ON IDENTICAL VANISHING OF HOLOMORPHIC FUNCTIONS IN
SEVERAL COMPLEX VARIABLES*

BY S. BOCHNER

MATHEMATICS DEPARTMENT, PRINCETON UNIVERSITY

Communicated November 7, 1958

We will make some comment on the following recent result of J. J. Kohn. In the
complex space \(C_n: (z_1, \ldots, z_n) \) if \(f_1, \ldots, f_n \) are holomorphic in the unit ball and
have continuous boundary values on the boundary, and if on the boundary the linear combination \(\bar{z}_1f_1 + \ldots + \bar{z}_nf_n \) is 0, then the functions \(f_1, \ldots, f_n \) are identically 0.

1. We denote by \(D \) any bounded circular domain in \(C_n \), by \(B \) its boundary, and
by \(B_0 \) an open neighborhood in \(B \). We do not assume that \(D \) contains the origin in
\(C_n \), but only that \(B_0 \) has a positive distance from it. For any integer \(m \), \(m \neq n \),
we take functions \(f_1, \ldots, f_m \) which are holomorphic in \(D \) and have continuous
boundary values on \(B_0 \). We also take \(m \) polynomials \(P_1, \ldots, P_m \) in \(n \) symbols
\(\xi_1, \ldots, \xi_n \), homogeneous and of a common degree and we denote the degree by \(r \).
Finally, we introduce the function

\[
\Phi(\xi; z) = \sum_{\mu=1}^{m} P_{\mu}(\xi)f_{\mu}(z)
\]

(1)
in the \(2n \) variables \(\xi_1, \ldots, \xi_n; z_1, \ldots, z_n \). If for \(z \in D \) we make the specialization
\(\xi_v = \bar{z}_v, \nu = 1, \ldots, n \), then we obtain a function \(\Phi(z; z) \) which in \(D \) is analytic in
the \(2n \) real variables \(x_1, \ldots, x_n; y_1, \ldots, y_n, z_{\nu} = x_{\nu} + iy_{\nu} \), and has continuous
boundary values on \(B_0 \).

THEOREM 1. (i) If the function \(\Phi(z; z) \) is 0 on \(B_0 \), then the function \(\Phi(\xi; z) \) is
identically 0 in \((\xi; z) \).

(ii) Hence, if the polynomials \(P_1, \ldots, P_m \) are linearly independent over constants,
then \(f_1, \ldots, f_m \) are all identically 0.

Proof: In the case considered by Kohn, \(P_1 = \xi_1, \ldots, P_n = \xi_n \). These polynomials
are independent and his conclusion follows.

In our general case, let \(a = (a_1, \ldots, a_n) \) be a fixed point of \(D \), not the origin in
\(C_n \). If we put \(z_{\nu} = ta_{\nu}, \nu = 1, \ldots, n \), then we have

\[
\Phi(\bar{a}; ta) = \sum_{\mu=1}^{m} P_{\mu}(\bar{a})f_{\mu}(ta),
\]

(2)
and in the complex \(t \)-plane the latter sum is defined and holomorphic in a certain
annulus with center at \(t = 0 \). Because of our assumptions, there is a neighborhood
\(D_0 \) in \(D \) such that for each fixed \(a \in D \), the sum in equation (2) is 0 on an arc of the
\(t \)-annulus. Hence the sum is identically 0 in \(t \), and hence for \(z \in D_0, \Phi(z; z) \) is 0. By a
uniqueness theorem of E. Cartan, the function \(\Phi(\xi; z) \) is identically 0 as claimed.

2. In the case of the unit ball a statement can be made even if the polynomials
\(P_1, \ldots, P_n \) are arbitrary non-homogeneous, and the reader will readily verify that
this statement subsumes Theorem 1, for such a \(D \).

THEOREM 2. If \(D \) is the unit ball, and \(P_1, \ldots, P_m \) are any polynomials in \(\xi_1, \ldots, \xi_n \), then the vanishing of \(\Phi(z; z) \) on a neighborhood \(B_0 \) of the boundary of \(D \) implies
a representation

46
\[\Phi(\zeta; z) = (1 - \zeta_1z_1 - \ldots - \zeta_nz_n)\psi(\zeta; z) \]
\[\text{in which } \psi(\zeta; z) \text{ is a polynomial in } (\zeta_i) \text{ with coefficients which are holomorphic in } D. \]

\text{Proof.} If we put
\[u = 1 - \bar{z}_1z - \ldots - \bar{z}_nz, \]
then \(D \) is defined by \(u > 0 \) and \(B \) by \(u = 0 \). If now we substitute
\[\bar{z}_1 = \frac{1}{z}(1 - u - \bar{z}_2z_2 - \ldots - \bar{z}_nz_n) \]
in \(\Phi(\bar{z}; z) \) we obtain an expression \(A(u, \bar{z}_2, \ldots, \bar{z}_n; z_1, \ldots, z_n) \) which is a polynomial in \(u, \bar{z}_2, \ldots, \bar{z}_n \) with coefficients in \(z_1, \ldots, z_n \) which are holomorphic in a neighborhood \(D_0 \) in \(D \) bordering on an open part of \(B_0 \). For \(u = 0 \) the expression has value 0. Hence we can put
\[A(u, \bar{z}_2, \ldots, \bar{z}_n; z) = uB(u, \bar{z}_2, \ldots, \bar{z}_n; z). \]
and if herein we replace \(u \) by the sum (4), we obtain a representation (3) to the following extent. The object (3) is a polynomial in \((\zeta_i) \) with coefficients which are holomorphic in \(D_0 \), and the equality (3) is valid for \(z \in D_0 \) and \(\zeta_i = \bar{z}_i \). However, we can form the quotient
\[\psi(\bar{z}; z) = \frac{\Phi(\bar{z}; z)}{1 - \bar{z}_1z_1 - \ldots - \bar{z}_nz_n} \]
in the entire unit ball \(D \), and it is analytic in the real variables \((x_i; y_i)\). Therefore, \(\psi(\zeta; z) \) has a holomorphic continuation from \(D_0 \) into \(D \), which completes the proof of the theorem.

* This research was supported by the United States Air Force through the Office of Scientific Research of the Air Force Research and Development Command.

\[^1 \text{J. J. Kohn, } "\text{A Boundary Condition for the Vanishing of } n \text{ Holomorphic Functions in Complex } n\text{-Space}," \text{Proc. Am. Math. Soc.,} 9, 175-177, 1958. \]

\section*{LINEAR AND ALGEBRAICDEPENDENCEOFFUNCTIONSONCOMPACTCOMPLEXSPACESWITHSINGULARITIES*}

\textbf{By S. Bochner}

\textbf{MATHEMATICS DEPARTMENT, PRINCETON UNIVERSITY}

\textit{Communicated November 20, 1958}

We will axiomatize the following situation. Take a (non-compact) complex space \(W^m \), entirely regular, and form the quotient space \(V = W^m/R \) relative to some equivalence relation \(R \), say relative to the action of a group of homeomorphisms. It is the space \(V \) we are interested in. We assume that it is compact, but about its "regularity" (or what may be left of it) we only assume as follows. For some complex dimension \(n \), \(n \leq m \), there is in \(W^m \) a finite number of separate complex \(n \)-cells, each holomorphically immersed, such that the union of their pro-