ is neither K nor a
subset of β then $(K + \beta) - \beta$ is the sum of two mutually separated point
sets $M \cdot K - M \cdot K \cdot \beta$ and $K - M \cdot K$. Hence $(M \cdot K - M \cdot K \cdot \beta) + \beta$
is connected. But this point set is identical with $M \cdot K + \beta$.

Theorem 1 does not remain true if, in the statement of its hypothesis,
the stipulation that M is compact is replaced by the stipulation that K is
compact even though there is added, to this hypothesis, the additional
stipulation that the entire boundary of every component of $M - \beta$ is a
connected subset of β and the conclusion is so weakened as to require only
that there exists a continuum containing $M \cdot K$ and lying in $M \cdot K + \beta$.
This may be seen with the help of Example 2 of C. B. However if, in the
above proof of Theorem 1, Theorem 3 of C. B. is replaced by Theorem 4
of that paper, the resulting argument establishes the following result.

Theorem 2. Theorem 1 remains true if, in the statement of its hypothesis,
the requirement that M be compact is replaced by the requirement that Axiom
2 hold true.

Theorem 3. If, in a space satisfying Axioms 0 and 1, the continuum K
contains β, the boundary of the compact continuum M and, for every com-
ponent D of $M - \beta$, $K \cdot D$ is a continuum, then $M \cdot K$ is a continuum.

Theorem 4. Theorem 3 remains true if the requirement that M be compact
is replaced by the requirement that space satisfy Axiom 2.

Theorems 3 and 4 may be easily established with the aid of Theorems 1
and 2, respectively, of C. B. Theorem 3 may also be easily proved with
the help of Theorem 9 of my paper, "Concerning Accessibility."
It may be seen from Example 2 of C. B. that Theorem 3 does not remain true if K instead of M is required to be compact.

Theorem 5. If, in a space satisfying Axioms 0 and 1, M is a continuum, K is a compact continuum intersecting M and, for every component E of $S - M$ that intersects K, T_E is a connected point set intersecting $M - K$ such that, for every component Q of $K - E$, whose closure intersects M, T_E intersects every component of $\overline{Q} \cdot M$ and T is the sum of the point sets T_E for all E’s then $M \cdot K + T$ is connected.

Proof. Suppose $M \cdot K + T$ is the sum of two mutually separated point sets F_1 and F_2. Every component of T intersects $M - K$ and lies either in F_1 or in F_2. Hence $F_1 \cdot M - K$ and $F_2 \cdot M - K$ exist. Since these point sets are mutually separated and their sum is the closed set $M - K$, therefore they are closed. Hence $K - M - K$ contains a connected point set L such that L intersects F_1 and F_2. Let W denote the component of $S - M$ which contains L. The point set T_W is a connected subset of T intersecting both F_1 and F_2. This involves a contradiction.

Theorem 5 does not remain true if the stipulation that K is compact is replaced by the stipulation that M is compact. Consider the example obtained by interchanging M and K in Example 2 of C. B. But the following theorem holds.

Theorem 6. Theorem 5 remains true if the requirement that K be compact is replaced by the requirement that space satisfy Axiom 2.

Proof. Suppose $M \cdot K + T$ is the sum of the mutually separated point sets F_1 and F_2. By a modification of Theorem 6 of my paper, “Concerning Domains Whose Boundaries Are Compact,” there exists a component W of $S - M$, intersecting K, whose boundary intersects each of the closed point sets $F_1 \cdot M - K$ and $F_2 \cdot M - K$. As in the above proof of Theorem 5, this leads to a contradiction.

The following theorem easily follows with the help of Theorem 6.

Theorem 7. If, in a space satisfying Axioms 0, 1 and 2, the continuum K contains the boundary of the continuum M and every component of $S - M$ has a connected boundary then $M \cdot K$ is connected.

The following theorem may be easily established with the help of Theorem 5.

Theorem 8. If, in a space satisfying Axioms 0 and 1, M is a continuum and K is a compact continuum intersecting M and every component of $S - M$ that intersects K has a connected boundary then $M \cdot K$ plus the boundaries of all components of $S - M$ that intersect K is connected.

