Nuclear ribonucleoprotein particles probed in living cells
(heterogeneous nuclear RNA–protein complexes/photochemical RNA–protein crosslinking in vivo/nuclease digestion/CsSO₄ banding/mRNA processing and nuclear structure)

SANDRA MAYRAND AND THORU PETERSON
Cell Biology Group, Worcester Foundation for Experimental Biology, Shrewsbury, Massachusetts 01545
Communicated by Paul Doty, January 2, 1981

ABSTRACT Contacts between heterogeneous nuclear RNA (hnRNA) and protein in nuclear ribonucleoprotein particles have been photochemically crosslinked in intact HeLa or Friend erythroleukemia cells by irradiation with 254-nm light at doses of 10¹ to 10⁵ ergs/mm² (1 to 10⁴ μJ/mm²). The resulting crosslinked particles were isolated and compared with conventional hnRNA-protein (hnRNP) preparations. By the criteria of nuclear fractionation behavior, sedimentation coefficients, nuclease digestion profiles, and RNA-to-protein ratio measured by banding in CsSO₄ density gradients, the hnRNP particles crosslinked in vivo are identical to nonirradiated particles. Gel blot hybridization of RNA from Friend cell hnRNP crosslinked in vivo reveals that β-globin RNA sequences remain both intact and hybridizable after the irradiation procedure. The crosslinked hnRNA–protein bonds are stable in 8 M urea/0.5% sodium dodecyl sulfate and withstand centrifugation in CsSO₄ gradients of initial density 1.50 g/cm³. These results establish that hnRNA is tightly complexed with nuclear proteins in vivo and that hnRNP particles isolated by nuclear fractionation represent native structures.

Most eukaryotic genes are interrupted by DNA that does not code for mRNA. These intervening DNA sequences are transcribed into heterogeneous nuclear RNA (hnRNA) co linearly with mRNA-coding regions and are then excised, and the mRNA segments are rejoined. Consequently, there has recently been a resurgence of interest in hnRNA → mRNA processing. We have been studying hnRNA–protein complexes, known as hnRNP particles (reviewed in ref. 1), because we suspect that this nucleoprotein structure of hnRNA may be an important aspect of its processing. The idea that hnRNA is associated with protein in the cell has its roots in the studies by Gall (2) and Callan and Lloyd (3) of nascent ribonucleoprotein (RNP) on the lateral loops of amphibian lampbrush chromosomes. More recently, the association of proteins with hnRNA has been further documented by ultrastuctural analysis of nuclear RNP particles in situ (4–6) or of nascent, nonribosomal RNP fibers on chromatin spread by the technique developed by Miller (7–10).

Just as the reliability of these ultrastuctural studies of hnRNP (4–10) depends on critical fixation and related aspects of specimen preparation, the biochemical isolation of hnRNP particles (11, 12) requires attention to the possibilities of macromolecular rearrangements and nonspecific RNA–protein associations during cell fractionation. We, and others, have addressed this issue through reconstruction experiments in which deproteinized hnRNA is added to nuclei prior to hnRNP particle isolation (12–15). The results have been reassuring in that the added hnRNA does not pick up significant amounts of protein, indicating the absence of a large nuclear pool of nonspecific RNA-binding proteins. Yet, the caveat in all such reconstruc-

Abbreviations: hnRNA, heterogeneous nuclear RNA; RNP, ribonucleoprotein; hnRNP, hnRNA-protein particle; RSB, 10 mM NaCl/1.5 mM MgCl₂/10 mM Tris-HCl, pH 7.2.

* This is paper no. 14 in a series entitled "Ribonucleoprotein organization of eukaryotic RNA." Paper no. 13 is ref. 31.
which were obtained with a distance of 6.25 cm (flux = 4000 μW/cm²) and an irradiation period of 15 min. Lower doses (Fig. 1) were obtained by reducing the duration of irradiation, the intensity, or both.

Isolation of hnRNP and Analysis of RNA–Protein Crosslinking. After irradiation, the cells were harvested and resuspended in RSB (10 mM NaCl/1.5 mM MgCl₂/10 mM Tris-HCl, pH 7.2) and fractionated as described for the isolation of hnRNP (12, 15, 23). In most of the experiments reported here, a postnuclear fraction containing both chromatin and hnRNP was used, while in some cases hnRNP was purified on sucrose gradients as indicated.

