must be locally Euclidean and itself a one-parameter group. Then G^*
determines a one-parameter subgroup of G. Suppose that $k > 1$ and that
the theorem is true for $n < k$. If G has dimension k and is locally con-
connected, then we can find a one-parameter subgroup of the subgroup
guaranteed by Lemma 6, whose dimension is positive and less than k.
Finally suppose that G has dimension k but is not locally connected.
Then G^* is a locally compact, locally connected group of positive dimension
at most k, so G^* contains a one-parameter subgroup, which in turn gives
us a one-parameter subgroup of G.

2. Montgomery, D., "Theorems on the Topological Structure of Locally Compact
(1947).

PSEUDO-CONFORMAL GEOMETRY OF POLYGENIC FUNCTIONS
OF SEVERAL COMPLEX VARIABLES

By Edward Kasner and John De Cicco

Departments of Mathematics, Columbia University, New York and De Paul
University, Chicago

Communicated September 15, 1950

1. A complex function

$$w = F(z^a) = F(z^1, \ldots, z^n) = \phi(x^a; y^a) + i\psi(x^a; y^a),$$

where the real ϕ and ψ are single-valued continuous functions and possess
continuous partial derivatives over a region R of $2n$ dimensional real space
Σ_z of coordinates $(x^1, \ldots, x^n; y^1, \ldots, y^n)$ is termed a polygenic function
of the n complex variables $z^a = x^a + iy^a$, where $a = 1, \ldots, n$.

We shall study the first derivatives of a polygenic function and also pre-
sent some new results in pseudo-conformal geometry.

2. For the class of polygenic functions, the linear operators

$$\frac{\partial}{\partial z^a} = \frac{1}{2} \left(\frac{\partial}{\partial x^a} - i \frac{\partial}{\partial y^a} \right); \quad \frac{\partial}{\partial s^a} = \frac{1}{2} \left(\frac{\partial}{\partial x^a} + i \frac{\partial}{\partial y^a} \right),$$

are important. These are called the mean and phase derivatives, respecti-
vely. The operations $\frac{\partial}{\partial s^a}$ and $\frac{\partial}{\partial z^a}$ are not partial derivatives but signify
the application of the linear operators (2),
3. A polygenic function \(w \) is monogenic over \(R \) if and only if

\[
\frac{\partial w}{\partial z^\alpha} = 0, \quad \text{where } \alpha = 1, \ldots, n. \tag{3}
\]

These are equivalent to the \(2n \) Cauchy-Riemann equations. The real and imaginary parts obey the \(n^2 \) Poincaré partial differential equations of second order

\[
\frac{\partial^2 w}{\partial z^\alpha \partial z^\beta} = 0, \quad \text{where } \alpha, \beta = 1, \ldots, n. \tag{4}
\]

A multiharmonic function is any solution \(w \) of this Poincaré system.\(^3\) If \(w = \phi + i\psi \) is monogenic over \(R \), then \(\phi \) and \(\psi \) are conjugate-mutiharmonic over \(R \).

4. The locus of points in \(\Sigma_{2m} \), defined by the equations

\[
z^\alpha = f^\alpha(Z^\beta), \tag{5}
\]

where the \(nf^\alpha \) are monogenic functions over a region of the \(2m \) dimensional parametric space \(\Sigma_{2m} \) of the \(m \) complex variables \(Z^\beta = X^\beta + iY^\beta \), where \(\beta = 1, \ldots, m \), such that the jacobian-matrix

\[
\begin{pmatrix}
\frac{\partial x^\alpha}{\partial X^\beta} & \frac{\partial x^\alpha}{\partial Y^\gamma} \\
\frac{\partial y^\alpha}{\partial X^\beta} & \frac{\partial y^\alpha}{\partial Y^\gamma}
\end{pmatrix}, \tag{6}
\]

is of rank \(2m \), is called a pseudo-conformal manifold \(\Sigma_{2m} \) of \(2m \) dimensions. Evidently \(m \leq n \).

If \(m = n \), there results a correspondence, called a pseudo-conformal transformation \(T \), between the two pseudo-conformal manifolds \(\Sigma_{2m} \) and \(\Sigma_{2n} \). All such maps \(T \) form the pseudo-conformal group \(G \). The associated geometry is termed pseudo-conformal geometry.

Under \(G \), any \(\Sigma_{2m} \) becomes a \(\Sigma_{2m} \). For \(m = 1 \), any \(\Sigma_{2} \) is called a conformal or analytic surface. The reason for this terminology is that \(G \) induces conformality between pairs of analytic surfaces.

The angle \(\lambda \), between any direction at a fixed point \(P \) on a conformal surface \(S \) and its orthogonal projection on the \(s^a \)-plane depends only on the position of the point \(P \) on \(S \). Moreover the sum of the squares of the cosines of the resulting \(n \) angles \(\lambda_1, \ldots, \lambda_n \), at \(P \), is unity.\(^3\)

An area \(A \) on a conformal surface \(S \) is the sum of the projected areas \(A_\alpha \) on the \(s^\alpha \)-planes.

