LOWER BOUNDS FOR RISK FUNCTIONS IN ESTIMATION*

BY M. M. RAO

CARNEGIE INSTITUTE OF TECHNOLOGY

Communicated by S. Bochner, October 20, 1959

1. Introduction.—Let T be an estimator of θ, of a probability density function $p(x, \theta)$ where $x = (x_1, \ldots, x_n)$ is a vector of observations on a (vector or sequence) random variable (r.v.) X, and θ is an unknown parameter (a constant). If $R(T, \theta) = E_\theta W(T, \theta)$ is the risk function, where E_θ stands for the mathematical expectation when θ is the true parameter, and $W(T, \theta)$ is the loss in choosing T when θ is the true value, then it is of considerable interest in theoretical statistics to obtain the best lower bounds for $R(T, \theta)$, without actually evaluating it. The actual computation of $R(T, \theta)$ is much more difficult since it is related to the solution of the distribution problem of T. If $W(T, \theta)$ is quadratic or $W(T, \theta) = |T - \theta|^p$, $p \geq 1$, several lower bounds have been obtained in the past, most of them, using the unbiased estimators, T of θ. In this paper, all these results are unified and extended without assuming unbiasedness. Non-sequential problems only are considered. As usual, the r.v.'s are denoted by capitals, and the values assumed by them by the corresponding small letters.

2. Assumptions.—Let $\theta = (\theta_1, \ldots, \theta_k)$ be a point in A, a bounded non-empty subset of a real Euclidean k-space. For any x in \mathcal{S}, a real Euclidean space and θ in A, there exists a density $p(x, \theta)$ with respect to a fixed σ-finite measure μ defined on the σ-algebra of subsets of \mathcal{S}. It will be assumed that the carrier of $p(x, \theta)$, say $S(\subset \mathcal{S})$, remains invariant for all θ in A. Further the following regularity conditions are imposed on $p(x, \theta)$.

Condition I: All partial derivatives of $p(x, \theta)$ with respect to θ_i ($i = 1, \ldots, k$) exist for all x in \mathcal{S} and θ in A. (For later analysis, arrange these derivatives in some order. For definiteness, group the first order derivatives first, then the second order etc., and within groups use a lexicographic ordering. Then eliminate all those terms that are linearly dependent on the preceding ones, and divide the resulting sequence by $p(x, \theta)$. Denote the i^{th} term by $D_i(x, \theta)$ or D_i for short.

Condition II: For each i, $|p(x, \theta)D_i(x, \theta)| < M_i(x)$ and $\int S M_i(x) d\mu < \infty$ all θ in \bar{A} (closure of A).

Condition III: The r.v.'s D_{ij}, $i = 1, 2, \ldots$, are square integrable $(p(x, \theta)d\mu)$.

Condition IV: If the column vector $T = (T_1, \ldots, T_k)'$ (prime for transpose) is an estimator of θ', where the T_i have a finite second moment and $E_\theta T_i = \theta_i + b_i(\theta) = \alpha_i(\theta)$ with $b_i(\theta)$ as bias, then all the partial derivatives of $\alpha_i(\theta)$ exist with respect to the θ_i.

It is possible to state several other sets of conditions in place of the set I–IV above.

3. Quadratic Loss.—The loss functions $W(T, \theta)$ to be considered here are of the following two types.

$$W_{\delta}(T, \theta) = [\sum_{i=1}^{k} (T_i - \theta_i)^{\delta}]^{1/\delta}, 1 < \delta \leq 2, \text{and } 2 < \delta \leq 4,$$ \hspace{1cm} (1)

$$W_{\delta}(T, \theta) = \sum_{i,j=1}^{k} (T_i - \theta_i)(T_j - \theta_j)a_{ij},$$ \hspace{1cm} (2)
where a_i are arbitrary real numbers (non-stochastic and known). Note that if T is unbiased, then $R_a(T, \theta) = E_aW_a(T, \theta)$, is the reciprocal of the familiar concentration ellipsoid given by Cramér.\(^3\)

Let $f_m^{(j)} = D_{(m-1)k+j}$, $j = 1, \ldots, k$, and $f_m = (f_m^{(1)}, \ldots, f_m^{(k)})$, $m = 1, 2, \ldots$ (If the sequence of column vectors $\{f_m\}$ is finite, and the last vector happens to be incomplete, then add zeros to complete it.) Let L^2 be the space generated by all finite linear combinations of $\{f_m\}$, i.e., f_m, f_n in L^2 implies $Af_m + Bf_n$ in L^2 for all $(k \times k)$ constant matrices A and B. If the resulting space is not complete, add the limit points of all such combinations under the norm $\|f_m\|^2 = \text{tr}(f_m f_n) = \sum_{i=1}^k E_{\theta}$.