Crosslinking was monitored by the phase partitioning of pulse-labeled hnRNA in a phenol/water system. To hnRNP from untreated or irradiated cells, NaCl was added to 0.1 M, EDTA to 0.02 M, urea to 8 M, and sodium dodecyl sulfate to 0.5%. After aliquots had been taken for determination of total trichloroacetic acid-precipitable ³H radioactivity, the samples were extracted for 30 min at 20–22°C with 1 vol of buffered freshly prepared phenol/chloroform/isoamyl alcohol (50:49:5.0:3, vol/vol). After separation of the organic and aqueous phases by centrifugation, aliquots were taken from the aqueous phase for determination of acid-precipitable radioactivity. Crosslinking was computed as detailed in Fig. 1.

RESULTS

RNA–Protein Crosslinking of hnRNP Particles at Three Levels of Organization. A facile assay for photochemical RNA–protein crosslinking is the phase partitioning of RNA in a phenol/water solvent system (e.g., see ref. 17). In the absence of crosslinking, 85–90% of the ³Huridine pulse-labeled RNA in HeLa cell hnRNP particles partitions in the aqueous phase after phenol extraction. As shown in Fig. 1, after 254-nm irradiation a dose-dependent increase occurs in the fraction of hnRNA partitioning in the phenol phase. (Irradiation of deproteinized hnRNA alone does not cause it to become soluble in phenol solution.) This progressive shift of hnRNA into the phenol phase is observed despite the presence in the extraction buffer of 0.5% sodium dodecyl sulfate and 8 M urea. The addition of 0.1% 2-mercaptoethanol to the extraction buffer does not influence the extent of hnRNA-protein crosslinking, indicating that protein–protein disulfide bond formation does not contribute significantly to the results. It can be seen in Fig. 1 that sigmoidal dose–response curves are obtained for hnRNP irradiated as isolated particles, in purified nuclei, or in intact cells, and that higher doses are required with increasing biological complexity, as would be expected. In all cases, 80–90% of hnRNA can be crosslinked to protein, as defined by conferring solubility in phenol solution on the normally phenol-insoluble hnRNA. These results demonstrate that, at all three levels of organization, hnRNA is in direct contact with protein.

For the case of intact cells, this result confirms the earlier cytological and ultrastructural observations that proteins are associated with hnRNA. It also serves as a point of departure for examining the extent to which particles that have been crosslinked in vitro resemble those normally isolated as "hnRNP." Therefore, for the remainder of this paper, all the experiments presented deal with hnRNP crosslinked in vitro.

Specificity and Properties of Crosslinked hnRNP. Control experiments have been conducted to assess the specificity of crosslinking. Mixtures of deproteinized hnRNA and bovine serum albumin irradiated at 10⁹ ergs/mm² were not detectably crosslinked, confirming the earlier results of Schoemaker and Schimmel for tRNA/bovine serum albumin mixtures (17). Deproteinized [³H]hnRNA irradiated at 3.6 × 10⁵ ergs/mm² in the presence of a 1000-fold mass excess of HeLa nuclear protein was crosslinked with some protein, but these complexes had a much lower protein-to-RNA ratio than bona fide hnRNP particles as measured by their increased buoyant density in CsSO₄ (ρ = 1.45–1.50 g/cm³) relative to native hnRNP (ρ = 1.30 g/cm³). In addition, the hnRNA–protein complexes formed in vitro had a much higher sensitivity to pancreatic RNase digestion than native hnRNP did. In particular, these hnRNA–protein complexes were 70% digested under conditions that produced 80% digestion of naked hnRNA, but only 50% digestion of endogenous hnRNP. Thus, while there appears to be some interaction between added hnRNA and nuclear protein, at least enough to be stabilized by photochemical crosslinking, the resulting complexes do not resemble endogenous hnRNP particles (see also ref. 15).

Despite the photochemically catalyzed formation of covalent hnRNA–protein bonds (Fig. 1), the physical properties of the crosslinked hnRNP particles do not appear to be significantly altered. The nuclear fractionation behavior and recovery of hnRNP is unaffected by crosslinking. The percentage of total nuclear [³H]uridine radioactivity recovered in the postnuclear supernatant of control and irradiated cells was 84.2% and 79.3%, respectively (averages of seven determinations each). In addition, sucrose gradient analysis revealed the sedimentation properties and recoveries of control and crosslinked hnRNP particles to be indistinguishable (data not shown). In experiments probing the accessibility of hnRNA in the particles to pancreatic RNase, there was no detectable difference in the digestion profiles of control and crosslinked hnRNP (Fig. 2). It can be seen in Fig. 2A that the degree of RNase protection afforded by hnRNP proteins, relative to naked hnRNA, is exactly the same for control and crosslinked particles. In Fig. 2B, the rate of hnRNA digestion has been accelerated by increasing the RNase-to-hnRNP ratio, allowing the digestion kinetics of control and crosslinked particles to be followed over a range in which approximately 75% of the hnRNA is under analysis. As in Fig. 2A, there is no difference between control and cross-
linked hnRNP. Results similar to those in Fig. 2 were obtained with hnRNP from Friend erythroleukemia cells crosslinked in vivo (not shown). These results demonstrate that, by the criterion of nuclease protection, in vivo crosslinking does not capture a significant amount of additional nuclear protein beyond that normally isolated with hnRNA as hnRNP.

