INTEGRATION OF A DIFFERENTIAL FORM ON AN
ANALYTIC COMPLEX SUBVARIETY

BY PIERRE LElong

univErsity OF PARIS*

Communicated by Marston Morse, December 12, 1956

I. The purpose of this note is to give a precise definition of the operator of integration

\[t(\varphi) = \int_W \varphi \]

(1)

for an exterior differential form \(\varphi \) on an analytic complex subvariety \(W \). The problem arises because an analytic complex subvariety in a domain \(D \) of \(\mathbb{C}^n \) (or, more briefly, an analytic set in \(D \)) is not, in general, a manifold. We give (a) an existence theorem for \(t(\varphi) \) and (b) a proof that \(t \) is a closed current in \(D \), that is, \(t(\psi) = 0 \) for the forms \(\psi \) with compact support, which are homologous to zero in \(D \).

II. A set \(W \) is called an analytic set in a domain \(D \) of \(\mathbb{C}^n(z_1, \ldots, z_n) \) if \(M \in D \) has a neighborhood \((U_M) \cap W \) is defined by the simultaneous equations

\[f_1(z_1, \ldots, z_n) = 0, \ldots, f_s(z_1, \ldots, z_n) = 0, \]

(2)

where \(f_k \) is holomorphic in \((U_M) \); \(M \in W \) is an ordinary point of \(W \) if there exists an analytic one-to-one mapping \(Z = F(z) \) such that \(F [(U_M) \cap W] = F [(U_M)] \cap C^s \), where \(C^s \) is a complex linear subspace. We denote by \(A^q \) a complex \(q \)-vector given by

\[z_k = z_k' + \sum_i a_k u_i, \quad 1 \leq k \leq n, \quad 1 \leq i \leq q, \]

(3)

with unitary representation and fundamental form

\[d\tau_q = \Omega(A^q) = \left(\frac{i}{2} \right)^q (-1)^{q(q-1)/2} du_1 \wedge d\bar{u}_1 \ldots du_q \wedge d\bar{u}_q. \]

If \(s \) is the maximum of the numbers \(q \) such that \(P \) can be an isolated point of \(W \cap A^s \), \(p = n - s \) is the complex dimension of \(W \) in \(P \in W \). We have the decomposition \(W = W^k \), where \(W^k \) is \(k \) complex dimensional in each of its points. If \(W' = W \cap A^q \) is not of dimension zero, the boundary of \(B(P, r) = \left[\sum_1^q |u_i|^2 < r^2 \right] \) intersects \(W' \). Starting from this property and applying the Kronecker integral to the system (2) after substituting equation (3), where \(z_k' \) and \(a_k' \) are considered as complex parameters, we obtain

Theorem 1. If \(W \) is an analytic set in \(D \) and \(\mathcal{M}(z_0) \) is an isolated point of \(A_0^s \cap W \), where \(A_0^s \) is given by \((a_k)_0 \) and \(z_k' = z_k^0 \) in equation (3), there exists a neighborhood \((U_M) \) of \(\mathcal{M}, \epsilon > 0 \) and \(\epsilon' > 0 \), such that for \(|a_k^k - (a_k)_0| < \epsilon \), and \(|z_k' - z_k^0| < \epsilon' \), \(U_M \cap W \cap A^s \) is a set of \(l (\leq N(M_0)) \) isolated points, where \(N(M_0) \) is the number of intersections of \(A_0^s \cap W \) in \(M_0 \).

III. **Positive Currents.**—We denote by \(\ast \psi \) the adjoint of a form \(\psi \); \(\ast \Omega(A^s) \) is the fundamental form of the \(A^{n-s} \) orthogonal to \(A^s \).

246
Definition: A current \(t \) is called positive of degree \(q \) (or belongs to \(\Theta_q^+ \)) if \(t \) is homogeneous of degree \((q, q) \) in \(dz_1, dz_2 \) and if for every complex \(q \)-vector \(A^q \), the distribution \(T[A^q](f) = \int \wedge^* T^n(A^q)f \) is a positive measure. A form \(\varphi \) is called positive of degree \(q \) (or belongs to \(\Phi_q^+ \)) if \(\varphi \) has continuous coefficients and \(\varphi \in \Theta_q^+ \).

Theorem 2. A positive current \(t = (i/2)^{q(q-1)/2} \sum \frac{t(i)}{t(p)}dz_{i_1} \wedge \ldots \wedge dz_{i_q} \) is continuous of order zero; the distributions \(T_{(i_1)}(f) = \int t_{(i_1)}f \wedge \tau^{2n} \) are complex measures: \(T_{(i_1)} = T_{(i_2)} \) and \(T_{(i_2)}(f) \geq 0 \).

