An Antigen in Hodgkin’s Disease Tissue Cultures: Radioiodine-Labeled Antibody Studies

JOHN C. LONG, ALAN C. AISENBERG, AND PAUL C. ZAMECNIK

The John Collins Warren Laboratories of the Huntington Memorial Hospital, and the James Homer Wright Pathology Laboratories, Massachusetts General Hospital, Boston, Mass. 02114; and the Departments of Medicine and Pathology, Harvard Medical School, Boston, Massachusetts 02115

Contributed by Paul C. Zamecnik, March 15, 1974

ABSTRACT An antisera was prepared in rabbits against an antigen obtained by density gradient sedimentation of centrifuged medium from monolayer cultures of spleens involved by Hodgkin’s disease. The antisera was tested by isotopic antibody techniques with cells from each of eight cultures derived from spleens involved by Hodgkin’s disease, four cultures derived from normal adult spleen, and one culture each of fetal spleen and thymus. By an indirect radioiodine-labeled antibody assay, anti-Hodgkin’s disease globulin reacted with an antigen on the surface of cells from the Hodgkin’s disease cultures, the quantity of which was related to the number of target cells and the amount of antibody used. This Hodgkin’s disease tissue-culture antigen did not react with a rabbit antisera against fractionated medium from a normal spleen culture, nor against noncultured Hodgkin’s disease tumor tissue. The tumor specificity of the Hodgkin’s disease tissue-culture antigen was assessed by a direct technique using radioiodine-labeled anti-Hodgkin’s disease globulin absorbed with either cultured Hodgkin’s disease cells or with cultured normal cells. By this method the quantity of antigen on cells from Hodgkin’s disease cultures was 15- to 30-fold greater than that on cells from normal cultures.

The Hodgkin’s disease tissue-culture antigen is intimately associated with the propagation of the tumor in monolayer cultures, but its identity has not been established; it could be a viral component, a tumor or fetal antigen, or a normal tissue constituent.

An antigen has been demonstrated recently in serially passed monolayer cultures derived from spleens involved by Hodgkin’s disease (HD). The antigen was detected with a rabbit antisera prepared against material recovered from the culture medium by sedimentation in an isopycnic sucrose gradient. Reaction of the antigen and antisera was first demonstrated by agar gel diffusion and immunoelectrophoresis (1).

In the studies described in the preceding paper, the antigen was observed by fluorescence microscopy in the cell membrane and cytoplasm of cells from Hodgkin’s disease cultures, but not in noncultured Hodgkin’s disease tumor tissue (2). Although experiments with the fluorescent microscope have clarified the cellular localization of the Hodgkin’s disease tissue-culture antigen, the evidence regarding the tumor specificity of the antigen was inconclusive; i.e., a quantitative difference in an antigen common to Hodgkin’s disease and normal spleen cultures, but not demonstrable in normal spleen cultures by gel diffusion could not be excluded. In the work to be described, the reaction of anti-HD and control antisera with tissue-culture target cells has been tested with the radioiodine-labeled antibody technique to assess the binding of anti-HD globulin to normal tissue culture cells and to quantitate more precisely the amount of antigen on cultured Hodgkin’s disease cells.

MATERIALS AND METHODS

Monolayer Culture Cells. Ten culture lines derived from pathologically positive spleens of patients with Hodgkin’s disease, eight cultures of normal adult spleen, and one culture line each of fetal thymus and spleen were used as target cells for the radioiodine-labeled antibody assays. The preparation, maintenance, and cytological features of these serially passed, long-term monolayer cultures have been described (1, 2).

Antisera. An anti-HD antisera was prepared by immunizing rabbits with material of specific gravity 1.15-1.21 obtained by density gradient sedimentation of centrifuged medium from Hodgkin’s disease cultures. The globulin fraction of the antisera was absorbed with noncultured normal spleen cells, fetal-calf serum, and type A positive human erythrocytes. Details of the preparation and absorption of anti-HD globulin have been published (1). Two antisera used as controls were prepared by immunizing rabbits with medium from a normal spleen culture line that had been fractionated by sedimentation gradient centrifugation, and with minced tissue from a noncultured Hodgkin’s disease lymph node. The globulin fractions of these antisera had been used as controls in the gel diffusion (1) and fluorescent microscopy experiments (2).

