SUMMARY

The treatment of bacterial transformation data is discussed and equations are developed connecting the variables. It is shown that the observed number of transformants is the product of three factors, namely: a) the number of marked DNA molecules present \((NX/M)\), b) the ability of these molecules to enter the bacterium \(\left(\frac{k_mK_m}{k_m+c}K_{m+c}\right)(\overline{M}/\overline{M}_{abs})\) and c) the ability of the molecules which have entered the cell to become part of the genome. To calculate the sizes of genetic markers or to estimate the efficiency of fractionation procedures the quantity \(NX/M\) must be evaluated from the observed data. To do this the terms b) and c) must be known. Absorption and inhibition experiments are presented to show that b) is a function of molecular weight, and it is possible that this is also true of c). Since at present the nature of the function is unknown, an explicit solution for the number of markers present is impossible. It is concluded that the estimation of the size of a marker presents formidable difficulties. Further, the “sizes” that have been calculated in the literature, on the implicit assumption that b) and c) are constant, have no meaning at the molecular level. These values are clearly some indefinable average of molecular parameters. The same criticism applies to fractionation procedures.

We wish to thank Dr. Francis M. Sirotnak for invaluable aid in this work and Dr. George Bosworth Brown for his encouragement and interest.

* This investigation was supported in part by funds from the American Cancer Society, National Cancer Institute, National Institutes of Health, Public Health Service (Grant CY-3190), and the Atomic Energy Commission (Contract No. AT(30-1)-910).

4 For example, \(\sum k_m[X_i] = \frac{k_mK_m}{k_m+c} \sum [D]iX_i = \frac{k_mK_m[D]}{X}X_i\).

5 Although \(K_{c0}\) as previously defined, is a binding constant, whereas \(K_{m+c}\) (like \(K_m\)) has a second term (\(k_{m+c}\), the absorption rate constant) in the denominator, they may be considered equal, since \(k_{m+c}\) is relatively small (see n. 2).

6 L. F. Cavalieri and B. H. Rosenberg (to be published).

FREE RADICAL FORMATION IN RIBOFLAVIN COMPLEXES*

BY IRVIN ISENBERG AND ALBERT SZENT-GYÖRGYI

INSTITUTE FOR MUSCLE RESEARCH, MARINE BIOLOGICAL LABORATORY, WOODS HOLE, MASSACHUSETTS

Communicated June 30, 1958

INTRODUCTION

If an aqueous solution containing \(10^{-3}\) \(M\) tryptophan and \(10^{-4}\) \(M\) riboflavin-5’ phosphate is frozen, the resultant sample has a red appearance instead of the yellow shown by riboflavin alone. This red form can also be seen at room temperature if more concentrated solutions are used—for example, \(10^{-2}\) \(M\) tryptophan.
and \(10^{-3} \, M\) riboflavin. Proteins that contain tryptophan, as well as certain tryptophan derivatives, also form red samples with riboflavin.

This report will present evidence that this red form is a tryptophan-riboflavin complex in which a riboflavin molecule has taken up one election from the tryptophan. The riboflavin is then in a semiquinoid form, a free radical. This form of riboflavin was first studied by Kuhn and Wagner-Jauregg\(^1\) and afterward by Michaelis and his co-workers.\(^2\)\(^-\)\(^4\)

Since the work of Michaelis, the reduction of riboflavin to its semiquinone form has hardly been studied. Haas\(^5\) reported that when old yellow enzyme was reduced by hydrosulfite in the presence of TPN, a red color appeared, and he attributed this red color to free radical formation. More recently, Beinert\(^6\) has studied the spectral properties of the semiquinoid form of riboflavin, and Beinert\(^7\)\(^-\)\(^8\) and Ehrenberg and Ludwig\(^9\) have further studied the occurrence of free radicals in flavo-protein catalysis.

MATERIALS AND METHODS

We have found it convenient to study the red riboflavin complex in two ways. For qualitative visual observations, aqueous solutions were frozen in dry ice. In this form, complex formation is greatly enhanced over room-temperature conditions, and direct and easy observations may be made as to which samples do contain complexes and which samples do not.

