THE PATHS OF RAYS OF LIGHT IN GENERAL RELATIVITY

BY LUTHER P. EISENHART

PRINCETON UNIVERSITY

Communicated May 10, 1960

1. This paper deals with a space V_4 of four dimensions which admits minimal geodesics as paths of rays of lights, that is curves for which

$$ g_{ij} \frac{dx^i}{ds} \frac{dx^j}{ds} = 0 \quad (1) $$

This means that the symmetric metric tensor g_{ij} is not positive definite.

The equation of geodesics in V_4 is

$$ \frac{d^2x^i}{ds^2} + \left\{ \begin{array}{c} \frac{dx^j}{ds} \\ \frac{dx^k}{ds} \end{array} \right\} \frac{dx^i}{ds} = 0 \quad (2) $$

The second term in this equation stands for the sum of terms as j and k take the values 1 to 4. This convention is used throughout this paper, namely that when in a term the same letter enters as a subscript and superscript, it means that the one term stands for the sum of terms as the index takes the values 1 to 4.

We put

$$ \frac{dx^i}{ds} = \lambda^i \quad (3) $$

where λ^i are the contravariant components of a vector, in terms of which equation (2) of geodesics is

$$ \left(\frac{\partial \lambda^i}{\partial x^j} + \left\{ \begin{array}{c} i \\ j \end{array} \right\} \lambda^k \right) \lambda^j = 0 $$

which we write in the form

$$ \lambda^i_j \lambda^j = 0 \quad (4) $$

where

$$ \lambda^i_j = \frac{\partial \lambda^i}{\partial x^j} + \lambda^k \left\{ \begin{array}{c} i \\ j \end{array} \right\} $$

which is the covariant derivative of λ^i with respect to x^j.2

Here, and throughout this paper, a component of a vector or other tensor followed by a comma and an index denotes the covariant derivative of the quantity with respect to x with this index.

2. The covariant components λ_i of the vector x^i are given by

$$ \lambda_i = g_{ik} \lambda^k \quad (5) $$

Since the covariant derivative of g_{ik} is equal to zero,3 when equation (4) is multiplied by g_{ik} and summed for i, the result is

$$ g_{ik} \lambda_i \lambda^j = (g_{ik} \lambda^j)_j \lambda^j = \lambda_k \lambda^j = 0 \quad (6a) $$

1093
which when \(k \) is replaced by \(i \) becomes

\[
\lambda_{ij} \lambda^j = 0
\]
(7)

where

\[
\lambda_{ij} = \frac{\partial \lambda_j}{\partial x^i} - \lambda_k \left\{ \frac{k}{ij} \right\}
\]
(8)

which is the covariant derivative of \(\lambda_i \) with respect to \(x^i \).

By means of equation (3) the equation (1) becomes

\[
g_{ij} \lambda^j \lambda^i = 0
\]
(9)

which in accordance with equation (6) becomes

\[
\lambda^i \lambda_i = 0.
\]
(10)

3. When equation (10) is differentiated covariantly with respect to \(x^i \) the result is

\[
\lambda_i \lambda^i + \lambda^i \lambda_j = 0.
\]

Since the covariant derivative of \(g^{ik} \) is equal to zero, we have

\[
\lambda^i \lambda_j = \lambda_i (g^{ik} \lambda_k)_j = \lambda_i g^{ik} \lambda_k,j = \lambda^i \lambda_k,j.
\]

Hence the above equation is equal to twice the equation

\[
\lambda_i \lambda^i = 0.
\]
(11)

In accordance with equation (10), equations (7) and (11) are satisfied by

\[
\lambda_{ij} = a \lambda \lambda_j + b \mu \mu_j + c \lambda \mu_i
\]
(12)

where \(a, b, \) and \(c \) are constants and \(\mu_i \) is a vector such that

\[
\lambda^i \mu_i = 0.
\]
(13)

When equation (12) is multiplied by \(g^{ik} \) and summed for \(i \) and it is noted that the covariant derivative of \(g^{ik} \) is equal to zero, the result is

\[
g^{ik} \lambda_{ij} = (g^{ik} \lambda_k)_j = \lambda^k_j = a \lambda^k \lambda_j + b \lambda^k \mu_j + c \lambda \mu^k.
\]

When in this equation \(k \) is replaced by \(i \), the result is

\[
\lambda^i_j = a \lambda^i \lambda_j + b \lambda^i \mu_j + c \lambda \mu^i.
\]
(14)

We take analogously to equation (12), the equation

\[
\mu_{ij} = e \mu \mu_j + f \mu \lambda_j + g \lambda \mu_i
\]
(15)

where \(e, f, \) and \(g \) are constants.

