BOUNDS OF ANALYTIC FUNCTIONS OF TWO COMPLEX VARIABLES IN DOMAINS WITH THE BERGMAN-SILOV BOUNDARY

By J. Śladkowska

DEPARTMENT OF MATHEMATICS, STANFORD UNIVERSITY

Communicated by D. C. Spencer, June 12, 1962

Let \mathfrak{B} be a bounded domain in the space \mathfrak{C} of two complex variables $z_1, z_2, z_3 = x_3 + iy_3, \kappa = 1, 2.$ (κ assumes everywhere the values 1 and 2.) Its boundary $\partial \mathfrak{B}$ consists of finitely many segments $\partial^j, j = 1, \ldots, n$, of analytic surfaces. Each ∂^j is given by the parametric representation

$$ z_3 = h_{\lambda_j}(Z, \lambda_j), \quad (1) $$

where h_{λ_j} are continuously differentiable functions of $Z = \{Z_k, \lambda_k\}$ in the set $\{Z_k, \lambda_k\} | Z_k | \leq 1, \lambda_k \in (0, 2\pi)$, $(1a)$ $(1a = \text{hypothesis} (1a))$ and

$$ (h_{\lambda_1}(Z', \lambda'), h_{\lambda_2}(Z', \lambda')) \neq (h_{\lambda_1}(Z, \lambda_1), h_{\lambda_2}(Z, \lambda_i)) \quad (2) $$

for $(Z', \lambda') \neq (Z, \lambda), |Z'\rangle, |Z\rangle < 1 \text{ (1b).}$ For every point $(z_1, z_2, z_3), z_3^0 = h_{\lambda_j}(Z, \lambda_j), |Z| < 1$, and for every sufficiently small neighborhood \mathfrak{U} of this point, there exists $\alpha > 0$ such that the set of points of λ^j which belong to \mathfrak{U} consists of many points (1) for which $|Z_3 - z_3| < \alpha$ and $|\lambda_j - \lambda_i| < \alpha$ hold, $(1c)$. For a fixed k and λ_k, the corresponding set of points (1) is called a lamina of ∂^j and is designated by $\partial_{\lambda_j}(\lambda_k)$. The set ∂_{λ}^j of points (1) corresponding to the values $|Z_j| = 1, k = 1, \ldots, n$, constitutes the so-called Bergman-Silov boundary surface of \mathfrak{B} on which the maximum principle is valid for functions $f(z_1, z_2)$ holomorphic in \mathfrak{B} and continuous in \mathfrak{B} (see ref. 1).

Let $\partial \mathfrak{B}^j$ designate an analytic surface of the form $z_3 = g_3(\xi), \xi \in \partial \mathfrak{B}$, where $\partial \mathfrak{B}$ is a domain in the ξ-plane and g_3 are functions regular in ξ and continuous in $\partial \mathfrak{B}$. We assume that $\partial \mathfrak{B}^j$ has common points with $\partial \mathfrak{B}$ and its whole boundary lies in $\mathfrak{C} \setminus \mathfrak{B}$. Concerning the intersection of $\partial \mathfrak{B}^j$ with $\partial \mathfrak{B}$, we list the following properties to be assumed as indicated in the various Theorems 1–4). The intersection $\partial \mathfrak{B}^j \cap \partial \mathfrak{B}$ has the following representation $\partial \mathfrak{B}^j = \{z_3 | z_3^j = g_j(\xi), \xi \in \partial \mathfrak{B} \cap \partial \mathfrak{B} \}, (2a)$. The boundary curve $\partial \mathfrak{B}^j$ is simultaneously the intersection $\partial \mathfrak{B}^j$ with ∂^j, $(2b)$. $g_j^j = \{z_3, z_3 = g_j(e^{i\varphi}), \varphi \in (0, 2\pi)\}$ can be divided into J parts: $g_j^j = \{z_3, z_3 = g_j(e^{i\varphi}), \varphi \in (\varphi_{j_1}, \varphi_{j_{1+1}}), \varphi \in (\varphi_j, \varphi_{j+1})\}, j = 1, \ldots, J, \varphi_j < \varphi < \varphi_{j+1} = \varphi_j + 2\pi$, so that $g_j^j \subset \partial \mathfrak{B}^j$, $1 \leq k_j \leq n$, $k_{j_1} \neq k_{j_2}$ if $j_1 \neq j_2$, and only the points $(g_j(e^{i\varphi}), g_j(e^{i\varphi}))$ belong to $\partial \mathfrak{B}^j$, $(2c)$. Every point of g_j^j lies in a certain lamina, say $\partial_{\lambda_j^j}(\lambda_j^j)$. Hence, by (2)