Remark A: We put \(|t|_D = \sup |t(\varphi)| \) for \(\varphi \), \((C^\infty) \), with compact support \(K(\varphi) \subset D \), and \(|\varphi(0_\varphi)| \leq 1 \) for the coefficients of \(\varphi \). Then it is possible to find a system \(\Lambda \) of \((C^\infty)^2 \) complex \(q \)-vectors \(A^q \), with \(|a_i^k - (a_i^k)_0| < \epsilon \), where \(\epsilon > 0 \) and \(A_0^q[(a_i^k)_0] \) are given, such that we have \(|t|_D \leq k(\Lambda) \sup \{ T[A^q] \} \), where \(k(\Lambda) \)

is a constant depending on \(\Lambda \). The class of the positive currents possesses the following properties:

Theorem 3 (multiplication). If \(t \in \Theta_p^+ \) and \(\varphi \in \Phi_1^+ \), then \(t \wedge \varphi \in \Theta_{p+1}^+ \).

Theorem 4 (division). If \(t \wedge \varphi = 0 \), \(t \in \Theta_p^+ \), and if \(\varphi \in \Phi_1^+ \) satisfies \(\varphi = \psi \neq 0 \) and \(\psi^{p+1} = 0 \) in \(D \), then we have \(t = t_1 \wedge \varphi^2 \), and \(t_1 \in \Theta_{p_1} (t_1 = 0 \text{ if } p < q) \).

Theorem 5. The image of a positive current induced by an analytic and locally one-to-one transformation is a current which is positive.

IV. If \(W \) is the analytic set \(f(z_1, \ldots, z_n) = 0 \) in \(D \), we have the following two expressions for the current \(t(\varphi) \):

\[
(a) \quad t = \frac{2}{\pi} \left[\int_0^\pi d\theta \log |f| \right]; \quad (b) \quad t = \theta \left[\frac{1}{2} df \wedge df. \right.
\]

In \(a \), the bracket denotes the positive current relative to the plurisubharmonic function \(\log |f| \). On the other hand, \(b \) is available only for forms \(\varphi \) whose support \(K(\varphi) \) contains only ordinary points of \(W \); in \(b \) the positive current \(\theta \) of degree zero (measure density) is given by an analytic locally one-to-one mapping \(Z = F(z) \) of \(W \) on a complex subspace.

We consider now an analytic set \(W_p \) of complex dimension \(p \) irreducible in \(D \) and denote by \(W_p^\infty \) the connected manifold of the ordinary points of \(W_p \), and we put \(E_1 = W_p^\infty - W_p^\infty \). The definition of the current \(t(\varphi) \) (the integral of \(\varphi \) on \(W_p \)) will be given in three steps: (1) Definition of the positive current \(t_0(\varphi) = \int t(\varphi) \) with support \(K(\varphi) \subset D - E_1 \). (2) Majorization of the norm of \(t_0 \) in a neighborhood of \(M \in W_p^\infty \), for instance in a sphere \(B(M, r) \). (3) Solving of a continuation problem for \(t_0 \) defined in \(D - E_1 \) to obtain \(t \) defined in \(D \).

1. If \(M \in W_p^\infty \), \(t_0 \) is obviously defined by an analytic mapping of \(W_p \) into \((U_M) \) in a complex subspace.

2. We use the following result, which is a consequence of Theorem 1 and Remark A:

Theorem 6. If \(W \) is an analytic set in \(D \), of complex dimension \(p \) in every \(M \in W \), and \(D_1 \subset D \) is a compact domain in \(D \), there exists a constant \(\lambda(D_1) > 0 \) such that the norm \(|t_0|_M \) of the current \(t_0 \) in the spheres \(B(M, r) \subset D_1 \) satisfies \(|t_0|_M < \lambda(D_1)r^{2p} \).

V. Continuation of a Closed Current.—Given a current \(t \) in a domain \(D - E_1 \) where \(D \subset \mathbb{R}^n(x_1, \ldots, x_n) \) and \(E \) is the subspace \(x_1 = \ldots = x_n = 0 \), a necessary condition that \(t \) be continuability to the forms \(\varphi \) with support \(K(\varphi) \subset D \) is the
convergence of \(\sum t \land \alpha \varphi, K(\alpha_i) \subset D - E \), where \(\alpha_i \) is a partition of unity in \(D - E \). We give now conditions that a closed current \(t \) has a continuation \(\bar{t} \) by a closed current. We denote by \(\alpha_i(x_1, \ldots, x_\ast \) a kernel \((C^\infty) \), with \(0 \leq \alpha_i \leq 1 \); \(\alpha_i = 1 \) in a neighborhood \(\omega \), of the origin \(\omega \) \((x_1 = \ldots = x_\ast = 0) \); \(\alpha_i \) has a compact support \(K_i \); \(\omega \subset K_i \subset \omega' \), and \(\omega' \) tends to \(\omega_0 \) when \(r \to 0 \). We put \(t = \bar{t} - t \), and suppose that \(t \) is homogeneous of degree \(k \).