Indirect Radioiodine-Labeled Antibody Experiments. Radioiodine-labeled antigens against rabbit immunoglobulin was prepared as follows. Goat antiserum to rabbit immunoglobulin (Meloy Laboratories, Springfield, Va.) was precipitated three times with 35% (w/v) ammonium sulfate, and the globulin fraction thereby obtained was dialyzed against 50 mM phosphate buffer, pH 7.0. The immunoglobulin concentration was adjusted to 2 mg/ml by the addition of phosphate buffer. Immunoglobulin (200 μg) was then reacted with 10 mCi of carrier-free 125I (New England Nuclear Corp.) by the chloramine-T method (3), and dialyzed against phosphate-buffered saline, pH 7.4, to remove unbound iodine. Seventy-six percent of the radioiodine was bound to the immunoglobulin,

Communications regarding this manuscript should be directed to Dr. Paul C. Zamecnik, Huntington Laboratories, Massachusetts General Hospital, Boston, Mass. 02114.
99% of which was precipitable in 10% trichloroacetic acid. The specific activity of the radioiodine-labeled antibody to rabbit immunoglobulin was 38 μCi/μg of immunoglobulin. In the absence of chloramine-T, less than 1% of the 125I was conjugated to the immunoglobulin.

For the indirect isotopic antibody assay, cells obtained by mechanical disruption of monolayer cultures with a rubber policeman were washed three times with phosphate-buffered saline. Counted aliquots of cells were viability of trypan blue dye exclusion and added to 12 × 75-mm siliconized glass tubes and incubated for 30 min at 20°C in the presence of 50 μl of diluted rabbit antisera (either anti-HD globulin, or control antisera). After four additional washes with phosphate-buffered saline, 50 μl of a 1:20 dilution of 125I-conjugated antibody to rabbit immunoglobulin was added, and the cells were again incubated. The cells were then washed four times, suspended in 1 ml of phosphate-buffered saline, and counted in a automatic gamma scintillation counter (Nuclear Chicago). Three additional incubations were done to control each experiment: (i) tissue culture target cells + phosphate-buffered saline + 50 μl of 125I-labeled antibody to rabbit immunoglobulin (background counts); (ii) cells + 50 μl of normal rabbit globulin at the same dilution as the rabbit antisera used in the test + 50 μl of 125I-labeled antibody to rabbit immunoglobulin; (iii) cells + 100 μl of undiluted rabbit antisera to pooled cells from a Hodgkin's disease culture line + 50 μl of 125I-labeled antibody to rabbit immunoglobulin. This unabsorbed antisera reacted uniformly with 100% of target cells from both Hodgkin's disease and normal cultures by immunofluorescence, and was used as an indicator of cell count in the indirect isotopic antibody assay. Only experiments in which the number of target cells in aliquots from Hodgkin's disease and normal cultures varied by less than 5%, measured by the reaction of this nonspecifically reacting antisera, were considered valid.

Direct Radioiodine-Labeled Antibody Experiments. 125I-Conjugated anti-HD globulin was prepared as follows. Crude (nonabsorbed) anti-HD globulin, adjusted to an immunoglobulin concentration of 2 mg/ml, was dialyzed against 50 mM phosphate buffer, pH 7.0. One hundred microliters of immunoglobulin were reacted with 50.0 mCi of carrier-free 125I by the chloramine-T method (3), and were dialyzed against phosphate-buffered saline. Sixty-four percent of the radioiodine was bound to the antibody, 96% of which was precipitable with 10% trichloroacetic acid. The specific activity of the 125I-labeled anti-HD globulin was 30 μCi/μg of immunoglobulin.

