Melatonin Metabolism: Neural Regulation of Pineal Serotonin: Acetyl Coenzyme A N-Acetyltransferase Activity

(rat/diurnal rhythm/melatonin/N-acetylsersotonin/organ culture/circadian enzyme regulation)

DAVID C. KLEIN,* JOAN L. WELLER,* AND ROBERT Y. MOORE,†

* Laboratory of Biomedical Sciences, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20014; and † Departments of Anatomy, Pediatrics, and Medicine (Neurology) and Joseph P. Kennedy, Jr. Mental Retardation Research Center, The University of Chicago, 950 East 59th Street, Chicago, Illinois 60637

Communicated by Julius Axelrod, October 4, 1971

ABSTRACT There is a diurnal rhythm in the activity of serotonin N-acetyltransferase in the rat pineal gland. In the normal rat, the nocturnal enzyme activities are 15-30 fold greater than are daytime activities. This rhythm is abolished by decentralization or removal of the superior cervical ganglia, procedures that interrupt the only source of central neural input to the pineal gland. This effect of superior cervical sympathectomy on the N-acetyltransferase rhythm cannot be attributed to changes occurring in the denervated pineal parenchymal cells. When chronically denervated glands are placed in organ culture with norepinephrine, the neuropeptide normally located in sympathetic terminals in the gland, N-acetyltransferase activity increases 18-20 fold. These data indicate that the sympathetic input to the pineal gland cannot be attributed to central neural input alone. These data also indicate that the sympathetic input to the pineal gland is also mediated by serotonin, the activity of serotonin N-acetyltransferase is low. After the onset of darkness, the activity of this enzyme increases to values that are 15-30 fold greater than those that occur during the light period (4). The rhythm is maintained after animals are blinded or placed in constant darkness (4, 5). Exposure to constant light suppresses the rhythm, and results in continually low activity of pineal N-acetyltransferase (4). These characteristics indicate that the N-acetyltransferase rhythm is like many other 24 hr rhythms, which are driven by an endogenous mechanism in the central nervous system and can be suppressed or shifted by environmental lighting (6).

The only known pathway of central input to the pineal gland is via sympathetic nerves from the superior cervical ganglia (SCG) (7). Evidence indicates that the release of norepinephrine from sympathetic terminals regulates pineal N-acetyltransferase. First, a 10-20 fold increase in N-acetyltransferase results when norepinephrine is added to pineal organ cultures (8). Second, pineal norepinephrine is contained entirely in nerve processes (9-11). Serotonin, which is also located in these processes, and tryptamine cannot induce N-acetyltransferase in cultured pineal glands (4, 12). Third, there is a 24 hr rhythm in pineal norepinephrine content that is abolished by decentralization of the SCG (13).

To test directly whether the SCG mediates neural control of the N-acetyltransferase rhythm, we examined the effects of removal or decentralization of them. Using organ cultures of pineal glands, we also determined whether chronically denervated glands are able to respond to norpinephrine, as indicated by an increase of N-acetyltransferase activity and an increase in the amount of [3H]-melatonin formed from [3H]tryptophan.

MATERIALS AND METHODS

Control and surgically-prepared male Sprague-Dawley rats (150-180 g) were obtained commercially (Zivic-Miller Laboratories, Inc., Alison Park, Pa.). Three groups of operated animals were obtained. One group was subjected to bilateral removal of the SCG, a second group to bilateral decentralization of the SCG, and a third group to a sham operation in which a surgical incision was made in the neck similar to that made for ganglionectomy or decentralization. All of the animals subjected to superior cervical ganglionectomy or decentralization exhibited a bilateral ptosis. The animals were delivered within 48 hr after surgery and groups of four were then placed in transparent plastic cages (15 X 25 X 41 cm) in National Institutes of Health animal facilities. The animals were maintained for 21 days on a schedule of diurnal lighting in which the room lights were on for 14 hr (from 7 a.m. to 9 p.m.) and off for 10 hr. The light was provided by incandescent bulbs and had an intensity in the cages of 100-350 lx/meter. Food (Purina Lab Chow) and water were available at all times.