For quantitative studies the samples were studied at room temperature in phosphate buffer, pH 6.90, by means of a Beckman DKI recording spectrophotometer. The sample compartment cuvette contained the mixture to be studied—say, riboflavin and tryptophan—while the reference cuvette contained riboflavin of a molarity equal to the sample. In this way, by balancing out most of the riboflavin absorption, the complex absorption becomes a major component of what is recorded by the instrument. It should be noted that this technique does not lead to an exact balancing-out of the riboflavin. To achieve an exact balance, one would need to use a riboflavin concentration equal to the free riboflavin concentration in the sample cell rather than the total concentration there. It should therefore be recognized that the peak at 500 \(m\mu\) reported below is not the true peak for absorption by the complex. The true peak will lie at somewhat shorter wave lengths. It also follows that the molar extinction at the peak for the complex absorption will be somewhat higher than that at 500 \(m\mu\) reported below.

RESULTS

a) **Qualitative Observations.**—\(10^{-3} \, M\) riboflavin-5'-'phosphate was frozen in the presence of a number of amino acids, tryptophan derivatives, and several tryptophan-containing proteins. The results are shown in Table 1. A minus sign indicates no shift in color from a riboflavin control, while a plus sign means a shift toward the red.

b) **Quantitative Observations.**—Upon balancing \(10^{-4} \, M\) riboflavin-5'-phosphate with varying concentrations of tryptophan against \(10^{-4} \, M\) riboflavin-5'-phosphate, all in phosphate buffer pH 6.90, a peak at 500 \(m\mu\) was obtained. Riboflavin-5'-phosphate in 10 per cent HCl, reduced to a red form by sodium hydrosulfite, also yielded a peak at 500 \(m\mu\) when balanced against unreduced riboflavin-5'-phosphate.
TABLE 1

<table>
<thead>
<tr>
<th>Partner of 10^{-3} M Riboflavin-5'-Phosphate</th>
<th>Appearance at -78° C.</th>
</tr>
</thead>
<tbody>
<tr>
<td>10^{-3} M tryptophan</td>
<td>+</td>
</tr>
<tr>
<td>10^{-3} M tyrosine</td>
<td>-</td>
</tr>
<tr>
<td>10^{-3} M phenylalanine</td>
<td>-</td>
</tr>
<tr>
<td>10^{-3} M histidine</td>
<td>-</td>
</tr>
<tr>
<td>10^{-4} M 5-hydroxytryptamine (serotonin)</td>
<td>+</td>
</tr>
<tr>
<td>1-Benzyl-2-methyl-5-methoxy-N,N-dimethyl tryptamine hydrochloride*</td>
<td>+</td>
</tr>
<tr>
<td>1-Benzyl-2-methyl-5-methoxy-tryptamine hydrochloride*</td>
<td>+</td>
</tr>
<tr>
<td>1-Methyl medmain</td>
<td>+</td>
</tr>
<tr>
<td>1-Benzyl-2,5-dimethyl serotonin</td>
<td>+</td>
</tr>
<tr>
<td>1-Benzyl-2,5-dimethyl bufotenine</td>
<td>+</td>
</tr>
<tr>
<td>1-Methyl medmain</td>
<td>+</td>
</tr>
<tr>
<td>d-Lysergic acid diethylamide tartrate (LSD-25)†</td>
<td>+</td>
</tr>
<tr>
<td>1 Per cent bovine plasma albumin</td>
<td>+</td>
</tr>
<tr>
<td>1 Per cent myosin</td>
<td>+</td>
</tr>
<tr>
<td>0.3 Per cent actomyosin</td>
<td>+</td>
</tr>
<tr>
<td>3 Per cent Casein</td>
<td>+</td>
</tr>
</tbody>
</table>

* The authors would like to thank Dr. D. W. Wooley for giving them samples of these compounds.
* The authors thank the Sandoz Pharmaceutical Company, Hanover, New Jersey, for a sample of LSD-25.