One milliliter of a 1:10 dilution of 125I-labeled anti-HD globulin was absorbed as described for noncultured normal human spleen cells, fetal-calf serum, and type A positive erythrocytes (1). The absorbed 1:10 dilution of radioiodine-labeled antibody was then divided into two 500-μl aliquots. One aliquot was absorbed three times with 2.0 to 2.5 × 109 washed cells, 98% viable by trypan blue dye exclusion, from two different Hodgkin's disease lines. The second aliquot was similarly absorbed with the same number of cells from two different normal adult spleen culture lines. Thus, for the direct radioiodine-labeled antibody experiments, anti-HD globulin was first absorbed as described for the fluorescent microscopy experiments (2) and for the indirect 125I-labeled antibody assay above, after which two additional absorptions were carried out with cells from either Hodgkin's disease or normal spleen cultures.

The direct radioiodine-labeled antibody experiments were done as described for the indirect assay except that 100 μl of 125I-labeled anti-HD globulin was added to tissue-culture target cells, and the number of washes was reduced from 11 to 7 since there was only one incubation of cells with antibody in the direct test.

Results

The Indirect Assay. Results of the indirect isotopic antibody experiments were calculated by subtracting the background counts (target cells + phosphate-buffered saline + 125I-labeled antibody to rabbit immunoglobulin) from the counts obtained when the target cells were incubated with rabbit antisera plus 125I-labeled antibody. Background counts, which indicated nonspecific binding of 125I-labeled antibody against rabbit immunoglobulin to the target cells, were similar for Hodgkin's disease and normal cultures and ranged between 400 and 1250 cpm per 106 cells. Results of replicate experiments done with equal numbers of target cells and quantities of reagents varied from 4 to 11%. Target cells (106) from Hodgkin's disease cultures bound 1.5-1.8% of the radioiodine in 50 μl of 125I-labeled antibody to rabbit immunoglobulin diluted 1:20 in the presence of similarly diluted anti-HD globulin.

The relationship between the number of target cells incubated with anti-HD globulin and the 125I cpm is plotted in Fig. 1. By serially increasing the number of target cells from each of six Hodgkin's disease cultures from 0.5 to 5.0 × 106 per aliquot, there was an increase in the 125I cpm from 200 to 11,250 which was not linear over the entire range of cell counts tested. This nonlinearity in 125I cpm was possibly related to more nonspecific binding of the iodinated anti-rabbit immunoglobulin because of less effective washing in tests done with greater than 3.0 × 106 target cells.

The 125I cpm for similar serial increments (from 0.5 to 5.0 × 106 target cells per aliquot) of cells from five different normal cultures ranged from 200 to 2150 when they were incubated with similar dilutions of anti-HD globulin and 125I-labeled antibody against rabbit immunoglobulin (Fig. 1). The 125I cpm for target cells from Hodgkin's disease and normal cultures incubated with a 1:20 dilution of normal rabbit globulin were similar and ranged from 75 to 980. The 125I cpm for target cells from normal cultures incubated with anti-HD globulin were slightly, but consistently, greater than those observed when the cells from normal cultures were incubated with similarly diluted normal rabbit globulin (Fig. 1).

The effect of the concentration of anti-HD globulin on the 125I cpm is plotted in Fig. 2. These experiments were done with 50 μl of serially diluted anti-HD globulin per 106 target cells and with 125I-labeled antibody against rabbit immunoglobulin diluted 1:20. The 125I cpm ranged from 4210 to 1124 per 106 target cells from each of six Hodgkin's disease cultures reacted with anti-HD globulin diluted from 1:20 to 1:2560. For five different normal cultures, the 125I cpm ranged from 1250 to 254 per 106 target cells incubated with similar dilutions of anti-HD globulin. As in the data plotted in Fig. 1, the 125I cpm for target cells from normal cultures incubated with anti-HD globulin were slightly greater than those observed when the normal cells were incubated with similarly diluted normal rabbit globulin (Fig. 2).