At the conclusion of the experiment, the animals were stunned by a blow on the head and then decapitated. Those killed at night were exposed to a dim white light for less than 1 min. Pineal glands were rapidly removed and, unless otherwise noted, were stored for less than 5 min in physiological saline at room temperatures before being assayed for N-acetyltransferase activity or placed in organ-culture vessels.

N-acetyltransferase activity was determined by measurement of the [3H]N-acetylserotonin and [3H]melatonin formed by the homogenate of an individual pineal gland incubated for 10 min at 37°C in 20 µl of 0.1 M sodium phosphate buffer (pH 6.8) containing 1 mM [3H]serotonin (28 Ci/mol) and 2 mM acetyl coenzyme A. Radiolabeled N-acetylserotonin and melatonin were isolated by thin-layer chromatography.

Abbreviation: SCG, superior cervical ganglia.
and measured (4). Less than 5% of the [14C]N-acetylserotonin is converted to [14C]melatonin. The term “picomoles of product” in the legends describes the total radiolabeled N-acetylserotonin and melatonin formed. Based on the results of studies in which preparations of pineal glands obtained during the day, when enzyme activity is low, are added to preparations obtained during the night, when enzyme activity is high, it appears that the apparent changes in enzyme activity are not due to the presence in the enzyme assay of endogenous inhibitors, activators, precursors, or products.

Intact rat pineal glands were cultured in chemically defined media (BGJb) (5). Incubations began about 9 a.m. [3H]tryptophan (0.2 mM, 25 Ci/mol) was present throughout the incubation. The [3H]melatonin in the medium was extracted with chloroform (10). The amount of [3H]melatonin formed was estimated from the specific activity of the [3H]tryptophan, a calculation that assumes the specific activity of the melatonin formed from [3H]tryptophan is the same as that of the tryptophan.

Radioactivity was measured with a Packard Tri-Carb Liquid Scintillation Spectrometer and corrected to absolute values with a Packard Automatic Activity Analyzer. Except where otherwise indicated, statistical analyses were performed by a one-tailed, Mann-Whitney U-test (11). Data are presented as the mean ± the standard error of the mean.

The following materials were used; [3H]tryptophan (uniformly labeled, 6.4 Ci/μmol, Schwarz BioResearch Co.); [14C]serotonin creatinine sulfate (56 Ci/mol, Amersham/Searle Co.); serotonin creatinine sulfate and norepinephrine bitartrate (Regis Chemical Co.); acetyl coenzyme A (Mann Research Co.); BGJb culture medium (Grand Island Biological Co.).

**RESULTS**

**In vivo studies**

Pineal N-acetyltransferase activity in normal rats increased markedly during the dark period of a diurnal lighting schedule to about 30-times greater than the activity observed during the light period (Fig. 1). A nearly identical result was observed in sham-operated animals. In contrast to this, ganglionectomy or decentralization of the ganglia resulted in a nearly total loss of the N-acetyltransferase rhythm. In this study, the dark values for these two operated groups were 1.3-1.6 times the light values. These small differences were significant (P > 0.05). In addition, after ganglionectomy there was a small increase (P > 0.01) in N-acetyltransferase activity in the light period in comparison to each of the other groups (normal, sham, and decentralized).

To investigate whether superior cervical ganglionectomies results in a shift in the timing of the N-acetyltransferase rhythm, rather than a decrease in its amplitude, operated animals were killed at four different times. Normal animals were killed at the same times to provide a control group. The pineal glands were placed on dry ice after removal, and all four groups were assayed together. The large increase in N-acetyltransferase usually observed during a dark period was noted in the normal animals (Fig. 2). The pineals from animals that had been ganglionectomized, however, did not exhibit increased enzyme activity. The minor increase that was observed to occur in ganglionectomized animals at night in the previous experiment was not observed in this study, perhaps as a result of differences in technique.

