LINE-ELEMENT FIELDS ON THE TORUS *

BY BRUCE L. REINHART

UNIVERSITY OF MICHIGAN

Communicated by Solomon Lefschetz, November 10, 1958

1. A line-element field on the two-dimensional torus T^2 is a cross-section in the unit tangent bundle (or the projective space bundle if we consider unoriented line elements). Since either of these bundles is the product bundle $T^2 \times S^1$, we may consider such a field as a mapping $F : T^2 \to S^1$, which we shall assume to be of class C^1. We shall parametrize S^1 as follows: Consider T^2 as the quotient of the plane \mathbb{R}^2 by the points with integer coordinates. At each point, let $\theta(v)$ be the angle between the vector v and the positive x axis. Then $\theta/2\pi$ will be taken as parameter on the fiber of the tangent sphere bundle and θ/π on the fiber of the tangent projective space bundle.

Let $F_* : H_1(T^2) \to H_1(S^1)$ be the induced homology mapping. Then for any closed curve C on T^2 lying in the homology class C^*, $F_*(C^*) = \mu \xi$, where ξ is the generator of $H_1(S^1)$ and μ is the winding number of C with respect to the field F. The C^1 homotopy classes of mappings F are in one-one correspondence with the induced maps F_*. In what follows, we shall be interested in the relation between the integral curves of F, considered as defining a differential equation on T^2, and the map F_*.

Lemma 1. If C is a closed integral curve, the homology class C^* lies in the kernel of F_* and, in fact, generates it if F_* is not identically zero.

2. All the closed integral curves of F belong to the same homology class, say C^*. If Γ^* is any other homology class containing a simple closed curve, and $\Gamma \in \Gamma^*$ is a simple closed curve, it follows from elementary properties of the intersection ring of the torus and the Poincaré-Bendixson theorem that all integral curves of F meet Γ.

Lemma 2. There exists a C^1 simple closed curve $\Gamma \in \Gamma^*$ which has everywhere a non-zero tangent vector and is tangent to F at only a finite number of points.

Henceforth, let us denote by Γ a curve in Γ^* having the fewest possible points of tangency. Let $\mu(\Gamma)$ be the winding number of Γ with respect to F.

Theorem. $\mu(\Gamma) = 0$ if and only if $F_* \equiv 0$. In particular, if there is no closed integral curve, these conditions hold.
Proof: If there exists a closed integral curve, then both Γ^* and C^* are in the kernel of F_*, so $F_*=0$. If there is no closed integral curve, let Γ' be a cycle without contact.3 Any integral curve of F meets Γ' infinitely often; let P be a point of accumulation of these intersections. We may then construct a C^1 closed curve C'' which differs from the integral curve only in an arbitrarily small neighborhood of P. C' and Γ' always cross in the same direction; hence their intersection number is non-zero, so that they neither bound nor are homologous. The winding number of Γ' is zero because it is without contact, while that of C'' is zero because it differs from an integral curve by a small amount. Hence $F_*=0$ as before.

Corollary 1. If there exists on T^2 any curve whose winding number with respect to F is non-zero, then there exists a closed integral curve of F.

3. Making use of the cycle Γ, we may generalize the rotation number $\lambda(\Gamma)$, which is classically defined for the case that there exists a cycle without contact.3, 4 Let Γ and Γ_1 form a basis for $H_1(T^2)$, and let $F_*^{\Gamma}(\Gamma) = \mathfrak{i}\xi$, $F_*^{\Gamma}(\Gamma_1) = \mathfrak{j}\xi$.

Proposition. $\mu(\Gamma) = i$ and $\lambda(\Gamma) = -\mathfrak{j}/i$, the latter holding only in case $\mu(\Gamma) \neq 0$.

By considering the number of points of tangency on the cycle Γ, we may classify qualitatively the various kinds of integral curve families of non-oriented line-element fields.4 From this classification, the following corollaries are immediate:

Corollary 2. The non-oriented line element field F is orientable if and only if i and j are both even.

Corollary 3. The number of closed integral curves is at least the greatest common divisor of i and j.

4 This research was supported by the Office of Naval Research.

ON A PROBLEM OF MAZURKIEWICZ CONCERNING THE BOUNDARY OF A COVERING SURFACE

By Peter Seibert

A Member of Rias, 7212 Bellona Ave., Baltimore, Md.

Communicated by Solomon Lefschetz, November 13, 1968

1. In his note1 Mazurkiewicz showed that, by introducing a certain metric on a Riemann covering surface and completing the obtained metric space, a concept of "boundary elements" can be defined which corresponds precisely to the usual notion of transcendental singularities of meromorphic functions defined on the surface. This boundary, considered by itself, is a complete separable metric space. Moreover, Mazurkiewicz proved in the above-mentioned note that the dimension (in the sense of Menger-Urysohn) of the boundary never exceeds the value 2 and raised the question whether covering surfaces with two-dimensional boundaries exist. To our knowledge an answer to this question has, so far, not been given.