*This investigation was supported by a grant from the National Foundation for Infantile Paralysis.

2 Adams, M. H., in Methods in Medical Research, Chicago, 1950.
4 Jacob, F., personal communication.
5 We wish to thank Ciba S.A., Basel, Switzerland, who put at our disposal the chlorohydrate of methyl bis-β-chloroethylamine, called Dichlorene, used in these experiments.
7 Hayes, W., J. Gen. Microb., 8, 72 (1953).

RELATIONS ON ITERATED REDUCED POWERS

BY JOSE ADEM
PRINCETON UNIVERSITY

Communicated by S. Lefschetz, May 12, 1953

In this note we present the generalization of the relations on iterated squares to the case of iterated cyclic reduced powers of arbitrary prime period p. As in the case $p = 2$, the new relations are used to solve some particular problems.

Throughout this paper we will use the definitions and notation recently introduced by Steenrod.\(^2\)

1. For any complex K and odd prime p, the cyclic reduced power operations are homomorphism ϕ^s, ($s = 0, 1, \ldots$),

$$\phi^s: H^q(K; \mathbb{Z}_p) \rightarrow H^{q+2s(p-1)}(K; \mathbb{Z}_p)$$

They satisfy the following properties: $\phi^s f^* = f^* \phi^s$, where f is a map of one complex into another; $\phi^0 = \text{identity}$; if $q = \dim u$ is even, $\phi^{s/2}u = u^p$ (in cup-product sense); $\phi^s u = 0$ when $s > q/2$.

As in the case of squares, an *iterated* cyclic reduced power is a composition of two or more of the ϕ^s, e.g., $\phi^s \phi^s \phi^s$.

Let δ^* be the coboundary operator associated with the exact coefficient sequence $0 \rightarrow Z \rightarrow Z \rightarrow Z_p \rightarrow 0$. Our main result is the following

THEOREM 1.1 *For all $0 \leq r < sp$ the iterated cyclic reduced powers satisfy the following set of relations*\(^6\)

\begin{align*}
(1.2) \quad & \phi^r \phi^s = \sum_{i=0}^{[r/p]} (-1)^{r+i} \left(\begin{array}{c}
(s - i)(p - 1) - 1 \\n0
\end{array} \right) \phi^{r+i-i} \phi^i, \\
(1.3) \quad & \phi^r \delta^* \phi^s = \sum_{i=0}^{[r/p]} (-1)^{r+i} \left(\begin{array}{c}
(s - i)(p - 1) - 1 \\n0
\end{array} \right) \delta^* \phi^{r+i-i} \phi^i + \\
& \sum_{i=0}^{[r-1/p]} (-1)^{r+i+1} \left(\begin{array}{c}
(s - i)(p - 1) - 1 \\n0
\end{array} \right) \phi^{r+i-i} \phi^i, \quad (\mod p),
\end{align*}
where \(\binom{n}{k} \) denotes the binomial coefficient with the usual conventions.

An induction argument based on (1.2) proves the following

Theorem 1.4. The set \(\{ \varphi^k \} \) with \(k = 0, 1, \ldots \), form a base in the sense that any other \(\varphi^r \) can be expressed as a sum of iterated cyclic reduced powers with exponents powers of \(p \).

For example,

\[
\varphi^r = \frac{1}{r!} (\varphi^1)^r \quad \text{for } 0 < r < p.
\]

\[
\varphi^{2p} = \frac{1}{2} (\varphi^p)^2 + \frac{1}{2} (\varphi^1)^{p-1} \varphi^p \varphi^1
\]

where \((\varphi^j)^r \) means \(\varphi^j \) iterated \(r \) times.

Again, an induction using formula (1.2) proves

Theorem 1.5. The iterated powers of the type \(\varphi^{i_1} \ldots \varphi^{i_r} \) with \(i_1 \geq p i_2, \ldots, i_{r-1} \geq p i_r \), and \(c = i_1 + \ldots + i_r \), form an additive base for all iterated powers \(\varphi^{j_1} \ldots \varphi^{j_s} \) where \(j_1 + \ldots + j_s = c \).

2. For the particular values \(r = 1, s = 2^k - 1 \), formula (1.2) becomes

\[
\varphi^1 \varphi^{x^k-1} = 2^k \varphi^{x^k},
\]

therefore, if \(\dim u = 2^k + 1 \) we have

\[
(2.1) \quad u^p = \frac{1}{2^k} \varphi^1 \varphi^{x^k-1} u \quad \pmod p,
\]

where \(u^p \) is the \(p \)-power of \(u \) in the cup-product sense.