Theorem 8 does not remain true if its conclusion is replaced by “$M \cdot K$ is a subset of a component of $M \cdot K$ plus the boundary of M.” Indeed it does not remain true if its hypothesis is strengthened by the addition of the stipulation that the boundary of every component of $S - M$ is connected, and its conclusion is replaced by “$M \cdot K$ is a subset of some compact subcontinuum of M.” Consider the following example.
EXAMPLE 1. In a Cartesian plane E let T denote a totally disconnected compact and perfect point set lying on OY and such that the ordinate of its highest point is -10. Let A and B denote the points $(-10, 0)$ and $(10, 0)$, respectively. Let H denote the set of all points of the graph of $y = \sin \left(\frac{1}{x}\right)$ whose abscissae are neither less than $-1/\pi$ nor greater than $1/\pi$. Let N denote the set of all points of OX that lie between A and $(-1/\pi, 0)$ or between B and $(1/\pi, 0)$. Let M denote the point set $O + H + N + A + B$ and let K denote the sum of all straight line intervals with one end-point at one of the points A and B and the other one at a point of T. Let S denote $M + K$. Let Σ denote the subspace of E whose points are the points of S. Here β consists of two points, A and B.

However, the following theorem holds true.

Theorem 9. If, in a space satisfying Axioms 0 and 1, β is the boundary of the continuum M and K is a compact continuum intersecting M, and the common part of M and the boundary of each component of $S - M$ that intersects K is connected, then $M \setminus K$ is a subset of a component of $M \setminus K + \beta$.

Theorem 10. If, in a space satisfying Axioms 0 and 1, K is a compact continuum intersecting the continuum M and, for every component E of $S - M$ that intersects K, $K \cdot E \cdot M$ is a subset of some component of $M \cdot K$ then $M \cdot K$ is connected.

Proof. For each component E of $S - M$ that intersects K, let T_E denote the component of $M \cdot K$ that contains $K \cdot E \cdot M$ and let T denote the sum of all T_E's. By Theorem 5, $M \cdot K + T$ is connected. But it is identical with $M \cdot K$.

It may be seen from the following example that Theorem 10 does not remain true if the requirement that K be compact is omitted even though the resulting hypothesis is strengthened by the addition of the stipulation that (1) K contains β and (2) every component of $S - M$ is bounded by a connected subset of M and so is every component of $M - \beta$ and, furthermore, if D is a component of $M - \beta$, every component of $S - D$ is so bounded.

EXAMPLE 2. In a Cartesian plane E, let A and D denote the points $(0, 2)$ and $(0, 1)$ and, for each n, let A_n and B_n denote the points $(1/n, 0)$ and $(-1/n, 0)$, respectively, and let AA_n and AB_n denote straight line intervals with end-points as indicated. Let M and K denote $D + AB_1 + AB_2 + \ldots$ and $D + AA_1 + AA_2 + \ldots$, respectively. Let S denote $M + K$. Let Σ denote the subspace of E whose points are the points of S.

Theorem 10 does not remain true if M instead of K is required to be compact. To see this, interchange M and K in the description of Example 2 of C. B.

Of Theorems 5–10, Theorem 7 is the only one that remains true if, in its statement, $S - M$ is replaced by $M - \beta$.

The following theorem may be easily proved.
Theorem 11. If, in a space satisfying Axiom 0, the closed point set M intersects the connected point set K and $M - K$ is the sum of two mutually separated point sets H and L then both H and L intersect the boundary of M.

Theorem 12. If, in a space satisfying Axioms 0 and 1, the compact point set β is the boundary of the compactly connected continuum M and, for every component D of $M - K$ and component E of $S - D$, the boundary of E is a subset of a component of β then if K is a compact continuum intersecting M, $M - K$ is a subset of a component of $M - K + \beta$.

Proof. Let N denote the point set obtained by adding together all components of $M - K + \beta$ that intersect $M K$. Since $M - K$ and β are closed and compact, N is closed. Suppose it is the sum of two mutually exclusive closed point sets H and L. These point sets both intersect $M - K$. Since the continuum K is compact it contains a connected point set T lying in $S - M$ and such that T intersects both $H - M - K$ and $L - M - K$. Let A and B denote points belonging, respectively, to the subsets $T - H - M - K$ and $T - L - M - K$ of β. There exists a compact continuum M' lying in M and containing A and B. Suppose P is a point of $M' - M' - \beta$. Let D_p denote the component of $M - \beta$ that contains P and let E_p denote the component of $S - D_p$ that contains T. By hypothesis, the boundary of E_p is a subset of a component β_p of β. For each point P of $M' - M' - \beta$, β_p shields $A + B$ from P in M. Hence, by Theorem 6 of C. B., there is a continuum containing A and B and lying in β. This involves a contradiction.