Effects of Crosslinking on an hnRNP Particle-Bound Enzyme. In addition to probing the structure of hnRNP by pancreatic RNase digestion (Fig. 2), it was of interest to examine the effects of crosslinking on an endogenous ribonuclease activity that cofractionates with hnRNP particles (ref. 24 and unpublished results). As shown in Fig. 3A, when control hnRNP particles are recovered from sucrose gradients and incubated at 37°C in 10 mM NaCl/1.5 mM MgCl2/10 mM Tris-HCl, pH 7.2, about 22% of the particle-associated hnRNA is digested to acid solubility over a 2-hr period. (No digestion occurs in particles allowed to stand at 4°C.) As shown by the open circles in Fig. 3A, the kinetics of this “self-digestion” of hnRNP are not detectably altered when the concentration of hnRNP is reduced to 1/10th, indicating that the observed digestion is an intraparticle event and suggesting therefore that the responsible nuclease(s) is particle bound. Fig. 3B shows the results of a comparable experiment with hnRNP crosslinked in vivo. It can be seen that the kinetics of the reaction are similar to that of control particles, reaching a nearly identical value of 20% digested at 2 hr. Once again, a reduction to 1/10th in hnRNP particle concentration does not alter the reaction kinetics. These results therefore show that a presumptively particle-bound enzyme(s) is not inactivated by the irradiation conditions used to crosslink the hnRNP. These data also suggest that the endogenous nuclease has equal accessibility to the hnRNA in control and crosslinked hnRNP. We emphasize that these results do not address the question of whether or not the hnRNP nuclease is crosslinked to the hnRNA. Rather, the results simply provide another criterion by which the control and crosslinked particles are indistinguishable.

Cova lent Integrity of a Specific mRNA Sequence in Crosslinked hnRNP. To examine the important possibility of radiation-induced breakage of hnRNA in crosslinked particles, Friend erythroleukemia cells were irradiated at 106 ergs/mm2 and hnRNP was isolated as described (15). RNA was purified from control and crosslinked particles by proteinase K digestion followed by phenol/chloroform extraction, and then it was electrophoresed in denaturing polyacrylamide gels. After electrophoresis, the RNA was transferred to diazobenzyloxymethyl-paper and hybridized with a 32P-labeled DNA probe for β-globin sequences (see legend to Fig. 4 for details). It can be seen in Fig. 4 that the β-globin sequences from crosslinked Friend cell hnRNP (lane B) show no sign of degradation when compared...
to RNA from noncrosslinked particles (lane A). This result not only demonstrates that the irradiation used for crosslinking does not significantly break hnRNA but also attests to the DNA hybridization competence of RNA from crosslinked hnRNP, which may prove to be an important attribute with respect to future studies on specific gene transcripts in hnRNP and their associated proteins (see Discussion).

Composition of Crosslinked hnRNP Particles as Measured by Isopycnic Banding in Cs2SO4. To investigate the RNA and protein composition of crosslinked hnRNP particles, they were banded in Cs2SO4 density gradients under conditions that dissociate noncrosslinked hnRNP. As shown in Fig. 5, when noncrosslinked hnRNP particles are mixed to homogeneity with Cs2SO4 (ρ = 1.50 g/cm3) and then banded in a centrifuge-generated gradient, most of the hnRNA is stripped of protein and bands at 1.66 g/cm3, which is the density of protein-free RNA in these gradients (27). In striking contrast, crosslinked hnRNP particles are completely resistant to this assault and band at a characteristic hnRNP density of 1.31 g/cm3. To examine the remote possibility that irradiation per se chemically alters RNA to such an extent that it no longer has a density of 1.66 g/cm3, naked hnRNA was irradiated at 3.6 × 109 ergs/mm2 and then centrifuged in a Cs2SO4 gradient. This revealed that irradiated hnRNA retains its characteristic buoyant density of 1.66 g/cm3 (data not shown). That the difference in buoyant density between crosslinked and noncrosslinked hnRNP in Fig. 5 is indeed due to hnRNA-associated protein is shown by the effect of protease treatment on crosslinked hnRNP, which converts the particles to naked RNA (Fig. 6).

