Effect of Norepinephrine on Glucose Metabolism in Glioblastoma and Neuroblastoma Cells in Cell Culture
(cyclic AMP/radioactive glucose/glycogenolysis/rat)

R. W. NEWBURGH* AND ROGER N. ROSENBERG

Departments of Neurosciences and Pediatrics, University of California at San Diego, La Jolla, Calif. 92037

Communicated by Robert Galambos, April 14, 1972

ABSTRACT The addition of norepinephrine to cultured glioblastoma cells results in an inhibition of uptake of radioactivity from D-[2-14C]glucose, D-[1-14C]glucose, D-[2-14C]glucose, and D-[6-14C]glucose. In addition, if the glioblastoma cells are previously labeled with these substrates, norepinephrine causes an increase in the release of radioactivity. These effects were not observed with cultured neuroblastoma cells. It is suggested that the breakdown of glycogen is activated by norepinephrine as a result of an increase in 3':5'-cyclic AMP.

Several years ago Galambos (1) postulated that, in addition to neuron-neuron synapses, neuron-glia synapses occur. A metabolic relationship existing between neurons and glia was suggested originally by Hyden and Lange (2) on the basis of whole animal studies and more recently by Gilman and Nirenberg (3) on the basis of the finding that the neurotransmitter, norepinephrine, causes an increase in 3':5'-cyclic AMP (cAMP) in rat glioblastoma cells in cell culture. These findings were substantiated by Clark and Perkins (4), who also found a rapid increase in the concentration of cAMP of epinephrine and histamine, in addition to norepinephrine, in a tumor astrocyte cell-line derived from a primary culture of a human glioblastoma multiforme. It is known from the early work of Rall and Sutherland (5) that glycogenolysis was increased by cAMP due to activation of a protein kinase that converts phosphorylase b to phosphorylase a, the active form of the enzyme.

On the basis of these several results, it seemed of interest to examine in cell culture the effect of norepinephrine on glucose incorporation and excretion in glioblastoma and neuroblastoma cells.

MATERIALS AND METHODS

Cell line and culture
Clone C-6, derived from a rat (Wistar strain) astrocytoma induced by N-nitrosomethylurea, and clone C-46, derived from a mouse neuroblastoma, were obtained from Dr. G. Sato (6). Clones C-6 and C-46 were grown in Dulbecco's modified Eagle's (7) medium with 10% fetal-calf serum in Falcon flasks or petri dishes at 37° in an atmosphere of 10% CO2-90% air at 100% humidity.

Radioactivity experiments
For the radioactivity experiments, 60-mm petri dishes were incubated with about 3 × 10⁶ cells for 2 days in the above medium. By this time the cells were confluent. The medium was then changed to 2 ml of fresh modified Eagle's medium or Earle's (8) balanced salt solutions containing the radioactive compounds. For the studies on the effect of theophylline, the cells were incubated for 1 hr in the culture medium plus 1 mM of theophylline before the addition of the radioactive medium. Norepinephrine (17 μg/ml) was added where indicated. In the experiments in which cells were previously labeled with radioactive compounds, the cells were incubated for 2 hr in a radioactive medium, washed twice with nonradioactive medium, and then incubated for 30 min in a nonradioactive medium.

After incubation in the desired medium the cells were scraped from the petri dish, filtered through a Millipore filter (HAWP 025, HA 0.45 μm, 25 mm) to remove the medium, and washed twice with 0.32 M sucrose. The filter was counted in a Beckman scintillation counter with automatic quench control. It was found that the radioactivity remaining on the filter was constant after the two washings. The radioactivity was then converted to disintegrations per min (dpm) by standard techniques. The operation from the time of scraping to the addition of scintillation fluid was from 5-10 min at 0-5°. In one series of experiments the effect of norepinephrine on 14CO2 evolution from 14C]glucose was determined. Cells were grown in 25-ml Erlenmeyer flasks containing a center well. After addition of the labeled substrate, 14CO2 was collected in KOH by standard techniques.