**Organ culture studies**

The addition of norepinephrine to pineal organ cultures stimulates N-acetyltransferase activity and the formation of labeled melatonin (4, 8, 12, 15). To determine whether the absence of a diurnal rhythm of N-acetyltransferase in pineal glands of animals subjected to cervical sympathectomy might be due to changes in the pineal cells themselves, we tested in organ culture pineal glands from animals that had been bilaterally ganglionectomized 3 weeks before death (Fig. 3). All glands were cultured under control conditions for 18 hr, then transferred to fresh medium for the last 6 hr of culture. Half of the pineals were placed in medium that contained norepinephrine (0.1 mM) during this period. The remaining half were controls. After the 6-hr treatment with norepinephrine, there was an increase both in N-acetyltransferase activity in gland homogenates and in the concentration of [3H]melatonin in the culture medium of the norepinephrine-treated glands, as compared to the controls.

![Fig. 1. Pineal N-acetyltransferase activity. Numbers in parentheses indicate the number of animals in each group. Superior cervical ganglia (SCG) were removed or decentralized 3 weeks before pineal glands were obtained. * Night value was greater than day value P < 0.05, as indicated by 2-tailed Students "t" test (9).](image1)

![Fig. 2. The effect of removal of superior cervical ganglia on the diurnal rhythm in N-acetyltransferase. The numbers in parentheses indicate the number of glands analyzed for each point. The data from normal (O—O) and superior cervical ganglionectomized (SCGX) animals (O—O) were pooled (O—O) where there were no significant difference between means. The shaded bar indicates the duration of the dark period.](image2)
(Fig. 3). The response to norepinephrine treatment was nearly identical in chronically denervated glands to that in pineal glands from intact animals. It seemed possible, however, that the response to norepinephrine would only appear in denervated pineal glands after the 18-hr preliminary culture. For this reason, we performed another experiment in which the response of denervated glands to norepinephrine was studied during the first 6 hr of culture (Table 1). The response to norepinephrine treatment in this case was similar to that in the longer-term study in organ culture; both the normal and denervated pineal glands showed about a 10-fold increase in N-acetyltransferase activity. These data indicate that chronic denervation does not affect the ability of the pineal cells to respond to norepinephrine.

**DISCUSSION**

The data presented here demonstrate that the sympathetic innervation of the pineal gland is essential to maintain the 24-hr rhythm of pineal N-acetyltransferase activity. The organ-culture studies clearly indicate that denervation does not result in destruction or atrophy of the gland. It would appear that removal or decentralization of the SCG blocks the rhythm by interrupting the flow of neural information from central structures to the pineal gland.

These observations add an important link in the chain of structures and processes known to be involved in the regulation of N-acetyltransferase. At one end of this chain is environmental lighting (4). According to recent neurophysiological studies, electrical activity in the rat pineal gland is higher in the dark and is inhibited by light acting via the eye (16). These observations suggest to us that an increase of electrical activity in the pineal gland in the dark stimulates N-acetyltransferase activity (see Note Added in Proof).

The mechanism by which light acts is unclear. Perhaps a light-induced electrical signal leaving the eye during the day acts via an inhibitory synapse to block an endogenously generated signal going to the pineal gland. Blockage of the endogenously generated signal would decrease electrical activity in the gland. Only in darkness would this endogenously generated signal reach the gland and stimulate N-acetyltransferase. This simple model does not, however, explain the occurrence of a rhythm in N-acetyltransferase in blinded animals in constant light, or in normal animals in continual darkness (4, 5). Under these conditions, there appears to be endogenous regulation. Perhaps the signal generator is an oscillator with a period of about 24 hr that only sends a signal to the gland periodically. Or, if this hypothetical oscillator does send a signal continually to the pineal gland, there could be mechanisms in the gland that periodically produce a refractory period during which the gland is insensitive to electrical stimulation. The most probable result of increased electrical activity at nerve endings in the gland is the increased release of norepinephrine. Electrically stimulated discharge of norepinephrine from sympathetic nerve endings has been demonstrated with other tissues (17). The importance of release of neurotransmitter is seen in the results of other studies with animals with decentralized ganglia. The pineal glands in these animals should receive intact innervation from the SCG, but the SCG should receive no input (Fig. 1). Decentralization causes only a 50% decrease in the concentration of norepinephrine in the gland (18). However, in decentralized animals, the nocturnal increase in pineal N-acetyltransferase was almost undetectable. Thus, the mere presence of norepinephrine in the pineal gland is not sufficient to establish a rhythm in N-acetyltransferase; rather, it appears that this neurotransmitter must be released, presumably in response to increased electrical activity, in order to be effective.