Let \(H(K) \) denote the integral cohomology ring of a complex \(K \). We say that \(H(K) \) is a truncated polynomial ring on \(u \) if \(H(K) \) is generated by the cup-product powers of \(u \) and each power is of infinite order. The height of \(u \) is the minimal integer \(n \) such that \(u^n = 0 \).

Theorem 2.2. If \(H(K) \) is a non-trivial truncated polynomial ring on \(u \) then \(\dim u = 2^k + 1 \). Moreover, if \(\dim u \geq 8 \) then the height of \(u \) is at most 3.

We will show how this theorem is implied by our relations on reduced powers. Let \(q = \dim u \). First, that \(q \) cannot be odd follows from the commutative law for cup-products. Now, if \(q \) is not a power of 2, then, because \(\{ \text{Sq}^n \} \) is a basis for squares,\(^1\) we have \(u \land u = \text{Sq}^q u = 0 \pmod 2 \), and this is a contradiction. Finally, suppose \(q = 2^k + 1 \). Using (2.1) for \(p = 3 \), we have

\[
u \land u \land u = (-1)^k \varphi^1 \varphi^{x^k-1} u \quad \pmod 3,
\]

and \(\varphi^{x^k-1} u = 3 \cdot 2^k + 1 - 4 \). Therefore \(u \land u \land u = 0 \pmod 3 \), unless \(3 \cdot 2^k + 1 - 4 \) is a multiple of \(2^k + 1 \). That is the case only if \(k = 0, 1 \).

Let \(S^{x-1} \) be a sphere bundle with \(S^{x-1} \) as fiber. Examples are known for the following forms of \(r \) and \(s \): \(r = s \); all \(r, s = 1 \); \(r = 2n, s = 2 \); \(r = 4n, s = 4 \); \(r = 16, s = 8 \).
Corollary 2.3. The other possible values of \(r \) and \(s \) for which \(S^{r-1} \) can be a sphere bundle with fiber \(S^{t-1} \) are of the form \(r = 2^k + 1 \) and \(s = 2^k, \) \((k \geq 4)\).

Proof: If \(S^{r-1} \) is fibered by \(S^{t-1} \), it follows from Gysin's sequence for sphere bundles that the integral cohomology ring of the base space \(B \) is a truncated polynomial ring, generated by the characteristic class \(u \) of dimension \(s \). Then \(r = ns \) for some integer \(n \) and \(\dim B = s(n - 1) \); therefore the height of \(u \) is \(n \). If \(n > 3 \), then 2.3 follows from 2.2. If \(n = 3 \) and \(f: S^{r-1} \rightarrow B \) is the projection, adjoin an \(r \) cell \(E' \) to \(B \) by means of \(f \), so that \(M = B \cup E' \) is a manifold. By duality \(H(M) \) is a truncated polynomial ring generated by \(u \) with height 4. This contradicts 2.2.

3. Our proof of relations (1.2), (1.3) is purely algebraic. The relations are obtained as homology relations on the symmetric group \(S_p^2 \) of degree \(p^2 \), and makes full use of the general definition for reduced power operations found recently by Steenrod. We will indicate briefly this method. Let \(G \) be a \(p \)-sylow group of \(S_p^2 \) and \(\theta: G \rightarrow S_p^2 \) the inclusion homomorphism. For each \(C \in H_i(G; Z_p) \) we have a reduced power operation. If \(u \in H^q(K; Z_p) \) then \(u^p/C \in H^{p^2-1}(K; Z_p) \).

To obtain the relations we first identify the operations induced by some cycles of \(H_i(G; Z_p) \) with sums of cyclic reduced powers. The relations are then obtained, according to the general principle of Steenrod, as elements on the kernel of \(\theta_*: H_i(G; Z_p) \rightarrow H_i(S_p^2; Z_p) \), i.e., if \(\theta_*(C_1 - C_2) = 0 \), then \(u^{p^2}/C_1 = u^p/C_2 \).

* The research summarized in the present note has been supported at various times by the following institutions: Instituto de Matemáticas de la Universidad Nacional and Instituto Nacional de la Investigación Científica, Mexico City, and the Guggenheim Foundation.

1 Adem, J., these PROCEEDINGS, 38, 720–726 (1952).
3 I have heard that H. Cartan has obtained relations of the same type, using methods quite different from mine.