Materials
Theophylline was a product of Nutritional Biochemicals, Inc.; norepinephrine and dibutyryl cyclic AMP were purchased from Sigma Chemical Co. The radioactive carbohydrates were purchased from New England Nuclear; the specific activities were: L-[1-14C]glucose, 1 mCi/0.292 mg; D-[2-3H]glucose, 0.25 mCi/4.45 mg; D-[1-14C]glucose, 0.1 mCi/2.7 mg; D-[2-14C]glucose, 0.1 mCi/6/2 mg; and D-[6-14C]-glucose, 0.1 mCi/9.2 mg.

RESULTS
Since the total cells in each dish were collected on Millipore filters for the determination of radioactivity, it was not possible to count the number of cells present nor to do a protein determination to account for any variability due to differences in cell numbers. To account for the latter, it was necessary to use two substrates in each experiment, one labeled with 3H and the other with 14C. In each experiment, one set of experiments consisted of the addition of L-[1-14C]-

* On leave from: Department of Biochemistry and Biophysics, Oregon State University, Corvallis, Oreg. 97331.
The cells were incubated for 2 days in Dulbecco's modified Eagle's medium plus 10% fetal-calf serum. Each 60-mm petri dish was initially inoculated with 3×10^6 cells in 3 ml of medium. The growth medium was removed and replaced with 2 ml of Earle's balanced salt solution containing the radioactive substrates. The cells were then incubated for an additional 30 min before they were filtered through a Millipore filter. When the cells were previously incubated in the presence of theophylline, growth medium was replaced with new growth medium containing 1 mM of theophylline, and the cells were incubated for 1 hr. This latter medium was then removed, replaced with Earle's balanced salt solution containing the radioactive substrates, and incubated for 30 min. The radioactive medium contained d-[2-3H]glucose (1.56 X 10^6 dpm) plus either d-[1-14C]glucose (1.63 X 10^6 dpm), d-[2-14C]glucose (3.36 X 10^6 dpm), or d-[6-14C]glucose (2.24 X 10^6 dpm). Where indicated, the radioactive medium contained 17 µg/ml of norepinephrine. The incubations were at 37°, 100% humidity, and 90% air-10% CO2.

* Standard error, n = 3.

The amount of d-glucose and d-[2-3H]glucose to the medium. The assumption in this instance is that the d-glucose would not be metabolized but only incorporated into the cells depending on the number of cells present. That this is reasonable is shown in Fig. 1. The amount of d-glucose incorporated was dependent on the number of cells added. In addition it was found that norepinephrine had no effect on the incorporation of this labeled compound. In the experiments with [14C]glucose, d-[2-3H]glucose was also added to account for variability in cell numbers between experiments. As shown in Fig. 1, this also was reasonable since the amount of incorporation was dependent on the amount of cells present. Since several identical experi-

Table 1. Incorporation of [14C]glucose into glioblastoma cells

<table>
<thead>
<tr>
<th>Substrate</th>
<th>dpm (total in cells)</th>
<th>% Inhibition of uptake</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Control</td>
<td>Norepinephrine</td>
</tr>
<tr>
<td>d-[2-3H]glucose</td>
<td>23,800</td>
<td>21,800</td>
</tr>
<tr>
<td></td>
<td>±1,200*</td>
<td>±950*</td>
</tr>
<tr>
<td>d-[1-14C]glucose</td>
<td>Exp. 1</td>
<td>3,160</td>
</tr>
<tr>
<td></td>
<td></td>
<td>±100</td>
</tr>
<tr>
<td></td>
<td>Exp. 2</td>
<td>1,100</td>
</tr>
<tr>
<td></td>
<td>Exp. 4</td>
<td></td>
</tr>
<tr>
<td>d-[2-14C]glucose</td>
<td>Exp. 1</td>
<td>4,600</td>
</tr>
<tr>
<td></td>
<td></td>
<td>±100</td>
</tr>
<tr>
<td></td>
<td>Exp. 2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Exp. 4</td>
<td></td>
</tr>
<tr>
<td>d-[6-14C]glucose</td>
<td>Exp. 1</td>
<td>4,300</td>
</tr>
<tr>
<td></td>
<td></td>
<td>±100</td>
</tr>
<tr>
<td></td>
<td>Exp. 2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Exp. 4</td>
<td></td>
</tr>
</tbody>
</table>