The final link in this transfer of information from the environment to the pineal gland has also been demonstrated in this study. Norepinephrine stimulates the activity of N-acetyltransferase (4, 8). This mechanism has been studied in detail and seems to involve the norepinephrine-caused stimulation of pineal adenylate cyclase (19), the elevation of pineal adenosine 3'-5'-cyclic monophosphate production, and the cAMP-caused stimulation of N-acetyltransferase via a mechanism that depends upon protein synthesis (8, 20).

What is the physiological importance of the diurnal rhythm in N-acetyltransferase? It appears that this enzyme plays a

---

**TABLE 1.** N-acetyltransferase activity in pineal glands cultured for 6 hr

<table>
<thead>
<tr>
<th>Treatment group</th>
<th>N-acetyltransferase activity (pmol of [3H]-labeled product per gland per hr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal controls</td>
<td>121 ± 22.1</td>
</tr>
<tr>
<td>+ norepinephrine (0.1 mM, 6 hr)</td>
<td>1580 ± 510*</td>
</tr>
<tr>
<td>Chronically denervated controls</td>
<td></td>
</tr>
<tr>
<td>+ norepinephrine (0.1 mM, 6 hr)</td>
<td>2429 ± 1070*</td>
</tr>
</tbody>
</table>

Denervated pineal glands were obtained from animals 3 weeks after gangliectomy. Each group was comprised of four pineal glands.

* Treatment significantly increased the activity of N-acetyltransferase relative to control values, P < 0.025.
major role in the regulation of the serotonin → melatonin pathway. It seems highly probable that the diurnal rhythm in pineal serotonin is controlled by the inverse rhythm in N-acetyltransferase, and that at night serotonin is converted to N-acetylserotonin at a much greater rate than that occurring during the day. This relationship is supported by the following observations. First, continual lighting via the eye continually suppresses both rhythms and results in a continually high concentration of serotonin and low N-acetyltransferase activity; both rhythms persist in blinded animals and in normal animals in the dark (4, 21). Second, the sharp nocturnal changes in serotonin and N-acetyltransferase are blocked by exposure to light at night (2, 18). Third, removal of the SCG blocks both rhythms (21, 22, Fig. 1). Fourth, organ-culture studies have demonstrated that when N-acetyltransferase activity in intact glands is elevated by treatment with norepinephrine, the conversion of [14C]serotonin to [14C]N-acetylserotonin is also increased (4).

The close relationship between the phaseing of the diurnal rhythms in N-acetyltransferase and pineal melatonin concentration in vitro (4, 22–25), and the magnitude of stimulation of N-acetyltransferase and [1H]melatonin production in vitro (4, 8), has been interpreted (2, 20) to indicate that N-acetyltransferase may also regulate melatonin synthesis by determining the amount of N-acetylserotonin available for O-methylation. Melatonin appears to function as an anti-gonadotrophic hormone (26) and, as such, would extend the chain of structures and mechanisms involved in the transfer of information about environmental light away from the pineal gland to target tissue.

Reiter has shown that interruption of the sympathetic innervation to the pineal gland blocks its anti-gonadotrophic effects (27). We interpret our finding that interruption of the sympathetic innervation causes a tremendous reduction in the light-time activity of pineal N-acetyltransferase to indicate that this procedure markedly impairs the gland’s ability to convert serotonin to N-acetylserotonin. Denervation of the pineal gland also causes a 50% decrease in the activity of hydroxyindole-O-methyl-transferase (28), the enzyme that converts N-acetylserotonin to melatonin. These findings are consistent with the hypothesis that removal of the SCG blocks the anti-gonadotrophic effects of the pineal gland by drastically reducing the capacity of the gland to convert serotonin to melatonin.

NOTE ADDED IN PROOF
A recent study by P. Volkman and A. Heller that appeared in Science, 173, 839 (1971) demonstrated that electrical stimulation of the superior cervical ganglia caused an increase in the activity of pineal N-acetylaminopeptidase.


We thank Drs. Walter H. Glinsmann and Gerald R. Berg for their critical discussion during this study and the preparation of this manuscript. This study was supported in part by USPHS Grant NS-05002 and HD-04581.