Released protease-nexin regulates cellular binding, internalization, and degradation of serine proteases

(thrombin/urinary plasminogen activator/endocytosis inhibitor/heparin/antithrombin III)

DAVID A. LOW, JOFFRE B. BAKER*, WILLIAM C. KOONCE, AND DENNIS D. CUNNINGHAM

Department of Microbiology, College of Medicine, University of California, Irvine, California 92717

Communicated by Harry Rubin, December 15, 1980

ABSTRACT Protease-nexin (PN), a component released by normal human fibroblasts into culture medium, forms covalent linkages with thrombin (Th) and the urinary plasminogen activator urokinase, apparently with their catalytic site serines. The present studies explored the function of PN by examining the interaction of protease-PN complexes with human fibroblasts and the consequences of this interaction. Th-PN and urokinase-PN complexes bind to cells via the PN portion of the complexes. The binding is selectively inhibited by heparin. Because PN has a heparin-binding site, this indicates that protease-PN complexes might bind to a cellular heparin-like site. After binding, the complexes are internalized. By inhibiting endocytosis with phenylarsine oxide, which does not affect cellular binding of Th-PN complexes, we showed that complexes must be internalized before they are degraded. Kinetic analysis of internalization and degradation of Th-PN showed that complexes are internalized more rapidly than they dissociate from the cell surface; by 120 min of incubation at 37°C most cell-bound Th-PN complexes are degraded to amino acids. The results are summarized in a model showing how PN mediates the cellular binding, internalization, and degradation of serine proteases through formation of protease-PN complexes. This series of events may be involved in the regulation of serine proteinase activity at the cell surface and in the extracellular environment.

Recently we identified protease-nexin (PN), a component released from normal human foreskin (HF) cells that combines with serine proteases, including thrombin (Th) and urokinase (1). PN resembles antithrombin III (AT3), a serum inhibitor of Th. Both PN and AT3 form covalent linkages with serine proteases, and these linkages are identical in their sensitivity to various dissociating conditions. PN, like AT3, does not form a linkage with Th that has been derivatized at its catalytic-site serine with disopropylphosphate. Thus it appears that PN, like AT3, links to proteases at their catalytic sites and inactivates them. PN also resembles AT3 by having a high-affinity heparin-binding site, and its rate of linkage to Th is greatly enhanced by heparin. Nevertheless, PN (about 40 kilodaltons) and AT3 (about 65 kilodaltons) are clearly different in size and in immunological properties. In addition, PN is made by fibroblasts. These intriguing properties of PN, and our previous finding with HF cells that most of the specifically bound Th is found in Th-PN complexes (1, 2), prompted the present studies on the functions of PN.

MATERIALS AND METHODS

Materials. Highly purified human Th (about 3000 National Institutes of Health units/mg) was generously supplied by John W. Fenton II (3). Urokinase (low molecular weight form, 35 kilodaltons) was a gift from Collaborative Research (Waltham, MA). Heparin from porcine intestinal mucosa, soybean trypsin inhibitor (SBTI), and phenylarsine oxide (PhAsO) were products of Sigma. Na\(^{125}\)I was obtained from Amersham, chloroglycouril from Pierce, and silica gel 60 aluminum sheets from Merck. We purchased Dulbecco-Vogt modified Eagle's medium (DV medium) from Flow Laboratories (Rockville, MD); trypsin solution, glutamine, and antibiotics from Gibco; and calf serum from Irvine Scientific (Santa Ana, CA).