Theorem 13. Theorem 12 remains true if the requirement that K be compact is replaced by the requirement that $M - K$ be compact and that space satisfy Axiom 2.

Theorem 13 may be proved by an argument identical with that given to prove Theorem 12 except for the substitution of “By Theorem 6 of D. C. B., there exists” for “Since the continuum K is compact it contains” in the third sentence of that argument.

Theorem 12 does not remain true on the omission of the stipulation that M is compactly connected even though it is stipulated that K contains β. Consider the following example.

Example 3. In a Cartesian plane E, let O denote the origin and, for each positive integer n, let A_n, B_n, C_n, D_n and E_n denote the points $(0, 1/n), (1/n, 1/n), (1/n, -1/n), (-1/n, -1/n)$ and $(-1/n, 1)$ and let F_n denote a point lying midway between B_n and A_{n+1}. If X and Y are two points let XY denote the straight line interval whose extremities are X and Y. Let t_n denote the point set $A_nB_n + B_nC_n + C_nD_n + D_nE_n$. Let M and K denote the point sets $O + t_1 + t_2 + t_3 + \ldots$ and $O + A_1F_1 + F_1A_2 + A_2F_2 + F_2A_3 + \ldots$, respectively. Let S denote the point set $M + K$ and let Σ denote the subspace of E whose points are the points of S. Here β is the point set $O + A_1 + A_2 + \ldots$ and K is a compact con-
tinuum containing β. Furthermore if D is a component of $M - \beta$ then, for some n, D is $t_n - A_n$ and if E is a component of $S - D_n$ then E is $S - t_n$ and its boundary is the point A_2 which is a connected subset of β^D. But $M \cdot K = \beta$ and every component of $M \cdot K + \beta$ is a point of the infinite point set β. Hence $M \cdot K$ is not a subset of any component of $M \cdot K + \beta$.

Neither does Theorem 12 hold true if the stipulation that β is compact is replaced by the stipulation that Axiom 2 holds true. Consider the following example.

Example 4. In a Cartesian space E of three dimensions, for each positive integer n, let T_n denote the portion of the graph of $y = -n + 1/ (x - x^2)$ that lies in the XY plane between the planes $x = 0$ and $x = 1$. For each n, let S_n denote the set of all points (x, y, z) of this graph such that $0 < x < 1$ and $0 < z < 1/n$. Let A, B and C denote the points $(0, 0, 2), (1, 0, 2)$ and $(1, 0, 0)$, respectively. Let K denote the arc obtained by adding together the straight line intervals OA, AB and BC. Let M denote the XY plane and let S denote $K + M + S_1 + S_2 + S_3 + \ldots$. Let Σ denote the subspace of E whose points are the points of S. Here K is compact and $M \cdot K = O + C$. The boundary of M is the point set obtained by adding together the open curves T_1, T_2, T_3, \ldots, the Y-axis and a line through C parallel to the Y-axis. The point set $M \cdot K + \beta$ is identical with β and no component of β contains both O and C. It is to be noted that β is not the sum of two mutually separated point sets containing O and C, respectively.

However, the following theorem holds true.

Theorem 14. If, in a space satisfying Axioms 0, 1, and 2, the continuum K contains β, the boundary of the continuum M, and, for every component D of $M - \beta$ and component E of $S - D$, the boundary of E is connected then $M \cdot K$ is connected.

Proof. Suppose $M \cdot K$ is the sum of two mutually exclusive closed point sets H and L. By Theorem 11, $H \cdot \beta$ and $L \cdot \beta$ exist. Furthermore, by hypothesis, β is a subset of their sum. Hence, by Theorem 5 of C. B., there exists a component D of $M - \beta$ such that D intersects both H and L. The common part of the continua D and K is the sum of the two mutually exclusive closed point sets $D \cdot K \cdot H$ and $D \cdot K \cdot L$. Therefore, by Theorem 6 of D. B. C., there exists an arc AB from the point A of $D \cdot K \cdot H$ to the point B of $D \cdot K \cdot L$ and having no point in common with D except its end-points A and B. Let E denote the component of $S - D$ which contains $AB - (A + B)$. The boundary of E is a connected subset of β containing the points A and B. This involves a contradiction.

Theorem 15. If, in a space satisfying Axioms 0 and 1, β is the boundary of the continuum M, D is a component of $M - \beta$, K is a compact continuum intersecting D but not lying wholly in it and Q is a component of $K-(S - D)$ then every component of $Q \cdot D$ contains a point of β.