The reaction of anti-HD globulin with tissue-culture target cells was then compared with that of two control antisera (antisera prepared against fractionated medium from a normal spleen culture, and another prepared against non-
The presence of anti-rabbit immunoglobulin were calculated by subtracting the background counts (cells + phosphate-buffered saline + ^125^I-labeled antibody against rabbit immunoglobulin) from the counts obtained when target cells were incubated with 50 μl of a 1:40 dilution of anti-HD globulin or normal rabbit globulin (NRG) before addition of 50 μl of ^125^I-labeled antibody diluted 1:20. Target cells were obtained from each of six different Hodgkin’s disease culture lines, three cultures of normal adult spleen, and one culture each of fetal spleen and thymus. The binding of ^125^I-labeled antibody to target cells from Hodgkin’s disease cultures incubated with 50 μl of a 1:40 dilution of normal rabbit globulin (not shown) was similar to that plotted for target cells from normal cultures.

cultured Hodgkin’s disease tumor tissue (Table 1). Anti-HD globulin diluted 1:40 and 1:80 reacted strongly with cells from each of six Hodgkin’s disease cultures (mean of 3560 and 3099 cpm per 10^6 target cells, respectively), and weakly with cells from each of five normal cultures (mean of 640 and 417 cpm per 10^6 target cells, respectively). In contrast, the reactivity of the two control antisera with tissue-culture target cells differed only slightly from that of similarly diluted normal rabbit globulin. Thus, the mean ^125^I cpm ranged from 533 to 646 per 10^6 target cells incubated with either of the two control antisera diluted 1:40, with no difference in the

Table 1. Indirect ^125^I-labeled antibody studies of the reaction of anti-HD globulin and control antisera with target cells from Hodgkin’s disease and normal spleen cultures*

<table>
<thead>
<tr>
<th>Culture lines</th>
<th>No. of culture lines tested</th>
<th>Anti-HD globulin</th>
<th>Normal rabbit globulin</th>
<th>Antiserum to normal cultured spleen</th>
<th>Antiserum to noncultured tumor tissue</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1:40</td>
<td>1:80</td>
<td>1:40</td>
<td>1:40</td>
<td>1:40</td>
</tr>
<tr>
<td>Hodgkin’s disease</td>
<td>6</td>
<td>3650 ± 590</td>
<td>3099 ± 431</td>
<td>360 ± 126</td>
<td>533 ± 149</td>
</tr>
<tr>
<td>Normal adult spleen and fetal spleen</td>
<td>5</td>
<td>640 ± 87</td>
<td>417 ± 80</td>
<td>370 ± 170</td>
<td>575 ± 273</td>
</tr>
</tbody>
</table>

* The results are expressed as the arithmetic mean and the standard deviation of the cpm of ^125^I bound to 10^6 target cells. The numbers were calculated by subtracting the background cpm (cells + ^125^I-labeled anti-rabbit immunoglobulin from goat) from the cpm in the presence of the appropriately diluted rabbit antiserum (cells + anti-HD globulin or globulin fraction of control anti-serum + ^125^I-labeled anti-rabbit immunoglobulin from goat).

FIG. 1. Effect of increasing the number of target cells on the binding of anti-HD globulin to cells from Hodgkin’s disease and normal cultures by the indirect ^125^I-labeled antibody technique. Results were calculated by subtracting background counts (cells + phosphate-buffered saline + ^125^I-labeled antibody against rabbit immunoglobulin) from the counts obtained when target cells were incubated with 50 μl of a 1:40 dilution of anti-HD globulin or normal rabbit globulin (NRG) before addition of 50 μl of ^125^I-labeled antibody diluted 1:20. Target cells were obtained from each of six different Hodgkin’s disease culture lines, three cultures of normal adult spleen, and one culture each of fetal spleen and thymus. The binding of ^125^I-labeled antibody to target cells from Hodgkin’s disease cultures incubated with 50 μl of a 1:40 dilution of normal rabbit globulin (not shown) was similar to that plotted for target cells from normal cultures.