When equation (13) is differentiated covariantly with respect to \(x^i \) and in the resulting equation

\[
\lambda^i_{j} \mu_k + \lambda^i \mu_{i,j} = 0
\]

\(\lambda^i_j \) and \(\mu_{i,j} \) are replaced by their expressions from (14) and (15), by means of equations (10) and (13), the result is
\[\mu_i \mu_i = 0. \]

When this equation is differentiated covariantly with respect to \(x^i \) the result is to within the factor 2 the equation

\[\mu_i \mu_i' = 0 \]

which is satisfied by the expression (15) for \(\mu_i \mu_j \) by means of equations (13) and (16).

4. When equation (12) is differentiated covariantly with respect to \(x^i \) and in the resulting equation

\[\lambda_{i,jk} = a_2 \lambda_{i,k} + a_1 \lambda_{j,k} + b \mu_{i} \lambda_{j,k} + c \mu_{j} \lambda_{i,k} + b \lambda_{i,j} + c \lambda_{i} \mu_{j,k} \]

the covariant derivatives of the \(\lambda_i \)'s are replaced by expressions of the type (12), the result is

\[\lambda_{i,jk} = 2a_2 \lambda_{i} \lambda_{j} \lambda_{k} + 2ab \lambda_{i} \lambda_{j} \mu_{k} + (ab + ac) \lambda_{i} \mu_{j} \lambda_{k} + b^2 \lambda_{i} \mu_{j} \mu_{k} \]

\[+ 2ac \mu_{i} \lambda_{j} \lambda_{k} + bc \mu_{i} \lambda_{j} \mu_{k} + (bc + c^2) \mu_{i} \mu_{j} \mu_{k} + \lambda_{i} \mu_{j} + c \lambda_{i} \mu_{j,k} \].

When this expression for \(\lambda_{i,jk} \) and the one obtained from it on interchanging \(j \) and \(k \) are substituted in the equation

\[\lambda_{i,jk} - \lambda_{i,kj} = \lambda_{i} R_{ijk}^{h} \]

the result is

\[\lambda_{i,R}^{h} = (ab - ac) \lambda_{i} \lambda_{j} \mu_{k} - (ab - ac) \lambda_{i} \mu_{j} \lambda_{k} + c \lambda_{i} \mu_{j} \mu_{k} \]

\[+ c^2 \mu_{i} \mu_{j} \lambda_{k} + b \lambda_{i} (\mu_{j,k} - \mu_{i,j}) + c \lambda_{i} \lambda_{j,k} - \lambda_{i} \mu_{j,k}. \]

When the expressions for the covariant derivatives of \(\lambda_i \)'s of the type of equation (15) are substituted in this equation, the result is

\[\lambda_{i,R}^{h} = (ab - ac + bg - bf + cg) \lambda_{i} (\lambda_{i} \mu_{k} - \lambda_{k} \mu_{i}) \]

\[+ (ce - e^2)\mu_{i} (\lambda_{i} \mu_{k} - \lambda_{k} \mu_{i}), \]

For \(f = g = 0 \) and \(ab - ac \) replaced by \(ab \) this equation becomes

\[\lambda_{i,R}^{h} = ab \lambda_{i} (\lambda_{i} \mu_{k} - \lambda_{k} \mu_{i}) + (ce - e^2)\mu_{i} (\lambda_{i} \mu_{k} - \lambda_{k} \mu_{i}). \]

Introduce vector \(\nu^{h} \) for which

\[\nu^{h} \lambda_{h} = 1. \]

When \(\nu^{h} \lambda_{h} \) is inserted as a multiplier of the right-hand member of equation (19), the resulting equation is satisfied by

\[R_{i,jk}^{h} = \nu^{h} [ab \lambda_{i} (\lambda_{i} \mu_{k} - \lambda_{k} \mu_{i}) + (ce - e^2)\mu_{i} (\lambda_{i} \mu_{k} - \lambda_{k} \mu_{i})]. \]

When equation (21) is contracted for \(h \) and \(k \), the result is

\[R_{ij} = ab \nu^{h} \lambda_{i} \lambda_{j} - ab \lambda_{i} \mu_{j} + (ce - e^2)\mu_{i} (\lambda_{i} \nu^{h} \mu_{h} - \mu_{j}). \]

When this equation is multiplied by \(g^{ij} \) and summed for \(i \) and \(j \) in accordance with equations (10), (13), and (16) the result is

\[R = g^{ij} R_{ij} = 0. \]

5. Einstein stated\(^2\) that the law of propagation of light according to general
relativity is characterized by the equation
\[ds^2 = g_{ij}dx^idx^j = 0, \]
from which our equation (1) follows.