This agrees with the value of 503 mμ reported by Beinert for the difference maximum of the semiquinoid form in 1 M HCl. Since the red form is stable only in strong acid solution, the tryptophan must, in some way, stabilize this semiquinoid form at neutral pH. The most obvious way to do this is by complexing. It will be assumed that a complex forms in a one-to-one fashion, so that

Tryptophan + riboflavin ⇌ (reduced riboflavin, oxidized tryptophan complex)

Let $t =$ total tryptophan concentration in the sample; $r =$ total riboflavin concentration in the sample; $c =$ concentration of the complex; $k =$ dissociation constant for the complex; and $K = 1/k$.

It will be assumed that the extinction of the complex bears a simple Beer's law relationship to the complex concentration. Since we are measuring a difference spectrum and since we have assumed that one molecule of semiquinoid riboflavin forms for every molecule of riboflavin that reacts, we have

$$ E = \Delta \varepsilon Cl, $$

where $E =$ recorded extinction at 500 mμ; $\Delta \varepsilon =$ molar extinction of the complex at 500 mμ minus the molar extinction of oxidized riboflavin at 500 mμ; $C =$ concentration of the complex; $l =$ cell path length, in our case 1.000 cm.

The tryptophan concentrations used were always at least twenty times that of the riboflavin concentrations, and therefore they necessarily greatly exceeded the complex concentrations. Under these conditions

$$ \frac{t(r - c)}{C} = k = \frac{1}{K} $$

or

$$ \frac{1}{t} = lrK \frac{1}{E} - K. $$

Thus a plot of $1/t$ versus $1/E$ should yield a straight line. The intercept on the abscissa yields $1/\Delta \varepsilon lr$ while the intercept on the ordinate yields $-K$.

Figure 1 shows some typical data for tryptophan and also typical data for sero-
tonin. It can be seen that straight-line plots do give reasonable representations of the data. A more striking result, however, is that, within experimental error, both plots have the same intercept on the 1/E axis. This is further confirmation that the measured absorption is due to a riboflavin semiquinoid, the semiquinoid having a unique molar extinction coefficient whether in the presence of tryptophan or of serotonin. On the other hand, the two plots have different 1/t intercepts. This means that serotonin and tryptophan complex with the riboflavin semiquinone with different strengths, serotonin complexing about seven times as strongly as riboflavin. The data yield $\Delta \varepsilon = 2300$ liters per mole cm.; K for tryptophan equals 60 liters per mole, while K for serotonin equals 400 liters per mole.

Since ε for oxidized riboflavin at 500 mμ is approximately 2,200, we obtain an approximate value of 4,500 for the molar extinction coefficient of the complex.

It is noteworthy that solutions of riboflavin that contain the complex appear to be less fluorescent than pure riboflavin solution.

DISCUSSION

There has been a recent upsurge of interest in free radical formation in biological systems, due, in part, to the development and application of the technique of paramagnetic resonance. It is therefore of some interest that a semiquinoid form of riboflavin can be produced and stabilized at neutral pH by the simple addition of tryptophan or of proteins containing tryptophan or of molecules resembling tryptophan. Indeed, as shown by serotonin, other molecules may reduce and form complexes with riboflavin much more strongly than tryptophan itself.

It is clear that some of the work that has been done on free radical formation in flavoproteins may be subject to reinterpretation. For the tacit assumption has
always been made that the flavoprotein itself contained no semiquinoid form before the addition of a reducer. This now appears unjustified. This realization may also clarify the absorption spectra of certain flavoproteins. Consider the absorption spectrum of old yellow enzyme, as given, for example, by Ehrenberg and Ludwig. The spectrum has two peaks that appear to be similar to the absorption peaks of riboflavin. In addition, there is a marked shoulder at about 490 m. The work reported here suggests that this shoulder results from the absorption of riboflavin-5'-phosphate in a semiquinoid form stabilized by the tryptophan in the protein.

It is possible that complex formation may be much stronger in tissue than in vitro. Just as freezing enhances complex formation in a test tube, so it is possible that in closely packed tissues constituents, such as mitochondria, a similar lattice-ordered structure of the water favors association. Within the cell the complex formation might also be favored by additional links, as assumed by Nygaard and Theorell for the binding of the flavin adenine nucleotide in the old yellow enzyme. So it seems possible that the complex formed by flavins with the proteins, via their tryptophan, has a major biological importance. This assumption is supported by the fact that various tissues contain strongly bound flavins in high concentration. The authors are impressed by the very great quantity of strongly bound flavin in the liver. In fact, the brown color of this organ seems to be due to the flavin radical formed in the charge transfer with the protein. The strong brown color of the liver suggests that a considerable part of the structural proteins is present as a flavin complex, containing the flavin in a free radical condition. It also follows that the tryptophan or protein, complexing with the riboflavin and donating an electron to it, is also present as a free radical.