FIG. 2. Indirect ^125^I-labeled antibody studies of the effect of the dilution of anti-HD globulin on the reaction with target cells from Hodgkin’s disease and normal cultures. Each aliquot of 10^6 target cells was incubated with 50 μl of diluted anti-HD globulin followed by the addition of 50 μl of a 1:20 dilution of ^125^I-labeled antibody against rabbit immunoglobulin. Results are expressed as ^125^I cpm per 10^6 target cells calculated by subtracting the background counts from the test counts, as indicated in legend to Fig. 1. Target cells were from the same six Hodgkin’s disease and five normal culture lines used in the experiments in Fig. 1. NRG: normal rabbit globulin.

reactivity of cells from Hodgkin’s disease cultures compared with cells from normal cultures.

Brief incubation of washed target cells with various dilutions of trypsin prior to incubation with anti-HD antisera globulin had no effect on the subsequent binding of ^125^I-labeled antibody to rabbit immunoglobulin (4). Cell suspensions from each of four normal cultures (two adult spleen, one each of fetal spleen and thymus), treated with trypsin-EDTA (Grand Island Biological Co.) diluted 0.25, 0.1, and 0.01% for 90, 60, or 90 sec before incubation with a 1:40 dilution of anti-HD globulin, did not bind greater amounts of ^125^I-labeled antibody than controls that had not been treated with trypsin. Similarly, treatment of target cells from each of three Hodgkin’s disease cultures with trypsin in the same manner did not alter the reactivity of the cells with anti-HD globulin.

The Direct Assay. Cells from each of eight different Hodgkin’s disease and six normal cultures were tested with ^125^I-labeled anti-HD globulin by the direct isotopic antibody assay
TABLE 2. Reaction of ¹²⁵I-labeled anti-HD globulin with tissue-culture target cells after absorption of the antibody with cells from Hodgkin’s disease and normal spleen cultures

| Dilution of globulin | Tissue culture line used for absorption | Target Cells | Ratio of antigen on Hodgkin’s disease culture cells to antigen on normal culture cells
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Hodgkin’s disease</td>
<td>Normal</td>
</tr>
<tr>
<td>1:40</td>
<td>1. Normal</td>
<td>5436 ± 654</td>
<td>1421 ± 166</td>
</tr>
<tr>
<td></td>
<td>2. Hodgkin’s disease</td>
<td>1419 ± 317</td>
<td>1290 ± 184</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3807 ± 980 (P < 0.01)†</td>
<td>174 ± 48 (P > 0.1)†</td>
</tr>
<tr>
<td>1:80</td>
<td>1. Normal</td>
<td>4822 ± 621</td>
<td>1006 ± 118</td>
</tr>
<tr>
<td></td>
<td>2. Hodgkin’s disease</td>
<td>980 ± 220</td>
<td>887 ± 162</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3304 ± 885 (P < 0.01)</td>
<td>134 ± 53 (P > 0.1)</td>
</tr>
<tr>
<td>1:100</td>
<td>1. Normal</td>
<td>3402 ± 751</td>
<td>625 ± 128</td>
</tr>
<tr>
<td></td>
<td>2. Hodgkin’s disease</td>
<td>578 ± 167</td>
<td>522 ± 135</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3023 ± 869 (P < 0.01)</td>
<td>102 ± 40 (P > 0.1)</td>
</tr>
<tr>
<td>1:200</td>
<td>1. Normal</td>
<td>1811 ± 393</td>
<td>385 ± 85</td>
</tr>
<tr>
<td></td>
<td>2. Hodgkin’s disease</td>
<td>371 ± 87</td>
<td>270 ± 74</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1422 ± 401 (P < 0.01)</td>
<td>75 ± 39 (P < 0.05)</td>
</tr>
<tr>
<td>1:300</td>
<td>1. Normal</td>
<td>1229 ± 220</td>
<td>312 ± 58</td>
</tr>
<tr>
<td></td>
<td>2. Hodgkin’s disease</td>
<td>339 ± 54</td>
<td>245 ± 36</td>
</tr>
<tr>
<td></td>
<td></td>
<td>906 ± 81 (P < 0.01)</td>
<td>67 ± 29 (P < 0.02)</td>
</tr>
</tbody>
</table>