Cell Cultures. Gel Electrophoresis, and Radiodiodination. HF fibroblast-like cells (passage 6–16) were cultured as described (4). Conditioned medium was obtained from confluent HF cultures that had been in serum-free DV medium for 48 hr. NaDodSO\(_4\)/polyacrylamide gel electrophoresis was carried out as described (1) except that the sample buffer was 2 mM EDTA/7 mM dithiothreitol/1% NaDodSO\(_4\)/20 mM [bis(2-hydroxylethyl)-amino] tri(hydroxymethyl)methane, pH 7.5. This modification resulted in less breakdown of protease-PN complexes during electrophoresis. Mono\(^{125}\)Iodotyrosine (\(^{125}\)I-Tyr) and \(^{125}\)I\(^{-}\)were separated as follows: Equal parts of culture medium and 2-fold concentrated electrophoresis sample buffer were mixed and heated at 100°C for 5 min. Mixtures (1 ml) were applied to NaDodSO\(_4\)/polyacrylamide gels consisting of a 2.5-cm 4% stacking gel and a 10-cm 10% separating gel. \(^{125}\)I-Tyr migrated directly behind bromophenol blue and \(^{125}\)I\(^{-}\)migrated with phenol red. \(^{125}\)I-Tyr and \(^{125}\)I\(^{-}\)were identified by applying extracts of gel slices (in aceton/acidic acid, 3:2 vol/vol) to silica gel 60 aluminum strips using a 1-butanol/acidic acid/water (10:1:1, vol/vol) developing solvent (5). Standards (prepared with Na\(^{125}\)I, chloramine-T, and tyrosine) were also applied. Radiodiodination of Th and urokinase by using chloroglycouril (6) was performed as described (1).

Measurement of Cellular Binding and Internalization of \(^{125}\)I-Labeled Th-PN (\(^{125}\)I-Th-PN) Complexes. Measurement of binding and linkage of the \(^{125}\)I-labeled proteases \(^{125}\)I-Th or \(^{125}\)I-urokinase to HF cells was performed as described (1). The presence of intracellular Th-PN complexes was determined as follows. Cell cultures (2 x 10\(^5\) cells per 35-mm dish) were rinsed four times with cold phosphate-buffered saline, pH 7.2 (P/NaCl) and incubated with trypsin (0.125% in DV medium) or DV medium without trypsin (1 ml each) for 5 min at 37°C. After addition of 0.2 ml of SBTI (5 mg/ml), the medium was aspirated and centrifuged at 10,000 x g for 2 min; the resulting pellets were washed once in P/NaCl. The cells that remained attached to the culture dish were rinsed once with SBTI (1 mg/ml in P/NaCl) and once with P/NaCl and NaDodSO\(_4\)/polyacrylamide.

Abbreviations: PN, protease-nexin; HF cells, human foreskin cells; Th, thrombin; AT3, antithrombin III; SBTI, soybean trypsin inhibitor; PhAsO, phenylarsine oxide; DV, medium; Dulbecco-Vogt modified Eagle's medium; P/NaCl, phosphate-buffered saline.

* Present address: Department of Biochemistry, University of Kansas, Lawrence, KS 66044.
Cell Biology: Low et al.

gel electrophoresis sample buffer (200 μl) was then added. The cells were scraped with a rubber policeman and pooled with any cells sedimented from the medium; they were immediately heated for 5 min at 100°C. Radioactivity in trypsin-treated cultures was judged to be intracellular.

Cellular endocytosis was inhibited by pretreating cultures with 0.1 mM PhASO (7) in serum-free DV medium for 20 min at 23°C. Because of the tendency of PhASO-treated cells to detach around the edges of the dishes, the NaDODSO4-soluble protein in each culture was determined. Measurements were then corrected for loss of protein.