Using the classical Schmidt procedure the $\{f_m\}$ sequence can be orthogonalized, and denote by $\{\varphi_n\}$, the orthonormal sequence so obtained. Let $A_n = (T, \varphi_n)$. From the above assumptions, A_n can be calculated explicitly. If $\delta = 2$ in (1), one obtains the following

Theorem 1. Suppose the density function $p(x, \theta)$ satisfies the conditions I–IV of section 2. Let T' be a (row) vector of estimators and θ the true parameter value in A. If $R(T, \theta) = E_\theta W(T, \theta)$ where $W(T, \theta)$ is given by (1) with $\delta = 2$, or (2), then the corresponding lower bounds are given by

$$R_2(T, \theta) \geq \sum_{n=1}^\infty \text{tr}(A_n A_n'),$$

$$R_\delta(T, \theta) \geq \sum_{n=1}^\infty a' (A_n A_n') a,$$

where $a' = (a_1, \ldots, a_n)$. The lower bounds in (3) and (4) are reached if and only if $(T - \theta')$ lies in L^2. The minimum risk estimator is essentially unique.

The above result enables one to obtain the following interesting

Corollary 1.1 In order that the lower bounds in (3) or (4) (and hence those given by others\(^2-4\)) for $R(T, \theta)$, $\delta = 2$, may be reached, it is necessary that the estimator T of θ' be unbiased.

Corollary 1.2. If a sufficient statistic, for θ, exists, then, when $T - \theta'$ lies in L^2, T is a (Borel) function of the sufficient statistic.

The above statements are proved with the help of certain simple facts of the L^2 space. In particular, a vector analog of the Bessel-inequality is employed.

It will be noticed that all the classical results\(^2-4\) on these inequalities are contained in (3). If T is unbiased, the results on the concentration ellipsoid\(^2-8\) are subsumed under the bound given in (4).

In the case $1 < \delta < 2$, many difficulties arise to give bounds corresponding to (3) or (4), and restrictive assumptions on $p(x, \theta)$ are needed. If δ is of a certain form, then the restrictions are somewhat reasonable.

Theorem 2. Let $\delta = 2q/(2q - 1)$, $q \geq 1$ integer, and μ be the Lebesgue measure. Let $D_j\sqrt{p(x, \theta)}$ and $(T_j - \theta_j)\sqrt{p(x, \theta)}$ be in $L^2(S_x, \mu)$ for each i, j (i.e. $\int_S D_j p(x, \theta)^{1/2} d\mu$, and $\int_S (T_j - \theta_j)^p p(x, \theta)^{1/2} d\mu$ exist), and suppose that $M = l \in b p(x, \theta)^{(q-2)/2} < \infty$, for all θ in A. If the conditions I–IV of section 2 hold, then
$R_\theta(T, \theta) = E_\theta[\sum_{i=1}^{\infty} (T_i - \theta_i)^2]^{1/2} \geq M^{-1}[\sum_{n=1}^{\infty} |A_n|^{2/(2q)}, (5)$

where $|A|^{-2} = \text{tr}(AA')$, A_n is defined before, and $A^q = (a_{ij})^q$ if $A = (a_{ij})$.

Remark: If $q = 1$, then $\delta = 2$, and $M = 1$ so that (5) coincides with (3). Analogous result, if $2 < \delta \leq 4$, is given by the following

Corollary 2.1. Let the risk function be $\bar{R}_\theta(T, \theta) = E_\theta[\sum_{i=1}^{\infty} (T_i - \theta_i)^2]^{\delta}$, with $1 < \delta \leq 2$, and the density function $p(x, \theta)$ satisfy a Lipschitz condition of order α ($0 < \alpha \leq 1$). Let $\delta = 2q/(2q - 1), q \geq 1$ integer, and $D_i\sqrt{p(x, \theta)}$ and $(T_i - \theta_i)$ $\sqrt{p(x, \theta)}$ be in L^q with μ as Lebesgue measure. If the conditions I–IV of section 2 hold, then

$$\bar{R}_\theta(T, \theta) \geq (\int_\mathbb{R} p(x, \theta)\delta^{-1}(\mu))^{-1}[\sum_{n=1}^{\infty} |A_n|^{2/(2q)}]^{\delta/q}. (6)$$

The theorem and its corollary are proved upon employing the result of Theorem 1, and an extension of a special form of Hausdorff-Young Theorem for the vector variables.

The requirement that μ be a Lebesgue measure is not quite essential, and μ can be, for instance, a counting measure. However, it is necessary that it be translation invariant to obtain the bounds (5) and (6).

If δ is allowed to vary continuously, further restrictions on $p(x, \theta)$ should be imposed. That bound will not be presented here as the result obtained is not very pleasing.

4. Convex Loss: The most interesting type of loss functions can be subsumed under the following type. Let $y = t - \theta$, and $W_\theta(y)$ stand for a function whose argument depends only on $(t - \theta)$, but which may contain θ in some other manner. Let $W_\theta(y)$ satisfy the conditions: (a) $W_\theta(y) \geq 0$, for all θ in A, and y, (b) $W_\theta(0) = 0$, (c) $W_\theta(y) = W_\theta(-y)$, (d) $W_\theta(y)$ is convex in y for each θ in A, and is measurable in both y and θ, and (e) $E_\theta W_\theta(T) < \infty$ for all θ in \bar{A}, where $T = T - \theta$, and T is an estimator of the (single) parameter θ.