* Eight Hodgkin’s disease culture lines and six normal adult spleen culture lines were used. The results are expressed as the mean and one standard deviation of the ¹²⁵I cpm per 10^6 target cells.
† Antigen-specific counts for target cells from Hodgkin’s disease and normal cultures were calculated by subtracting line 2 from line 1 for each dilution of ¹²⁵I-labeled anti-HD globulin (expressed as mean of the difference, and the standard deviation of the difference).
† Ratio of the mean antigen-specific counts for Hodgkin’s disease culture cells to the mean antigen-specific counts for normal culture cells.

(Table 2). The quantity of antigen per 10^6 target cells was calculated as follows: antigen-specific ¹²⁵I cpm/10^6 cells from Hodgkin’s disease for normal cultures = (cpm/10^6 cells incubated with ¹²⁵I-labeled anti-HD globulin absorbed with cells from normal spleen cultures) minus (cpm/10^6 cells incubated with ¹²⁵I-labeled anti-HD globulin absorbed with cells from Hodgkin’s disease cultures). The antigen-specific counts for target cells from both Hodgkin’s disease and normal cultures, therefore, were calculated in terms of the difference in the reactivity of ¹²⁵I-labeled anti-HD globulin absorbed with cells from two different tissue culture sources. The ratio of the quantity of antigen on cells from Hodgkin’s disease cultures compared with that on cells from normal cultures varied from 14:1 to 30:1, depending upon the dilution of ¹²⁵I-labeled anti-HD globulin used. For example, at an antibody dilution of 1:40, the mean of the antigen-specific ¹²⁵I cpm per 10^6 target cells from the Hodgkin’s disease culture was 3897 ± 980. At the same antibody dilution, the mean antigen-specific ¹²⁵I cpm per 10^6 normal target cells was 174 ± 48. The ratio of these two mean values was 23:1, indicating that the quantity of antigen on cells from Hodgkin’s disease cultures was 23-fold greater than the quantity of antigen on cells from normal cultures. At an antibody dilution of 1:100, the ratio was 30:1, whereas at antibody dilutions of 1:200 and 1:300, the ratios were 19:1 and 14:1, respectively (Table 2).

DISCUSSION

In the present investigation the indirect and direct isotopic antibody techniques were used to study the reaction of an antiseraum with target cells from Hodgkin’s disease and normal spleen and thymus cultures. The antiseraum was prepared in rabbits against an antigen isolated by density gradient sedimentation of the medium from Hodgkin’s disease monolayer cultures. In other systems (5–8), the isotopic antibody method has proven to be a sensitive and quantitative assay of cell surface antigens.

The anti-HD globulin reacted with an antigen on the surface of Hodgkin’s disease tissue-culture cells as measured with the indirect technique; radioiodinated goat antibody to rabbit immunoglobulin was bound to the cell surface in the presence of anti-HD globulin. The quantity of bound antibody varied with the number of target cells from Hodgkin’s disease cultures (Fig. 1) and with the dilution of anti-HD globulin (Fig. 2), although the relationship was not completely linear in either instance. The globulin fraction of an antiseraum prepared against medium from normal spleen cultures that had been fractionated by density gradient sedimentation was used as a control, and did not react significantly with target cells from either Hodgkin’s disease or normal cultures. A second control antiseraum, prepared against noncultured Hodgkin’s disease tumor tissue, in earlier work, did not react by gel diffusion (1) and immunofluorescence (2) with the Hodgkin’s disease tissue-culture antigen. The globulin fraction of this antiseraum also failed to react with target cells from Hodgkin’s disease cultures when investigated with the indirect isotopic antibody method.