RESULTS AND DISCUSSION

Binding of Protease-PN Complexes to Cells. We previously showed that cell-bound 125I-Th-PN complexes were formed after addition of 125I-Th to HF cell cultures (1, 2). We also showed that cells released PN into their culture medium, where it formed covalent complexes with 125I-Th (1). This suggested the possibility that 125I-Th-PN complexes formed in the culture medium might bind to the cells. To test this we added 125I-Th to fresh serum-free medium or serum-free medium that had been “conditioned” by cells for 48 hr and that contained PN. These mixtures were then incubated with cells. About twice the amount of cell-bound 125I-Th-PN was formed in incubations using conditioned medium compared to fresh medium (Fig. 1A and Table 1). If 125I-Th-PN, present in conditioned medium but not in fresh medium, could bind to cells, this could account for the increase in cellular binding of complexes observed in incubations with conditioned medium. Alternatively, a factor in conditioned medium might increase the binding of free 125I-Th to cellular PN. To discriminate between these possibilities we incubated 125I-Th with conditioned medium for 30 min; after this incubation about 10% of the 125I-Th was present in 125I-Th-PN complexes. Then we added either excess nonlabeled Th or heparin to specifically inhibit further linkage of 125I-Th to PN, and we incubated these mixtures with cells. As shown in Table 1 (conditions 1–3), heparin or nonlabeled Th prevented free 125I-Th from forming 125I-Th-PN complexes on the cells. However, cells incubated in conditioned medium that contained 125I-Th-PN bound 125I-Th-PN even in the presence of excess nonlabeled Th or heparin (Table 1, conditions 4–6). The reduction in cell-bound 125I-Th-PN seen in conditioned medium containing nonlabeled Th or heparin can be accounted for by the inhibition of linkage of free 125I-Th to PN (Table 1, conditions 1–3). We also found that 125I-urokinase-PN complexes bound to cells in the presence of nonlabeled urokinase (Fig. 1C). These results show that 125I-protease-PN complexes bound to the cells and that they bound via the PN moiety.

Previously we showed that PN has a high-affinity heparin-binding site and that heparin greatly increases the rate of linking between Th and PN released from the cells (1). To determine if heparin also affected cellular binding of 125I-Th-PN, we incubated 125I-Th-PN complexes, preformed in conditioned medium, with cells in the presence or absence of heparin (30 μg/ml). Heparin greatly decreased the appearance of cell-bound 125I-Th-PN at 37°C (Fig. 1A) or 0°C (arrowhead, Figs. 2 and 3). Heparin also markedly inhibited the binding of 125I-urokinase-PN complexes to cells (Fig. 1C). It is unlikely that interaction of heparin with the protease caused this effect, although Th has a heparin-binding site, urokinase does not, judged by their ability to bind to heparin-derivatized Sepharose beads (unpublished results). This effect of heparin did not reflect a nonspecific inhibitory effect of polyanions on the binding of polypeptides to cells. Heparin at even 300 μg/ml did not detectably affect binding of 125I-labeled epidermal growth factor to HF cells (unpublished results). Heparin might inhibit cellular binding of 125I-protease-PN by changing the conformation of PN. Or, if protease-PN complexes bound to a cell surface component such as heparan sulfate, heparin would act as a competitive inhibitor of this process.

Although the association of 125I-protease-PN complexes with HF cells was heparin sensitive, after 125I-Th-PN complexes became associated with the cell surface neither heparin nor a variety of other agents displaced them when incubations were carried out at 4°C. Table 2 shows that the complexes were not displaced by heparin at 30 μg/ml or extracted with 1 mM EDTA or 0.5 M urea, conditions that remove many peripheral membrane proteins (8). KCl at 3 M, an agent that extracts a portion of the membrane-bound HL-A histocompatibility antigen (9), removed 22% of the 125I-Th-PN. A solution of 0.5% Nonidet P-40, which solubilizes many membrane proteins, extracted all of the 125I-Th-PN complexes. The inability of the other treatments to extract 125I-Th-PN was not caused by internalization.

![Figure 1. Binding of protease-PN complexes to HF and mouse embryony cells.](image)

<table>
<thead>
<tr>
<th>Condition</th>
<th>125I-Th in Th-PN, cpm</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Fresh medium</td>
<td>530</td>
</tr>
<tr>
<td>2. Fresh medium + Th</td>
<td>40</td>
</tr>
<tr>
<td>3. Fresh medium + heparin</td>
<td>0</td>
</tr>
<tr>
<td>4. Conditioned medium</td>
<td>1190</td>
</tr>
<tr>
<td>5. Conditioned medium + Th</td>
<td>440</td>
</tr>
<tr>
<td>6. Conditioned medium + heparin</td>
<td>620</td>
</tr>
</tbody>
</table>

Fresh medium or conditioned medium was incubated for 30 min at 37°C with 125I-Th (500 ng/ml). These mixtures were incubated with HF cells for 30 min at 37°C in the absence or presence of nonlabeled Th (10 μg/ml) or heparin (10 μg/ml).
Table 2. High-affinity binding of Th-PN complexes to HF cells