The conditions were the same as Table 1, except that the radioactive compounds were in Dulbecco's modified Eagle's medium instead of Earle's balanced salt solution.

* Standard error, n = 4.

Table 2. Incorporation of [14C]glucose into glioblastoma cells

<table>
<thead>
<tr>
<th>Substrate</th>
<th>dpm (total in cells)</th>
<th>% Inhibition of uptake</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Control</td>
<td>Norepinephrine</td>
</tr>
<tr>
<td>d-[2-3H]glucose</td>
<td>13,100</td>
<td>8100</td>
</tr>
<tr>
<td></td>
<td>±700*</td>
<td>±490*</td>
</tr>
<tr>
<td>d-[1-14C]glucose</td>
<td>Exp. 1</td>
<td>1,700</td>
</tr>
<tr>
<td></td>
<td></td>
<td>±100</td>
</tr>
<tr>
<td></td>
<td>Exp. 2</td>
<td>1,350</td>
</tr>
<tr>
<td></td>
<td>Exp. 3</td>
<td>1,060</td>
</tr>
<tr>
<td>d-[2-14C]glucose</td>
<td>Exp. 1</td>
<td>1,310</td>
</tr>
<tr>
<td></td>
<td></td>
<td>±100</td>
</tr>
<tr>
<td>d-[6-14C]glucose</td>
<td>Exp. 1</td>
<td>2,600</td>
</tr>
<tr>
<td></td>
<td></td>
<td>±100</td>
</tr>
<tr>
<td></td>
<td>Exp. 2</td>
<td>670</td>
</tr>
</tbody>
</table>

The conditions were the same as Table 1, except that the radioactive compounds were in Dulbecco's modified Eagle's medium instead of Earle's balanced salt solution.
The cells were grown under the same conditions as Table 1. After 2 days, the growth medium was removed and replaced with Earle's balanced salt solution containing the radioactive substrates as in Table 1. After 2 hr the radioactive medium was removed, the cells were washed quickly, and 2 ml of Earle's balanced salt solution (nonradioactive) were added with or without norepinephrine. The cells were incubated for 30 min and then filtered.

ments were done except for cell numbers, it was possible to determine an average value for D-[2-14]H glucose incorporation, and this value was used to correct for variations in cell numbers. It was also found that two washings with 0.32 M sucrose were adequate, in that essentially constant values for incorporation resulted.

For the studies of the effects of norepinephrine on the uptake of D-[14]C glucose, glioblastoma cells were grown for 2 days in modified Eagle's medium plus 10% fetal-calf serum. The growth medium was removed and replaced with the same medium or medium plus 1 mM of theophylline. After 1 hr the medium was replaced with Earle's balanced salt solution containing different radioactively labeled compounds; the cells were then incubated for 30 min and filtered; (see Table 1). When the cells are not previously incubated in theophylline, there is an inhibition by norepinephrine of from 20–50% in the incorporation of glucose. Less inhibition (10–30%) was found when the cells are previously incubated in theophylline. If the cells are incubated as previously described, except that modified Eagle's medium plus 10% fetal-calf serum is used in place of balanced salt solution, similar results are obtained (Table 2).

In another series of experiments, the cells were incubated for 2 hr in the presence of radioactive substrates and washed; the medium was then changed to balanced salt solution. The cells were incubated for 30 min in the presence of 1 mM of theophylline and norepinephrine. As shown in Table 3, norepinephrine caused an increase in the release of isotope from the cells, as evidenced by the presence of less radioactivity in these cells.