Theorem 7. A necessary and sufficient condition for the existence of \(\bar{t} \) is (a) \(\lim \alpha_i t = 0 \); (b) the existence of the limit \(\tau(\varphi) = (-1)^{(i) t([\alpha_i] \land \varphi)} \), for a sequence of kernels \(\alpha_i \) with properties listed above.

Thus \(\tau \) is a current with support in \(E \) and is homologous to zero; the limit is independent of the sequence \(\alpha_i \); we have \(d\theta = \tau_i, \bar{t} = t + \theta \). If \(\tau = 0 \), we choose \(\theta = 0 \), and we say that \(\bar{t} \) is the simple extension of \(t \). If \(\bar{t} \) exists, \(t \) is continuous of finite order \(q \) in \(K \cap (D - E) \), where \(K \) is a compact domain in \(D \). We put \(|t|_K = \sup |t(\varphi)| \), where \(\varphi \) satisfies \(K(\varphi) \subset K \cap \left(\sum_{i=1}^{n} x_i^2 < r^2 \right) \) and \(|D^{(l)}\varphi_0| \leq 1 \), for each derivative of total order \(\leq q \) of the coefficients of \(\varphi \). We choose \(\alpha_i = \alpha(x_i/r) \) and denote \((\alpha_i/\partial x_i)(x_i/r) \) by \(\beta_i, (x_i) \), to obtain more precise sufficient conditions:

Theorem 8. A sufficient condition for the existence of \(\bar{t} \) is the existence of a finite number \(L \) such that we have \(|t\beta, (x_i)|_K \leq Lr \).

Corollary. If \(t \) is continuous of order zero and if \(r^{-1}|t|_K \to 0 \), \(\bar{t} \) is obtained by the simple extension of \(t \) in \(K \subset D \).

VI. Now we consider \(E_1 = W^p - W_\emptyset \) and put \(E_1 = W_1 \cup W_2 \cup \ldots \cup W_s \), where \(W_k \) is the manifold of the ordinary points of \(E_1 \subset (W_1 \cup W_2 \cup \ldots \cup W_{s-1}) \); \(W_k \) is a manifold of complex dimension \(n_k \leq p - k \). In \(M \in W_k \), we consider a neighborhood \((U_M) \) and an analytic one-to-one mapping \(Z = F(z) \) such that \(F((U_M) \cap W_k) = F((U_M) \cap C^\infty) \) where \(C^\infty \) is a complex subspace. By Theorems 5 and 6 and the corollary to Theorem 8, we obtain the main result of this note:

Theorem 9. If \(W^p \) is an analytic set in a domain \(D \) of \(C^\infty \) and if \(W^p \) is of complex dimension \(p \) in each of its points, the positive current of degree \((p, p) \) defined by

\[t_0 = \int_{W^p} \varphi \]

(where \(W^p_0 \) is the manifold of the ordinary points of \(W^p \), and \(E_1 = W^p - W^p_0 \) is convergent in \(D - E_1 \). The simple extension \(t \) of \(t_0 \) gives a closed positive current \(t(\varphi) \) on the forms \(\varphi \) with compact support in \(D \).

If \(W \) is not homogeneous \(p \) complex dimensional in \(D \), the current \(t(\varphi) = \int_W \varphi \)

is a finite sum of homogeneous, positive closed currents \(t_k \) in \(D \) whose supports are the components of \(W \) in the decomposition \(W = \cup W_k \), where \(W_k \) is \(k \) complex dimensional in each of its points.

* Written while the author was at the Institute for Advanced Study (Princeton, N.J.) under the sponsorship of the Air Force Office of Scientific Research.

\(^2\) Cf. G. de Rham, *Variétés différentiables* (Paris: Hermann & Cie, 1955). A current \(t \) is continuous of order \(s \) if \(t(\varphi_\alpha) \to 0 \) for every sequence of forms \(\varphi_\alpha, (C^\infty) \), with compact supports \(K(\varphi_\alpha) \subset K_\delta \), and \(\sup \|D^{(n)}(\varphi_n, t)\| \to 0 \), for every coefficient \(\varphi_n, (t) \) and every derivative \((\alpha) \) of total order \(\leq s \).