<table>
<thead>
<tr>
<th>Extraction agent</th>
<th>Th-PN extracted, %</th>
</tr>
</thead>
<tbody>
<tr>
<td>P/NaCl</td>
<td>6</td>
</tr>
<tr>
<td>Trypsin (0.05% in P/NaCl)</td>
<td>95</td>
</tr>
<tr>
<td>Urea (0.5 M)</td>
<td>4</td>
</tr>
<tr>
<td>EDTA (1 mM)</td>
<td>8</td>
</tr>
<tr>
<td>Heparin (12 µg/ml)</td>
<td>6</td>
</tr>
<tr>
<td>KCl (3 M)</td>
<td>22</td>
</tr>
<tr>
<td>Nonidet P-40 (0.5% in 10 mM Tris/acetate, pH 8.2)</td>
<td>100</td>
</tr>
</tbody>
</table>

125I-Th (200 ng/ml) was incubated with HF cells for 5 min at 37°C. Cells were harvested at 4°C with a rubber policeman and collected by centrifugation. Extraction agents were added to samples containing 2 x 10^6 cells. Cells were suspended and incubated at 4°C for 16 hr. Trypsin (0.05%) was added to one sample of cells in P/NaCl for 10 min at 37°C, followed by SBTI (1 mg/ml). After centrifugation (10,000 x g, 5 min), supernatant and pellet fractions were prepared for NaDodSO4/polyacrylamide gel electrophoresis.

of the complexes by the cells during the 16-hr incubation at 4°C. Over 90% of these complexes were removed by a brief trypsin treatment after the 16-hr incubation, indicating that they were still present at the cell surface. These results demonstrated that 125I-Th-PN complexes became bound to the cell surface with a high affinity, and, by the criteria used, behaved as integral components of the membrane.

We previously reported that a number of cell types, such as mouse embryo cells and Chinese hamster lung cells, linked 125I-Th to cell surface components that were similar in size to HF cell FN (10). However, most cell types formed substantially fewer complexes than HF cells do. These studies were carried out by incubating the cells with 125I-Th in fresh medium. In view of the ability of 125I-Th-PN complexes to form in conditioned medium and bind to cells, we examined the amount of 125I-Th-PN that became associated with mouse embryo and Chinese hamster lung cells when the 125I-Th was added to cultures containing their respective conditioned serum-free medium. Under this condition, 3- to 4-fold more 125I-Th-PN complexes became associated with mouse embryo cells (Fig. 1B) and Chinese hamster lung cells (data not shown). Thus, PN-mediated cellular binding of 125I-Th was greatly increased in several cell types when binding was carried out in conditioned medium instead of fresh medium.

Transport of Th-PN Complexes into HF Cells. To determine if Th-PN was internalized by cells we took advantage of the finding, presented above, that 125I-Th-PN complexes, preformed in conditioned medium, bound to cells in the presence of heparin. Under these conditions, the heparin prevented specific cellular binding and internalization of free 125I-Th (data not shown) as well as its linkage to cellular FN (Table 1). Thus, preformed 125I-Th-PN complexes were incubated with cells in the presence of heparin at 0°C for 3 hr (Fig. 2). After this incubation all cell-bound 125I-Th-PN was present at the cell surface as evidenced by its complete sensitivity to a brief trypsin treatment. These cells were then placed in medium without 125I-Th-PN and were shifted to 37°C; the presence of intra-cellular and surface-bound 125I-Th-PN was determined by treating the cells with trypsin. The results presented in Fig. 2 show that there was a rapid and progressive loss of cell surface 125I-Th-PN. This loss of cell surface complexes could have been caused by extracellular destruction or dissociation of the complexes, by internalization of complexes, or by both processes. To measure these two processes some cell cultures were treated with PhAsO, a potent inhibitor of endocytosis in oocytes (7). PhAsO totally inhibited endocytosis of 125I-Th-PN at 37°C (Fig. 2). However, it did not affect cellular binding of 125I-Th-PN at 0°C (Fig. 2 Inset), indicating that dissociation of 125I-Th-PN from the cell surface at 0°C was not detectably altered by PhAsO. After 5 min of incubation at 37°C, PhAsO-treated cultures lost about as much Th-PN from their cell surface as untreated cultures did (Fig. 2). Additionally, the amount of Th-PN internalized during the 5–10 min incubation was similar to the amount of Th-PN lost from the cell surface after 5 min in untreated cultures. These results indicated that internalization of complexes was more rapid than dissociation of complexes, because virtually all Th-PN was cell associated after untreated cultures were incubated for 5 min, whereas there was a significant loss of Th-PN from PhAsO-treated cultures after 5 min. Approximately one-sixth of total cellular 125I-Th-PN became insensitive to trypsin during the 5–10 min incubation at 37°C (Fig. 2). However, a comparison of amounts of surface-bound and intracellular 125I-Th-PN at 30-min and later time points showed that only a small fraction of the 125I-Th-PN removed from the cell surface was recovered in the trypsin-insensitive (intracellular) fraction. These results
indicated that 125I-Th-PN not only was rapidly internalized but also was rapidly degraded.