In another series of experiments, the evolution of 14CO2 from specifically labeled [14]C glucose was determined. As shown in Table 4, the addition of norepinephrine caused an increase in 14CO2 evolution from [1-14]C glucose, [2-14]C glucose, and [6-14]C glucose.

The effect of norepinephrine on glucose metabolism in neuroblastoma cells was also studied. The cells were grown for 2 days in modified Eagle's medium plus 10% fetal-calf

\[
\text{TABLE 3. Excretion of radioactivity into the medium from glioblastoma cells}
\]

<table>
<thead>
<tr>
<th>Substrate</th>
<th>Control (dpm)</th>
<th>Nor-epinephrine (dpm)</th>
<th>% Increase</th>
<th>excretion from cells</th>
</tr>
</thead>
<tbody>
<tr>
<td>D-[2-14]H glucose</td>
<td>7420</td>
<td>4390</td>
<td>40</td>
<td></td>
</tr>
<tr>
<td>±380*</td>
<td>±370*</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D-[1-14]C glucose</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exp. 1</td>
<td>3240</td>
<td>2040</td>
<td>38</td>
<td></td>
</tr>
<tr>
<td>Exp. 2</td>
<td>2040</td>
<td>1410</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>Exp. 3</td>
<td>6650</td>
<td>3900</td>
<td>40</td>
<td></td>
</tr>
<tr>
<td>D-[2-14]C glucose</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exp. 1</td>
<td>4270</td>
<td>2480</td>
<td>42</td>
<td></td>
</tr>
<tr>
<td>Exp. 2</td>
<td>7300</td>
<td>4800</td>
<td>34</td>
<td></td>
</tr>
<tr>
<td>D-[6-14]C glucose</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exp. 1</td>
<td>2260</td>
<td>1790</td>
<td>22</td>
<td></td>
</tr>
<tr>
<td>Exp. 2</td>
<td>9000</td>
<td>7800</td>
<td>16</td>
<td></td>
</tr>
</tbody>
</table>

* Standard error, n = 3.

[Fig. 1. Incorporation of radioactive glucose into glioblastoma cells. Variable amounts of glial cells were added to petri dishes (1 × 10^6 cells/ml) containing 2 ml of Dulbeco's modified Eagle's medium plus 10% fetal-calf serum. After 48 hr the medium was replaced with 2 ml of medium containing 1 µl of L-[1-14]C glucose (1.63 × 10^6 dpm) and 1 µl of D-[2-14]H glucose (1.56 × 10^6 dpm). After 30 min the cells were scraped from the dish and filtered through a Millipore filter. The filter was then counted. Δ—Δ = L-[1-14]C glucose; O—O = D-[2-14]H glucose.]

[Table 4. The effect of norepinephrine on the evolution of 14CO2 from [14]C glucose in glioblastoma cells]

<table>
<thead>
<tr>
<th>Substrate</th>
<th>Control (dpm/mg protein)</th>
<th>Norepinephrine (dpm/mg protein)</th>
</tr>
</thead>
<tbody>
<tr>
<td>D-[1-14]C glucose</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exp. 1</td>
<td>950</td>
<td>1400</td>
</tr>
<tr>
<td>Exp. 2</td>
<td>3400</td>
<td>5600</td>
</tr>
<tr>
<td>D-[2-14]C glucose</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exp. 2</td>
<td>1560</td>
<td>2750</td>
</tr>
<tr>
<td>D-[6-14]C glucose</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exp. 1</td>
<td>860</td>
<td>970</td>
</tr>
<tr>
<td>Exp. 2</td>
<td>260</td>
<td>300</td>
</tr>
</tbody>
</table>