The antiseraum to the Hodgkin’s disease tissue—culture antigen was unreactive with noncultured Hodgkin’s disease tumor tissue by gel diffusion (1) and immunofluorescence (2), nor could reaction be detected with the very sensitive indirect isotope technique. Unreactivity of noncultured Hodgkin’s disease tissue as measured with the latter method is of some concern, but may be attributed to the presence of many dead cells in suspensions of freshly minced tumor, which cause nonspecific absorb-
Hodgkin’s Disease Antigen

We have found that reliable determinations of cell-surface antigen with the isotopic antibody method require greater than 96% cell viability by trypan blue dye exclusion, while viability of fresh Hodgkin’s disease tumor tissue is usually less than 80%.

Since antisera to the Hodgkin's disease tissue-culture antigen consistently displayed a low level of reactivity with cultured normal spleen cells, the specificity of the Hodgkin's disease antigen, on the basis of the indirect radioiodinated antibody experiments, remains in doubt. This reactivity could not be attributed to nonspecific adherence of rabbit globulin to the surface of normal cells because the binding of anti-HD globulin to normal target cells was slightly greater than that of normal rabbit globulin (Figs. 1 and 2, Table 1). Moreover, “unmasking” of the antigen (4) was not observed after gentle trypsinisation of target cells from normal cultures.

The direct isotopic antibody assay was designed to permit more precise measurement of the quantity of “tumor” antigen on target cells from Hodgkin’s disease and normal cultures, and to take into account any residual reactivity of anti-HD globulin with normal cellular antigens which might result from incomplete absorption of the antibody. By this assay, the ratio of the quantity of antigen on the surface of cells from Hodgkin’s disease cultures to the quantity of antigen on cells from normal monolayers ranged from 14:1 to 30:1, depending on the dilution of iodinated anti-HD globulin used (Table 2). The small amount of reactivity with target cells from normal cultures suggests the presence of the antigen on normal cells. This could be explained by differences in the cell populations comprising the normal and the Hodgkin’s disease monolayers, a possibility suggested by the different morphologic appearances of the respective cultures (2). Alternatively, the small amount of reactivity of normal spleen cultures may reflect only background “noise” inherent in the highly sensitive direct isotopic method. Finally, despite absorption of anti-HD globulin with both noncultured and cultured spleen cells, it remains possible that reactivity with a normal component has not been completely removed and still contaminates the antibody.

The Hodgkin’s disease tissue-culture antigen could be a virus component. The antigen banded in the isopycnic density sedimentation gradient at specific gravity 1.15-1.21 (1) may be present in small amounts or in a cryptic state in cultured normal adult and fetal cells, and was demonstrable in cells carried in culture but not in noncultured tumor tissue; all data consistent with a hypothetical virogene (9-14). However, we have not found the Hodgkin’s disease tissue-culture antigen to be immunologically related to several known oncogenic viruses, including the Rauscher murine leukemia, the Epstein-Barr, the herpes simplex, the RD-114, and the avian myeloblastosis viruses (1). Moreover, cell-free extracts from several Hodgkin’s disease culture lines have not induced the formation of the antigen in normal cells carried in culture, and addition of 5-iododeoxyuridine and dimethylsulfoxide, or the administration of ultraviolet light [procedures to increase the amount of a viral antigen (15, 16)] did not increase the titer of antigen in Hodgkin’s disease cultures as measured with the iodinated antibody technique (unpublished). Therefore, the evidence linking the Hodgkin’s disease tissue culture with an oncogenic virus remains inconclusive: the demonstration of such a virus will require other means.

We thank Drs. Harold Dvorak and Paul Black for critical review of the manuscript and Mrs. Paul Zamecnik and Mrs. MaryAnn Magner for technical assistance. This work was supported by Training Grants T-101-GM02202-02 and T-T01-CA0518-16, by National Cancer Institute Contract NIH-NCI-E-71-2174, and AEC Contract AT(30-1)-2643. This is publication no. 1463 of the Cancer Commission of Harvard University.