Proof. Suppose the component H of $\overline{Q-D}$ contains no point of β. Let O denote some point of $Q - H$. Since \overline{Q} is a compact continuum there exists a domain W containing H, but no point of $O + \beta$, and such that its boundary γ contains no point of $\beta + \overline{Q-D}$. The point set $\overline{Q-W}$ contains a connected point set T such that \overline{T} intersects γ and contains a point P of \overline{D}. Since P does not belong to β, it belongs to D. But $T + P$ is a connected point set containing no point of β. Hence $T + P$ is a subset of D. Since T is a subset of Q this involves a contradiction.

Theorem 16. If, in a space satisfying Axioms 0 and 1, β is the boundary of the compact continuum M and D is a component of $M - \beta$ and, for every component E of $S - D$, the common part of β and the boundary of E is connected and K is a compact continuum intersecting \overline{D} then $K \cdot D$ is a subset of a component of $K \cdot D + \beta$.

Proof. For every component E of $S - D$ that intersects K, let T_E denote the common part of β and the boundary of E. With the help of Theorem 15 it may be seen that if Q is a component of $K \cdot E$ every component of $Q \cdot D$ intersects β and therefore T_E. Hence, by Theorem 5, if T is the sum of the continua T_E for all E's, $K \cdot D + T$ is connected. But T is a subset of β.

Theorem 17. If, in a space satisfying Axioms 0 and 1, β is the boundary of the compact continuum M and, for every component D of $M - \beta$ and component E of $S - D$, the common part of β and the boundary of E is connected and K is a compact continuum containing β then $M \cdot K$ is a continuum.

Proof. If D is a component of $M - \beta$, the continuum K intersects \overline{D} and therefore, by hypothesis and Theorem 16, $K \cdot D$ is a subset of a component T_D of $K \cdot D + \beta$. Let T denote the sum of all the point sets T_D for all D's. By Theorem 1 of C. B., $\beta + T$ is connected. But this point set is identical with $M \cdot K$.

Theorem 17 remains true if the stipulation that the common part of β and the boundary of E is connected is replaced by the stipulation that it is a subset of a component of $M \cdot K$. But it does not remain true if "the common part of β and the boundary of E" is replaced by "the common part of \overline{D} and the boundary of E" or by "the boundary of $E." Consider the following example.

Example 5. In a Euclidean plane E let α denote a definite square and let γ denote a definite square enclosed by α. Let O denote the midpoint of one side of γ and let Q denote a totally disconnected perfect point set lying on the opposite side of γ. Let M denote the point set obtained by adding together all straight line intervals with one end-point at O and the other one at a point of Q. Let K denote the sum of α and γ and the set of all points that lie between them. Let S denote $M + K$ and let E denote the subspace of E whose points are the points of S. Here S is compact, β is $O + Q$, K contains β and, for every component D of $M - \beta$,
CONCERNING A CONTINUUM AND ITS BOUNDARY

BY R. L. Moore

DEPARTMENT OF PURE MATHEMATICS, UNIVERSITY OF TEXAS

Communicated October 23, 1942

In this paper some theorems will be established concerning certain relationships between the boundary of a continuum and the components of that continuum minus its boundary. Numbered axioms and chapters herein referred to are axioms and chapters of the author's book "Foundations of Point Set Theory."\(^1\)

Theorem 1. If, in a space satisfying Axioms 0 and 1, \(\beta\) is the boundary of the compact continuum \(M\) and, for every component \(D\) of \(M - \beta\), \(T_D\) is a connected point set lying in \(M\) and containing the common part of \(\beta\) and the boundary of \(D\), and \(T\) is the sum of all the point sets \(T_D\) for all such \(D's\), then \(\beta + T\) is connected.

Proof. Suppose \(\beta + T\) is the sum of two mutually separated point sets \(H\) and \(K\). The point sets \(H \cdot \beta\) and \(K \cdot \beta\) exist and are mutually exclusive and closed. There exists a subcontinuum \(N\) of \(M\) which is irreducible from \(H \cdot \beta\) to \(K \cdot \beta\). The connected point set \(N - (H \cdot \beta + K \cdot \beta)\) is a subset of some component \(L\) of \(M - \beta\). Each of the point sets \(H \cdot \beta\) and \(K \cdot \beta\) con-