The cells were incubated for 2 days in Dulbeco's modified Eagle's medium in 25-ml Erlenmeyer flasks containing a center well. The growth medium was then removed and replaced with Earle's balanced salt solution containing the radioactive substrates. To the center well was added 0.2 ml of 2 N KOH and a fluted filter paper. The flasks were then sealed with a rubber serum-bottle stopper. After incubation at 37° for 30 min, 1 ml of 1 N HCl was injected into the flask through the rubber stopper. The cells were incubated another 2 hr, and the filters and KOH were then removed and placed in a scintillation vial. The cells were scraped from the flasks for the protein determinations.
serum. The growth medium was removed and replaced by balanced salt solution containing different labeled compounds, and the cells were incubated for 30 min and filtered. As shown in Table 5, norepinephrine had no effect on the incorporation of label from radioactive glucose in these cells.

DISCUSSION

In these experiments we examined the question of whether norepinephrine affects the uptake of radioactive glucose, the release of radioactive compounds derived from radioactively labeled glucose, or the metabolism of radioactive glucose in glioblastoma and neuroblastoma cells in culture. From the results presented it appears that the addition of norepinephrine affects these processes in glioblastoma cells and not in neuroblastoma cells in cell culture.

We suggest that the process occurring in glioblastoma cells can be explained as shown in Fig. 2. The breakdown of glycogen is activated by norepinephrine as a result of an increase in cAMP (2, 3), which activates the protein kinase for conversion of phosphorylase b to phosphorylase a. This process results in an increase of glucose within the cell. If radioactive glucose is added to the medium less will be taken into the cell because of an increase in an intracellular pool of glucose or compounds derived from glucose. This is the result that was obtained (Tables 1 and 2). If the cells are previously labeled with glucose and the medium containing the radioactive compounds is removed, then it might be expected that radioactivity would be lost from the cell in the presence of norepinephrine. This occurred (Table 3). In addition, it might be expected that if norepinephrine caused an increased conversion of glycogen to glucose, increased oxidation of the glucose would also occur. The results shown in Table 4 are consistent with this postulate.

Although we may speculate that the effect of norepinephrine is on the breakdown of glycogen, the nature of the experiments do not permit an unequivocal conclusion in this regard. This would require determination of the products derived from the radioactive glucose and the nature of the compounds lost from the cell in the presence of norepinephrine.

Nevertheless, we propose that in vivo these products from gli cells are made available to neurons and used for metabolic processes in the neurons, assuming the present experiments might have relevance to the intact brain. Thus, one can envision the relation of neurons and gli cells to be one whereby a neurotransmitter from neurons triggers a reaction in gli cells that results in the latter providing metabolites to the neuron for various synthetic reactions or generating energy for cellular processes.

The conditions were the same as for Table 1, except that neuroblastoma cells were used in place of glioblastoma cells.

* Standard error, n = 3.

Table 5. Incorporation of \[^{14}C\]glucose into neuroblastoma cells

<table>
<thead>
<tr>
<th>Substrate</th>
<th>Control</th>
<th>Norepinephrine</th>
</tr>
</thead>
<tbody>
<tr>
<td>d-[2-(^{14})!H]glucose</td>
<td>7150</td>
<td>7400</td>
</tr>
<tr>
<td>±550*</td>
<td>±600*</td>
<td></td>
</tr>
<tr>
<td>d-[1-(^{14})!C]glucose</td>
<td>1140</td>
<td>1270</td>
</tr>
<tr>
<td>d-[2-(^{14})!C]glucose</td>
<td>1400</td>
<td>1320</td>
</tr>
<tr>
<td>d-[6-(^{14})!C]glucose</td>
<td>1440</td>
<td>1510</td>
</tr>
</tbody>
</table>

The investigations were supported by a research grant from the American Cancer Society, Inc. (6-444-946-58605) and by a special fellowship from the U.S. Public Health Service (NINDS-02445). We acknowledge the helpful suggestions of Dr. S. Mendoza.