functions $\lambda_j^j = \lambda_j^j(\varphi)$, $Z_{j}^j = Z_{j}^j(\varphi), \varphi \in (\varphi_{j_1}, \varphi_{j_{1+1}})$, exist such that $g_j^j = \{z_3, z_3 = h_{\lambda_j^j}(Z, \lambda_j^j(\varphi), Z_{j}^j(\varphi), \varphi \in (\varphi_{j_1}, \varphi_{j_{1+1}})\}$. We assume that $\lambda_j^j(\varphi) \text{ and } Z_{j}^j(\varphi)$ are continuous in $(\varphi_{j_1}, \varphi_{j_{1+1}})$, $(2d)$. $\lambda_j^j(\varphi)$ are monotone in $(\varphi_j, \varphi_{j+1})$ and $|\lambda_j^j(\varphi)| < 1/Q$, $Q > 0, \varphi \in (\varphi_j, \varphi_{j+1}), j = 1, \ldots, J$, $(2e)$. The expressions $1 - |Z_{j}^j(\varphi)|$ go to zero not faster than some positive power of $\varphi - \varphi_j$ or $\varphi - \varphi_{j+1} \text{if } \varphi \rightarrow \varphi_j \text{ or } \varphi \rightarrow \varphi_{j+1}$, respectively, $(2f)$.

Concerning the function $f(z_1, z_2)$ of two complex variables z_1, z_2, we list the following hypotheses to be assumed in the various theorems (see below). $f(z_1, z_2)$ is regular in
the set $\mathfrak{B}_1 = \mathfrak{B} \setminus \mathfrak{B}^2$ and continuous in $\mathfrak{B}_2 = \mathfrak{B}_1 \cup \mathfrak{B}^1 \cap \mathfrak{B}_1$, (3a). $f(z_1, z_2) \neq 0$ in \mathfrak{B}_2, (3b). Let $n_\epsilon(Re^\theta, \lambda_\epsilon)$ denote the number of Re^θ-points of $f(z_1, z_2)$ in the lamina $3_2^1(\lambda_\epsilon)$. Let $p_j(\lambda_\epsilon) = \sup_{0 < R < \infty} \frac{1}{2\pi} \int_0^\pi \frac{1}{2\pi} \int_0^{2\pi} n_\epsilon(Re^\theta, \lambda_\epsilon) d\theta d(\rho^2)$. We assume that \[
\frac{1}{f_j} \sum_{j=1}^J \left(\frac{1}{2\pi} \int_{\alpha_j} p_j^2(\lambda_\epsilon) d\lambda_\epsilon \right)^{1/2} \leq P, \quad P > 0, \quad \text{where } \langle \alpha_j, \beta_j \rangle = \lambda_\epsilon(\varphi_j, \varphi_{j+1}), \quad j = 1, \ldots, J, (3c). \]
$p_j(\lambda_\epsilon) \leq P, \lambda_\epsilon \in \langle \alpha_j, \beta_j \rangle$, (3c). Let $l^1 = \{z_1^0, z_2^0 = h_{\lambda_\epsilon}(0, \lambda_\epsilon), \lambda_\epsilon \in \langle \alpha_j, \beta_j \rangle \}$ and $l^1 = \cup l^1$. We set $l = \min_{\rho} |f(z_1, z_2)|$, $L = \max_{\rho} |f(z_1, z_2)|$, $l = \min (1, l), L = \max (1, L)$. We assume in the following that \mathfrak{B} satisfies the conditions 1a-1c.

Theorem 1. Let \mathfrak{B}_0^2 satisfy conditions 2a–2f. For every $\epsilon > 0$, there exists $r_0, 0 < r_0 < 1$, such that at every point of \mathfrak{B}^2, say at $z_0^0 = g_\epsilon(z_0)$, and for every function $f(z_1, z_2)$ which has the properties 3a–3c, the inequality \[
1 + |f(z_1, z_2)| \leq \left(e^{-2\pi P - 1/2 - \epsilon} \left(\frac{1 - r_0}{1 + r_0} \right)^{2JP} \right)^{1/\epsilon} \leq |f(z_1^0, z_2^0)| \leq \left(e^{2\pi P + 1/2 + \epsilon} \right)^{1/\epsilon} \left(\frac{1 + r_0}{1 - r_0} \right)^{2JP} \] holds.

