This work was supported by a grant from the National Science Foundation.

Part of the computation work was carried out at the M. I. T. Computation Center.

2 Buergcr, M. J., "The determination of the crystal structure of pectolite, CaoNaH5O6,"
SSSR, 107, 463-466 (1956).
4 Buergcr, M. J., and N. Niizeki, "The correction for absorption for rod-shaped single crystals,"
6 Busing, W. R., and H. A. Levy, "A crystallographic least-squares refinement program for the

ON BLOCKS OF REPRESENTATIONS OF FINITE GROUPS

BY RICHARD BRAUER*

HARVARD UNIVERSITY

Communicated October 20, 1961

The blocks of representations of a finite group G have been studied in several
previous papers. Here, a number of further results are given which are needed for
application of this theory to an investigation of the structure of groups of even
order.

1. Let G be a group of finite order g and let p be a fixed prime number. The
irreducible characters $\chi_1, \chi_2, \ldots, \chi_k$ are distributed into disjoint sets, the p-blocks
of G. We shall denote by G^p the set of p-regular elements of G and by χ^p_μ the
restriction of χ_μ to G^p. If B is a fixed block, the functions χ^p_μ with $\chi_\mu \in B$
generate a module M_B with regard to the ring \mathbb{Z} of integers. By a basic set φ_B for B, we mean
any basis $\{ \varphi_\mu \}$ of M_B. Thus,

$$\chi^p_\mu = \sum \phi_\mu \varphi_\mu \quad \text{for} \quad \chi_\mu \in B$$

with $d_{\mu \rho} \in \mathbb{Z}$. For $\varphi_\mu, \varphi_\rho \in \varphi_B$, set

$$c_{\mu \rho} = \sum \phi_\mu \phi_\rho$$

the sum extending over all μ with $\chi_\mu \in B$. Hence $(c_{\mu \rho})$ is the matrix of a quadratic
form Q. If φ_B is replaced by another basic set, Q is replaced by an equivalent
quadratic form.

It is well known that the irreducible modular characters in B form a basic set.
In this case, the $d_{\mu \rho}$ are the decomposition numbers and the $c_{\mu \rho}$ are the Cartan in-
variants of B. We shall use the same terms in the case of an arbitrary basic set.

Let d be the defect of B. We consider p^d as fixed and shall say that a quantity is
bounded if it is bounded for all p-blocks of defect d of all finite groups with bounds
depending only on p^d. In this sense, the dimension r of M_B and $\det(c_{\mu})$ are bounded.
Hence, Q belongs to one of a finite number of classes of positive definite quadratic forms. As a consequence, we have

Theorem 1. There exist bounds $\gamma = \gamma(p^d)$ depending only on p^d such that for each p-block B of defect d of a finite group, a basic set can be chosen such that the Cartan invariants are at most equal to γ.

We remark that the union of basic sets φ_B for all p-blocks B of G is still linearly independent.

2. Let P be a p-element of G, i.e., an element whose order p^s is a power of p. By the *section* S_P of P, we mean the set of elements of G conjugate to an element PR, where R is a p-regular element of the centralizer $C(P)$ of P in G: $R \in C(P)^o$. Thus, if P ranges over a set of representatives for the conjugate classes of p-elements in G, each element of G belongs to exactly one S_P. If $R \in C(P)^o$, we can set

$$x_\mu (PR) = \sum_b \sum_\rho d_{\mu \rho}^P \varphi_\rho^P (R).$$

Here, b ranges over the p-blocks of $C(P)$ and, for each b, ρ ranges over the indices of the elements φ_ρ^P of a basic set φ_b. Moreover, the $d_{\mu \rho}^P$ are algebraic integers of the field of p^sth roots of unity which do not depend on R. We call the $d_{\mu \rho}^P$ the generalized decomposition numbers.

Each p-block b of $C(P)$ determines a p-block $B = bG$, cf. the papers quoted in reference 1. If we consider only $x_\mu \in B$ in (3), it suffices to let b range over those blocks of $C(P)$ for which $bG = B$. For $c_{\mu \rho}^P$, $\varphi_\rho^P \in \varphi_b$,

$$\sum_\mu d_{\mu \rho}^P c_{\mu \rho}^P = c_{\rho \rho}^P,$$

where μ ranges over the indices for which $x_\mu \in B$ and where $c_{\mu \rho}^P$ is the Cartan invariant of b. On the other hand, for the same range of μ,

$$\sum_\mu d_{\mu \rho}^P d_{\mu \rho'}^P = 0$$

when P and P' are two nonconjugate p-elements or when $P = P'$ but φ_{μ}^P, φ_{ν}^P belong to basic sets of two distinct p-blocks of $C(P)$.