We have previously shown that noncrosslinked hnRNP particles band at 1.32–1.35 g/cm3 when layered on a preformed Cs2SO4 gradient (15, 28). In contrast to the situation in which particles are mixed into 1.50-g/cm3 Cs2SO4 (Fig. 5), in preformed gradients the particles never reach a Cs2SO4 concentration high enough to promote their dissociation, because they first reach, and band at, their isopycnic density of 1.32–1.35 g/cm3. Although it is possible that some protein is stripped from the particles as they reach 1.32 g/cm3, the fact that the same density is observed when glutaraldehyde-fixed particles are banded in preformed gradients (23) leads us to take a density of 1.32–1.35 g/cm3 as a reliable indicator of the actual protein-RNA mass ratio of hnRNP. This is very close to the density observed (1.31 g/cm3) when crosslinked particles are banded under conditions that completely strip noncrosslinked hnRNP (Fig. 5). It therefore follows that essentially the same mass of protein that is usually isolated as "hnRNP" is also present in hnRNP particles that have been photochemically crosslinked in vivo.

DISCUSSION

The central objective of this study was to assess the biological authenticity of the isolated nuclear hnRNA-RNP complexes known as hnRNP particles (1). The results demonstrate that these particles represent native structures, because they can be shown to preexist in the unfractionated cell by photochemically catalyzed hnRNA–protein crosslinking in vivo. We cannot conclusively eliminate the possibility that 254-nm irradiation simply shifts a dynamic equilibrium of weak hnRNA–protein interactions in the direction of hnRNP rather than covalently stabilizing preexisting particles. However, because hnRNP particles can be observed to exist in the steady state by electron microscopy (4–10), we are inclined to believe that these structures are based upon high-affinity RNA–protein interactions.

The dose–response relationships of hnRNP crosslinking indicate a progressive increase in the fraction of hnRNA molecules that retain associated protein in the presence of 5 M urea and 0.5% sodium dodecyl sulfate (Fig. 1). The fact that the crosslinking curves span 3–4 orders of magnitude of UV dose raises the possibility that there are multiple classes of hnRNP having somewhat different structures, as was previously suggested on the basis of the effects of salt on their dissociation (12, 29). The heterogeneity in the dose–response curves may also reflect dif-
ferences in the specific UV sensitivities of various nucleotid-a-amino acid neighbors (16), which may vary in their prevalence among different classes of hnRNPs. Finally, it is clear in Fig. 1 that higher doses are required to crosslink hnRNP in intact cells than in isolated nuclei or isolated particles. This is presumably due to absorption of the incident UV light by cellular components such as ribosomes, chromatin, and nucleotide pools. However, the dose used for crosslinking in vivo (3.6 × 10^6 ergs/mm^2) does not induce structural alterations in hnRNP by the criteria of nuclear fractionation behavior and recovery, sedimentation properties, pancreatic RNase digestion profiles (Fig. 2), the activity of a particle-bound enzyme system that may be involved in hnRNA → mRNA processing (Fig. 3), the covalent integrity of a specific mRNA sequence (Fig. 4), and the particles’ RNA-to-protein ratio as determined by Cs_2SO_4 banding (Fig. 5). In addition, electrophoretic analyses of proteins from crosslinked hnRNP (30) reveal that the same set of hnRNP protein species previously identified (12) remains bound to the hnRNA in the presence of 0.5 M NaCl and 0.5% sodium dodecyl sulfate.

hnRNP crosslinking may be a useful vehicle for analyzing aspects of its structure or function that require the use of conditions that would normally disrupt particle integrity. For example, it may be possible to hybridize crosslinked hnRNP particles to filter-immobilized cloned DNA, because the crosslinked particles are likely to withstand the high salt employed for hybridization. Photochemical crosslinking also provides a means of stabilizing RNA–protein interactions during experiments in which protein mobility in the particles would complicate the analysis, for example in locating proteins on specific hnRNA sequences by nuclease protection (31).

We thank Jay Greenberg, James Calvet, and Paul Schimmel for helpful advice and criticism, and Eileen Falvey for assistance in the experiment shown in Fig. 4. This work was supported by National Institutes of Health Grants GM 21505, GM 28274, and CA 12708.