Theorem 2. Let \mathfrak{B}_0^2 satisfy 2a–2d, 2f. For every $\epsilon > 0$, there exists $r_0, 0 < r_0 < 1$, such that at every point of \mathfrak{B}^2, say at $z_0^0 = g_\epsilon(z_0)$, and for every function $f(z_1, z_2)$ which has the properties 3a, 3b, 3c, the inequality \[
1 + |f(z_1, z_2)| \leq \left(e^{-2\pi P - 1/2 - \epsilon} \left(\frac{1 - r_0}{1 + r_0} \right)^{2P} \right)^{1/\epsilon} \leq |f(z_1^0, z_2^0)| \leq \left(e^{2\pi P + 1/2 + \epsilon} \right)^{1/\epsilon} \left(\frac{1 + r_0}{1 - r_0} \right)^{2P} \] holds.

Theorem 3. Let \mathfrak{B}_0^3 satisfy 2a–2d, 2f. For every $\epsilon > 0$, there exists $r_0, 0 < r_0 < 1$, such that at every point of \mathfrak{B}^3, say at $z_0^0 = g_\epsilon(z_0)$, and for every function $f(z_1, z_2)$ which has the properties 3a, 3b, 3c, the inequality \[
\frac{1 - |z_0^0|}{1 + |z_0^0|} \left(\frac{1 - r_0}{1 + r_0} \right)^{2P} - \epsilon \leq |f(z_1^0, z_2^0)| \leq \frac{1 + |z_0^0|}{1 - |z_0^0|} \left(\frac{1 + r_0}{1 - r_0} \right)^{2P} + \epsilon \] holds. We set $\mathfrak{B}_0^\delta = \{z_1, z_2 = h_{\lambda_\epsilon}(z_1, \lambda_\epsilon), \lambda_\epsilon \in (0, 2\pi) \}$.\n
Theorem 4. Let \mathfrak{B}_0^3 satisfy the conditions 2a and 2b and moreover let $g_1^1 \subset \mathfrak{B}_0^\delta$. For every $(z_1^0, z_2^0) \in \mathfrak{B}^3$ and for every function $f(z_1, z_2)$ which has properties 3a, 3b and 3c, the inequality \[
\frac{1}{1 + |z_0^0|} \left(\frac{1 - r_0}{1 + r_0} \right)^{2P} \leq |f(z_1^0, z_2^0)| \leq \frac{1 + |z_0^0|}{1 - |z_0^0|} \left(\frac{1 + r_0}{1 - r_0} \right)^{2P} \] holds.
Note that in (3)–(6) bounds for $|f|$ are expressed in terms of the minimum and maximum of $|f|$ on a one-dimensional boundary manifold 1. This manifold is independent of (z_1^0, z_2^0) and of f.

In the proof of Theorems 1 and 2, we express the value of $f(z_1, z_2)$ at (z_1^0, z_2^0) by using the Poisson formula applied to the harmonic function log $|f(g_1(\zeta), g_2(\zeta))|$. For the proof of Theorem 3, we apply the Cauchy integral formula to the holomorphic function $f(g_1(\zeta), g_2(\zeta))$, and for Theorem 4 the maximum principle.

Similar results are obtained by Bergman $1^6, 7$ and Charzyński 8. Bergman considered functions which omit in every lamina two values and functions which are univalent on every lamina. Charzyński assumes that the functions

$$f(h_{1k}(Z_1, \lambda_k), h_{2k}(Z_2, \lambda_k))$$

as functions of Z_k belong to a normal family (but he considers only the case in which $g^1 \subset \mathcal{C}_{h_{1k}}$). The first step in the proof of the Theorems 1–3 is similar to the approach used in references 2 and 3. However only the use of completely new additional procedures will yield our result.

THE EFFECT OF EXOGENOUS RNA AND DNA ON AMINO ACID INCORPORATION BY SUBCELLULAR FRACTIONS PREPARED FROM ERYTHROID TISSUES*

BY SIEGMUND FISCHER,† GAIL P. BRUNS, BERTRAM A. LOWY,‡ AND IRVING M. LONDON

DEPARTMENTS OF MEDICINE AND BIOCHEMISTRY, ALBERT EINSTEIN COLLEGE OF MEDICINE, YESHIVA UNIVERSITY, NEW YORK CITY

Communicated by David Rittenberg, December 12, 1962

This paper describes the components of cell-free systems, obtained from the bone marrow of normal rabbits and from the bone marrow and reticulocytes of acetylphenylhydrazine (APH) treated rabbits, capable of incorporating amino acids into trichloracetic acid-insoluble products. The effects of exogenous RNA and DNA in these systems are described.

Materials and Methods.—Bone marrow subcellular fractions: Bone marrow, obtained from either normal New Zealand rabbits or rabbits of the same strain made anemic by treatment with APH, was collected directly into either a sucrose-medium A buffer 1 or into a Tris buffer medium containing β-mercaptoethanol. 2 The bone marrow was homogenized at 2°C for one min with a motor-driven Teflon pestle and centrifuged at 15,000 \times g for 20 min at 2°C. The supernatant solution...