Degradation of 125I-Th-PN. To determine the kinetics of cellular degradation of 125I-Th-PN, preformed 125I-Th-PN complexes were bound to the cell surface at 0°C and cells were then shifted to 37°C as described above for Fig. 2. At various times, medium was assayed for the presence of 125I-Tyr and 125I-. The results presented in Fig. 3 showed that 125I- was released into the medium. This 125I- was probably not derived from cell-bound 125I-Th-PN or 125I-Th, because 125I- levels did not change with increasing incubation times. Additionally, similar amounts of 125I- were released from PhAsO-treated and untreated cells, indicating that internalization was not required for 125I- release. Because about 10% of the total 125I radioactivity in the binding medium was in the form of 125I- , it seems likely that some 125I- in this mixture became associated with cells or dishes at 0°C, but rapidly dissociated at 37°C.

Measurement of 125I-Tyr released into the medium indicated that at least the Th portion of 125I-Th-PN was rapidly degraded to free amino acids by cells. After 10 min of incubation at 37°C there was no detectable 125I-Tyr release (Fig. 3A). However, after 30 min of incubation, 125I-Tyr release from cells was detectable, and further release occurred by 120 min of incubation (Fig. 3 B and C). Importantly, PhAsO-treated cells did not release 125I-Tyr into the medium even after 120 min of incubation (Fig. 3C). Thus, 125I-Th-PN complexes must be internalized before they are degraded to amino acids.

The results presented in Fig. 3E show that, by 120 min of incubation, most of the cell-bound 125I-Th-PN was degraded to 125I-Tyr. However, a small portion of the 125I-Tyr in the medium could have been generated from unlinked 125I-Th that bound to cells at 0°C in the presence of hirudin, and was thus non-specifically bound (Fig. 3E). To determine what proportion of 125I-Tyr was generated from free 125I-Th, 125I-Th-PN complexes were incubated with cells at 0°C in the presence of heparin. Under these conditions, only a small fraction of 125I-Th-PN (8% of the control culture that did not receive heparin) was cell bound after 3 hr (arrowhead, Fig. 3E), whereas about 42% of the 125I-Th remained cell bound (data not shown). Fig. 3D shows that under these conditions 125I-Tyr was not generated after 30 min of incubation. However, after 120 min of incubation, cells released a small amount of 125I-Tyr. Degradation of 125I-Th at 120 min but not at earlier times was supported by cellular binding results (Fig. 3E). Thus, in Fig. 3E about 6000 cpm of the 125I-Tyr generated after 120-min incubation was probably due to degradation of non-specifically bound 125I-Th.

Together these results showed not only that 125I-Th-PN must be internalized before degradation to amino acids but also that degradation was rapid. Over 40% of the 125I-Tyr resulting from degradation of 125I-Th-PN was generated after only 30 min of incubation. Importantly, Fig. 3E shows that after 120 min of incubation most cell-bound 125I-Th-PN had been degraded, as evidenced by the production of 125I-Tyr. This result supports our interpretation, presented above, that internalization of Th-PN is more rapid than dissociation of Th-PN, because we have also shown that degradation of complexes cannot occur unless they are internalized.