It will be noted that, if $W_\theta(y)$ satisfies the conditions (a)–(e), there exists a function $V_\theta(y)$ satisfying (a)–(e) and such that $V_\theta^k(y) = W_\theta(y)$ for some $k (\geq 1)$. Let k_0 be the largest such value of k.

Theorem 3. Let T be an estimator of θ, in A, the true parameter. Suppose $p(x, \theta)$ satisfies conditions I–IV of section 2, for $i = 1$ (i.e. there is only D_1), and $D_i\xi$ is integrable $(p(x, \theta)d\mu)$, where $k^{-1} + k'^{-1} = 1$, and $1 \leq k \leq k_0$. If the loss function $W_\theta(y)$ satisfies the conditions (a)–(e) above, then

$$R(T, \theta) = E_\theta[W_\theta(T)] \geq W_\theta\left[\frac{1 + \mu'(\theta)}{E_\theta[|D_1|]}\right][E_\theta[|D_1|]/E_\theta[|D_1|]^{k^{-1}}(|D_1|^{k_0})]^{k}, (7)$$

where if $k_0 = 1$, $E_\theta^{k^{-1}}[D_1]^{k_0}$ is taken as the ess. sup. of $|D_1|$, and $b(\theta)$ is, as usual, the bias with $b'(\theta) = \frac{db(\theta)}{d\theta}$.

This theorem is proved using several inequalities on convex functions, and then showing that the second factor in square brackets on the right of (7) is a monotone
increasing function of k. If $W(y) = |y|^2$, (7) reduces to the classical Cramér-Rao inequality.3, 4 Other specializations lead to certain other results.

5. An Extension: A further extension of the convex loss is the following which includes some results of Barankin.1 Let $\varphi(t)$ and $\psi(t)$ be two non-negative symmetric convex functions such that $\varphi(0) = \psi(0) = 0$, and

$$|ab| \leq \varphi(a) + \psi(b),$$

for any real a and b. (8)

It is seen that φ and ψ satisfy the conditions (a)-(e) of the preceding section. Define the risk function as

$$R_\varphi(T, \theta) = \|T\|_\varphi = \sup_{\mu} \int_S |\hat{d}_\mu| p(x, \theta) d\mu,$$

with $\int_S \varphi(d_\mu) p(x, \theta) d\mu \leq 1. (9)$

$(\|D_\varphi\|_\psi$ is defined similarly.) If $\varphi(u) = |u|^k/k$ and $\psi(u) = |u|^k/k'$ where $k^{-1} + k'^{-1} = 1$, and T is unbiased, then $R_\varphi(T, \theta) = \|T\|_\varphi = k'^{1/k}T_k = k^{1/k}R_k(T, \theta)$. Barankin1 has obtained lower bounds for $R_k^{1/k}(T, \theta)$. The risk function in (9), therefore, includes his.

Let L^r and L^s be the classes of all r.v.'s T and D_1 and all of their finite linear combinations such that $\|T\|_\varphi$ and $\|D_1\|_\varphi$ are finite. It is noted that these spaces are complete (or are completed by adding the limit points under their respective norms) linear spaces.

Theorem 4. Suppose $M(T)$ is the subspace of L^r that contains the elements $T(= T - \theta)$, where T is an estimator of θ, of $p(x, \theta)$. Then (i) $M(T)$ is non-empty if and only if there exists a positive constant K (independent of n) such that for every set of r.v.'s D_{11}, \ldots, D_{1n} in L^k, where $\varphi(u)$ and $\psi(u)$ satisfy (9) and $\varphi(2u) \leq C\varphi(u)$, where C is a finite positive constant independent of u, and for any set of n real numbers a_1, \ldots, a_n, the following inequality obtains:

$$\left| \sum_{j=1}^{n} a_j a^{ij}(\theta) \right| \leq K \left\| \sum_{j=1}^{n} a_{ij} D_{ij} \right\|_{\psi},$$

(10)

where $a(\theta) = E_\theta(T)$, and $a^{ij}(\theta) = \frac{d^2 a(\theta)}{d\theta^j}$, (ii) for every T in $M(T)$, $\|T\|_\varphi \geq C_0$, where $C_0 = g lb K$ satisfying (10), and (iii) if there is a T^* in $M(T)$ such that $\|T^*\|_\varphi = C_0$ then it is essentially unique.

This theorem is a consequence of some results in functional analysis and the Zaanen representation theorem4 for linear functionals in the L^r spaces.

The details of the proofs, illustrations, and some extensions will be published separately.

7 Zygmund, Antoni, Trigonometrical Series (Warsaw: 1935).