If $bG = B$, the defect d_b of b is at most equal to the defect d of B. If the basic set φ_b is chosen in accordance with Theorem 1, $|c_{\mu \rho}^P| \leq \gamma(p^d)$. It follows from (4) that we have only finitely many possibilities for the matrix $(d_{\mu \rho}^P)$. This leads to

Theorem 2. For a given p^d, there exist a finite number of possible types of p-blocks B of defect d. For each type, the set of generalized decomposition numbers $\{d_{\mu \rho}^P\}$ is completely determined assuming that suitable basic sets are used. If the group $C(P)$ is given, the values of the $x_\mu \in B$ for elements of the section of P are determined.

We may assume that, for a fixed type, the defect group D of the block is given as an abstract p-group and that it is also given which conjugate classes of D are "fused" in G, i.e., are included in the same conjugate class of G. If P is not conjugate to an element of D, then each $x_\mu \in B$ vanishes on S_P. In the last part of Theorem 2, it is assumed that we know to which element of D (if any) P is conjugate.

3. Estimates for the number of types for given p^d obtainable by the previous method would be extremely large. There are other methods available which also give Theorems 1 and 2 and which yield better results. These are based on the follow-
ing remarks: 1. The discussion of the Cartan invariants of $C(P)$ can be reduced to the same discussion for $C(P)/\{P\}$. If $P \neq 1$, the defect is reduced. We can therefore use an inductive procedure to obtain the possibilities for the $d_{\rho\mu}$ with a fixed $P \neq 1$. 2. Consider the $d_{\rho\mu}$ with fixed ρ and P as the coefficients of a column b_μ^P with μ as row index. The columns with coefficients in \mathbb{Z} which are orthogonal to all columns b_μ^P with $P \neq 1$ form a \mathbb{Z}-module X. By (5), $b_\mu^1 \subseteq X$. Any \mathbb{Z}-basis of X can be used for the set of columns b_μ^1, assuming a suitable choice of the basic set. 3. In addition to (4) and (5), there are a number of other results which facilitate the discussion. In particular, congruences for the columns b_μ^P can be established. Also, Theorems 4 and 5 of the third paper quoted in reference 1 can be used; these results can be refined further.

4. One of the p-blocks of G must contain the principal character $\chi_0 = 1$. We term this block the principal block B_0 of G and state a number of results for B_0.

Theorem 3. Let b be a block of a subgroup H of G, let T be its defect group in H and assume that the centralizer of T in G is included in H so that b^G is defined as a block of G. Then b^G is the principal block B_0 of G if and only if b is the principal block of H.

It follows from this that for $B = B_0$, the sum \sum_b in (3) consists only of the term $b = b_0$. This simplification is of importance for the applications.

By the p-regular core $K_p(G)$ of a group G, we mean the unique maximal normal subgroup of G of an order prime to p.

Theorem 4. The intersection of the kernels of the irreducible representations in the principal p-block B_0 of G is the p-regular core $K_p(G)$ of G.

This means that the principal p-block of G can be identified with that of $G/K_p(G)$.

Corollary. If n is the sum of the degrees of the irreducible characters $\chi_\rho \subseteq B_0$, then

$$n \leq (G:K_p(G)) \leq [2n]!.$$

(6)

Indeed, the algebraic conjugates of $\chi_\rho \subseteq B_0$ lie again in B_0 and hence $\sum \chi_\rho \subseteq B_0$ is a rational character belonging to a faithful representation of $G/K_p(G)$. Now the right-hand part of (6) is obtained from a theorem of I. Schur\(^1\) (even in a somewhat sharper form). The other part is trivial.

Theorem 5. If B is the principal block, the basic set φ_B can be chosen such that the constant 1 appears in it and that all Cartan invariants $c_{\rho\mu}$ belonging to it lie below a bound $\gamma_0(p^n)$ where p^n is the highest power of p dividing g.

\(^*\) This research was supported by the United States Air Force under Contract No. AF 49 (638)-287 monitored by the Air Force Office of Scientific Research of the Air Research and Development Command.

2 Using results from the theory of quadratic forms, explicit estimates for $\gamma(p^d)$ can be given, but they are probably much too large.

3 Schur, I., Sitzungsberichte der Preussischen Akademie Berlin, Mathematisch-Naturwissenschaftliche Klasse, 77–91 (1905).