The Einstein equation of general relativity for light is
\[
R_{ij} - \frac{1}{2}g_{ij}R = -k\sigma g_{ij}\frac{d\chi^i}{ds}g_{jm}\frac{d\chi^m}{ds}
\]
where \(k \) is a constant connected with the Newtonian gravitation constant and \(\sigma \) is the density of ponderable matter at rest. This equation becomes by means of equation (3)
\[
R_{ij} - \frac{1}{2}g_{ij}R = -k\sigma\lambda_i\lambda_j.
\] (24)

When this equation is multiplied by \(g^{ij} \) and summed for \(i \) and \(j \), in accordance with the equation\(^8\)
\[g^{ij}g_{ij} = 4 \]
and the fact that \(\lambda^i \) is a null-vector, the result is
\[R = 0 \] (25)
and equation (24) becomes
\[R_{ij} = -k\sigma\lambda_i\lambda_j. \] (26)

We replace equation (22) by the two equations
\[R_{ij} = ab\nu^i\nu^j\lambda^i\lambda^j \] (27)
and
\[ab\nu^i\nu^j + (e^2 - ce)e\nu^i\nu^j = 0. \] (28)

When \(i \) and \(j \) are interchanged in this equation, the result is
\[ab\nu^i\nu^i + (e^2 - ce)e\nu^i\nu^i = 0 \]
which holds since equation (22) should be symmetric in \(i \) and \(j \). When this equation is subtracted from equation (28) the result is
\[[ab - (e^2 - ce)e]\nu^i = 0. \]
Accordingly we take
\[(e^2 - ce)e\nu^i = ab \] (29)
and equation (28) becomes
\[ab\nu^i\nu^j + ab\nu^i\nu^j + \mu\nu^i = 0. \] (30)
When this equation is multiplied by \(\nu^i\nu^j \) and summed for \(i \) and \(j \), in accordance with equation (20) the result is
\[ab\nu^i\nu^j + ab\nu^i\nu^j + \nu^i\nu^j\nu^i\nu^j = 0. \]
from which it follows that
\[v^\mu \nu = -2ab \quad (31) \]
and equation (27) becomes
\[R_{ij} = -2a^2b^2 \lambda i \lambda j. \quad (32) \]
This equation becomes the Einstein equation (26) for
\[2a^2 = k \quad (33) \]
which completes the solution.

3 R. G., equation (11.8), p. 28.
4 R. G., equation (11.3), p. 27.
8 Ibid., equations (96), p. 84, and (102), p. 88.

ON TAYLOR'S THEOREM IN SEVERAL VARIABLES*

BY HOWARD OSBORN

UNIVERSITY OF ILLINOIS AND UNIVERSITÉ DE STRASBOURG

Communicated by J. L. Doob, May 3, 1960

If an analytic system of partial differential equations in \(n \) independent variables \(x^1, \ldots, x^n \) is in involution in the sense of Cartan at the point \(P \) with coordinates \((0, \ldots, 0) \), then for any dependent variable \(f \) the values
\[f(P), \quad (\partial f/\partial x^1)(P), \quad (\partial^2 f/\partial x^i \partial x^j)(P), \ldots \]
are uniquely determined by appropriate Cauchy data, and one can apply the Cauchy-Kowalewski theorem to prove that the resulting power series in \(x^1, \ldots, x^n \) converges in some neighborhood of \(P \); this is essentially the Cartan-Kähler theorem. However, it frequently happens that the given system occurs naturally in terms of certain vector fields \(L_1, \ldots, L_n \) other than \(\partial/\partial x^1, \ldots, \partial/\partial x^n \); for example, \(L_1, \ldots, L_n \) may correspond to characteristics. In this case \(f(P), L_1 f(P), L_1 L_2 f(P), \ldots \) are also uniquely determined as before, and one would like to use these values directly to develop \(f \) in a power series without recourse to an \textit{ad hoc} coordinate system.

If the vector fields \(L_1, \ldots, L_n \) are linearly independent and commute with one another, then there exist unique analytically independent functions \(y^1, \ldots, y^n \) in a neighborhood of \(P \) such that \(y^1(P) = \ldots = y^n(P) = 0 \) and \((dy^1, \ldots, dy^n) \) is the dual of \((L_1, \ldots, L_n) \); in this case \(L_1 = \partial/\partial y^1, \ldots, L_n = \partial/\partial y^n \) and there is no problem. In general the dual of \((L_1, \ldots, L_n) \) contains differential forms which