The charge transfer between protein and riboflavin might have various biological consequences. So, for instance, if the electron, donated by the protein to the flavin, is drawn from an energy band, the resulting hole might make the band conductant. This change would be accentuated if the flavins passed the electron thus accepted to the oxidation system. If the electrons thus lost by the protein were replaced by electrons given off by the dehydrogenated metabolites, DPN or TPN, this would mean that the electron transport goes through the protein molecule itself and does not take place merely on the surface of the protein, as hitherto believed.

In any case, if complex formation between tryptophan and flavin plays a major biological role, then one would expect that substances which form a similar complex with flavins and have a relatively high affinity to it interfere with the normal course of reactions and thus show a definite pharmacological effect. It is interesting to note that serotonin has a high affinity for riboflavin, and so has lysergic acid and bufotenine. These substances, which form similar complexes, have been implicated in normal and pathological mental activity. Possibly the described reactions might give an explanation of their mechanism of action on the molecular level. In this connection it is interesting that the other drugs listed in Table 1 have also been implicated in the problems of the activity of the central nervous system.

* This research was sponsored by the grant H-2042R of the National Heart Institute, a grant from the Commonwealth Fund, the National Science Foundation, the American Heart Association for the Aid of Crippled Children, and the United Cerebral Palsy Associations.

ON A COENZYMATIC FUNCTION OF ESTRADIOL-17β*

BY PAUL TALALAY,† BARBARA HURLOCK, AND H. G. WILLIAMS-ASHMAN

BEN MAY LABORATORY FOR CANCER RESEARCH AND DEPARTMENT OF BIOCHEMISTRY, UNIVERSITY OF CHICAGO

Communicated by Charles Huggins, July 28, 1958

Alterations in the activities of numerous metabolic processes and individual enzymes induced by steroidal estrogens have been described, especially in the highly susceptible tissues of the female genital tract. It would appear, however, that many of these diverse changes are related only indirectly to the primary site of action of estrogens, which has not been disclosed by studies of this nature. The first experimental demonstration of the direct participation of a steroid hormone in an enzymatic reaction of obvious importance in metabolic regulation was made in this laboratory, when it was shown that estradiol-17β mediated a reversible transfer of hydrogen between the oxidized and reduced forms of triphosphopyridine (TPN) and diphosphopyridine (DPN) nucleotides. This hormone-dependent transhydrogenation is catalyzed by a single protein, which was isolated from human placenta, and results from the following coupled reaction in which the steroids function catalytically:

\[
\begin{align*}
\text{Estradiol-17β} + \text{DPN}^+ & \rightleftharpoons \text{Estrone} + \text{DPNH} + \text{H}^+ \\
\text{Estrone} + \text{TPNH} + \text{H}^+ & \rightleftharpoons \text{Estradiol-17β} + \text{TPN}^+ \\
\text{Sum:} & \ \text{TPNH} + \text{DPN}^+ \rightleftharpoons \text{DPNH} + \text{TPN}^+
\end{align*}
\]

If this enzyme is permitted to react with stoichiometric quantities of estradiol-17β, it effects the reduction of either DPN or TPN and thus exhibits the properties typical of a hydroxysteroid dehydrogenase. However, with stoichiometric amounts of pyridine nucleotides, transhydrogenation occurs in the presence of extremely small concentrations (10^{-3} M) of estradiol-17β. The hormone is alternately oxidized and reduced during this process and can be regarded, therefore, as a hydrogen carrier or coenzyme. The ability of this mammalian hydroxysteroid dehydrogenase to catalyze hydrogen transfer between TPNH and DPN, or from

5 E. Haas, Biochem Z., 290, 291, 1937.
9 E. Haas, Biochem Z., 290, 291, 1937.