5. Consider a polygenic function \(w \) defined over a conformal surface \(S \) in \(R \). If \(Z = X + iY \) is the parameter describing \(S \), then

\[
\frac{dw}{dZ} = \left(\frac{\partial w}{\partial x^\alpha} \frac{dz^\alpha}{dZ} \right) + \left(\frac{\partial w}{\partial z^\alpha} \frac{dz^\alpha}{dZ} \right)e^{2i\theta}, \tag{7}
\]
in which the repeated index α means to sum with respect to that index from 1 to n. It is noted that θ is the angle between a direction at a point P on S and the parametric curve $Y = \text{const.}$, through P on S. Representing dw/dZ in a plane, called the derivative plane Δ, dw/dZ is depicted as a clock with center vector $H + iK = \frac{\partial w}{\partial z^m} d\bar{z}$, and phase vector $h + ik = \frac{\partial w}{\partial z^m} d\bar{z}$.

This clock depends on the point P, the conformal surface S through P, and the parameter Z describing S.

If a change of the parameter Z is performed, the central and phase vectors of the clock r are multiplied by the same real number $p > 0$ and rotated through equal angles but in opposite directions. Denote this operation on a clock r by $S^*(r)$.

Then all the clocks corresponding to a fixed point P and a fixed surface S through P are the $2n$ clocks $S^*(r)$.

The totality of clocks at a given point P is $2n$ but essentially there are $2n - 2$, one to each conformal surface S through P.

If $\Gamma_1, \ldots, \Gamma_n$ are n clocks belonging to n distinct conformal surfaces S_1, \ldots, S_n, not all contained in the same Σ_{2n-2}, then any clock Γ at P is given by

$$\Gamma = S_1^*(\Gamma_1) + \ldots + S_n^*(\Gamma_n).$$

Thus the totality of clocks at a given point P forms an abstract vector space of n dimensions.

A set of m clocks $\Gamma_1, \ldots, \Gamma_m$, at a given point P, is found to be linearly dependent if and only if they are obtained from m conformal surfaces S_1, \ldots, S_m, through P, all of which belong to the same pseudo-conformal manifold Σ_{2m-2}.

A polygenic function w is monogenic at a given point if and only if dw/dZ is unique along each of n distinct conformal surfaces through P, not all contained in the same Σ_{2n-2}.

This result generalizes the usual definition of a monogenic function.

A polygenic function w is multiharmonic in Σ_n if and only if it is multiharmonic over every Σ_m where m is fixed and $m \leq n$.

Also it may be shown that the center transformation is direct conformal for every S if and only if w is multiharmonic in Σ_n.

6. The pseudo-angle between a $(2n - 1)$ dimensional manifold S_{2n-1}: $F(x^1, \ldots, x^n; y^1, \ldots, y^n) = 0$, and a curve Cx^α: $x^\alpha(t)$, where $\alpha = 1, \ldots, n$, at a given point P of intersection, is

$$\theta = \arctan \frac{\frac{\partial F}{\partial x^\alpha} dx^\alpha + \frac{\partial F}{\partial y^\alpha} dy^\alpha}{\frac{\partial F}{\partial y^\alpha} dx^\alpha - \frac{\partial F}{\partial x^\alpha} dy^\alpha}.$$
The pseudo-angle characterizes the pseudo-conformal group G.\footnote{The term polygenic was introduced by Kasner in 1927. See: "A New Theory of Polygenic (or non-Monogenic) functions," Science, 66, 581–582 (1927). The term non-analytic is also used.}

Let S_{2m} be a fixed $2m$ dimensional manifold contained in Σ_{2n} so that $m \leq n$. Let P be an arbitrary point of S_{2m}. Suppose that S_{2n-1} is an arbitrary $(2n - 1)$ dimensional manifold in Σ_{2n}, which contains P, and let the intersection of S_{2m} and S_{2n-1} be an S_{2m-1}. Thus S_{2m} is not contained in S_{2n-1}.

The pseudo-angle between any curve C, in S_{2m}, and S_{2n-1} at P, is equal to that between C and S_{2m-1}, for every S_{2n-1}, if and only if S_{2m} is pseudo-conformal.

This gives a geometric characterization of the pseudo-conformal manifolds Σ_{2m} contained in a given pseudo-conformal manifold Σ_{2n}, where $m \leq n$.

If $w = \phi + i\psi$ is monogenic over R, then the curves of $\phi = \text{const.}$ are pseudo-orthogonal to the manifolds $\psi = \text{const.}$

For $n = 1$, this reduces to the well-known result that the components of a monogenic function of a complex variable give rise to an orthogonal isothermal net.

\begin{itemize}
 \item \footnote{Poincaré, Compt. rend., 96, 238, (1883); Acta Math., 2, 99, (1883), 22, 112 (1898); Palermo Rendiconti (1907).}
 \item \footnote{Kasner, "Conformality in Connection with Functions of Two Complex Variables," Trans. Am. Math. Soc., 48, 50–62 (1940).}
 \item \footnote{Kasner and De Cicco, "The Geometry of Polygenic Functions," Rev. Math. Univ Tucuman (Argentina), 4, 7–45 (1944).}
\end{itemize}

THE ELEMENT OF VOLUME OF THE ROTATION GROUP

By Francis D. Murnaghan

Instituto Tecnológico de Aeronáutica, Rio de Janeiro, Brazil

Communicated September 12, 1950

The n-dimensional rotation group is an $\frac{n(n - 1)}{2}$-parameter group and if we set $n = 2k$ or $n = 2k + 1$, according as n is even or odd, it is usually convenient to adopt as k of these parameters the k angles $\theta_1, \theta_2, \ldots, \theta_k$ which determine the class of the group to which the particular element X of the group which we wish to specify belongs (the function of the remain-