Possible Functions of PN. In this paper we describe a series of events that occur upon release of PN from HF cells. Our results, summarized in Fig. 4, show that released PN (step 1) forms a linkage (step 2) with serine proteases (Th and urokinase).

Fig. 3. Degradation of 125I-Th-PN complexes by HF cells. 125I-Th-PN complexes were incubated with HF cells at 0°C in the presence of hirudin (10 μg/ml) for 3 hr, the cultures were then shifted to 37°C as described for Fig. 2. Additionally, some cultures received heparin (300 μg/ml). After various times, medium was processed for NaDodSO4/polyacrylamide gel electrophoresis and iodinated compounds were separated and identified by thin-layer chromatography. Positions of standards are indicated by vertical arrowheads. Each fraction is 2 mm. (A) Medium after 10 min of incubation. (B) Medium after 30 min of incubation. (C) Medium after 120 min of incubation; △, untreated cells; ●, PhAsO-treated cells. (D) Heparin addition to cells (500 μg/ml); ○, medium after 30 min of incubation; ●, medium after 120 min of incubation. (E) Summary of results: ●, 125I-Tyr released from untreated cells into the medium; ○, cell-bound 125I-Th-PN of untreated cells; ● cell-bound 125I-Th of PhAsO-treated cells; ○, cell-bound 125I-Th of untreated cells. The arrowhead shows the total cell-bound 125I-Th-PN of heparin-treated cells after 3 hr of incubation at 0°C.
present in the culture medium. As previously shown, the rate of linkage formation between Th and PN is greatly increased by addition of heparin (1). Protease-PN complexes formed in cell-conditioned medium bind tightly to HF cells (step 3). Binding is markedly reduced in the presence of heparin at 30 µg/ml. Our results indicate that binding is mediated by the PN portion of protease-PN complexes. Thus, PN appears to be a mediator of protease binding and not a cell surface binding site as we originally suggested (2). After cellular binding, Th-PN complexes are rapidly internalized (step 4) and degraded (step 5).

Because Th linked to PN is rapidly degraded by the cells (Fig. 3), it seems unlikely that PN transports serine proteases into cells. Also, PN probably does not play a direct role in the generation of the mitogenic signal by Th. Cellular binding of Th-PN complexes can be almost totally inhibited by heparin addition with no apparent effect on the ability of Th to stimulate HF cells and mouse embryo cells to divide (unpublished data). However, it seems likely that PN is involved in the regulation of serine protease levels in the extracellular and cell-surface environments. This regulation would occur via the cellular degradation of proteases outlined in Fig. 4 and also by direct inhibition of proteases by PN. Our studies with urokinase indicate that this plasminogen activator loses its fibrinolytic activity when linked to PN (11). The presence of binding sites for PN at the cell surface could play the important role of increasing the concentration of PN at this critical location. For example, at this site PN could directly modulate thrombin-stimulated cell division, because proteolysis by thrombin at the cell surface is sufficient to produce a proliferative response (12, 13). PN may be identical to a recently described mouse cytosol protein called trypsin combining protein (14). Finally, it is noteworthy that α2-macroglobulin, a serum protease inhibitor, forms complexes with proteases and mediates their binding, internalization, and degradation. However, α2-macroglobulin does not form a covalent linkage to the catalytic site of the protease (15) and it is supplied by plasma or serum rather than the cells that bind and internalize the complexes (16–18). Because PN is made by the same cells that bind, internalize, and degrade protease-PN complexes, it could provide a mechanism for autoregulation by these cells of serine protease levels at their cell surface.

We gratefully thank John W. Fenton II for thrombin, Cindy Reifer for technical assistance, and H. Steven Wiley for helpful discussions and for suggesting the use of PhAsO. This work was supported by Research Grant CA-12306 from the National Institutes of Health. D.A.L. was supported by Predoctoral Training Grant GM-07134. J.B.B. was supported by Postdoctoral Training Grant CA-09054, and D.D.C. was supported by Research Career Development Award CA-00171, all from the National Institutes of Health.