ABSTRACT Sulfate uptake in haploid carrot cultures can be experimentally controlled by the sulfur source provided for growth. The rate of sulfate uptake is low in cells grown on cystine or sulfate and high in sulfur-starved cells. A selenate-resistant variant cell line has been isolated from a haploid carrot line. The variant shows hypersuppression of sulfate uptake by cystine and essentially normal control by the other treatments. While both lines efflux intracellular sulfate in the presence of external sulfate, the rate of efflux from the variant is 4–6 times higher at comparable levels of initial intracellular sulfate. Further, properties of the efflux and uptake in both lines suggest that they are mediated by the same system. We propose that the variant possesses an altered uptake–efflux system that is more readily reversed and more subject to control by some metabolite derived from cystine.

Sulfate uptake has been studied in a variety of organisms, and permease-deficient mutants have been selected by resistance to sulfate analogs in Escherichia coli (1), yeast (2), Aspergillus (3), and Neurospora (4). In Aspergillus, a mutant showing hypersuppression of sulfate uptake by methionine has been isolated and was found to be allelic to other permease-less mutants (5). In general, the regulation of these permease activities has been attributed to repression by some reduced sulfur compound; however, there is also evidence for inhibition of uptake by some early intermediate in reduction (6).

Tobacco cells (6) and potato tuber discs (7) show suppression of sulfate uptake if incubated with sulfur-containing amino acids. Using tobacco cells, Smith (8, 9) found that sulfate uptake was suppressed by growth on cyst(e)ine or sulfate and, on the basis of correlative evidence, suggested that uptake was controlled by feedback inhibition by the intracellular sulfate pool. In this paper, we describe a variant carrot cell line that has altered control of sulfate uptake by cystine. The results show that this line has an altered uptake–efflux system and is impaired in sulfate reduction. The relationships among these phenotypes are discussed.

MATERIALS AND METHODS

Culture Methods and Variant Isolation. The parental cell line has been described (10), and growth in suspension culture was monitored turbidimetrically (11). Media used in this work were based on Gamborg's B5 medium (12), modified by replacing (NH₄)₂SO₄ with NH₄NO₃ and other sulfates with equimolar chlorides. This medium, referred to as -S medium, was used unsupplemented or supplemented with cystine (Eastman). Suspension cultures of both lines were grown in 100 ml of medium in 500-ml flasks with continuous shaking at 120 rpm at 25°C in the light. Plants were produced from both lines on B5 medium devoid of 2,4-dichlorophenoxyacetic acid and callus was reinitiated from root tips on B5 medium supplemented with 2,4-dichlorophenoxyacetic acid at 1 mg/liter. Chromosome counts were done as described (10).

The variant was isolated from the parental line, HA, by plating cells on -S medium/1 mM djenkolate/0.2 mM sodium selenate/1% agar. After 4 months, those cells that grew up to callus colonies were subcultured onto -S medium/1 mM cystine. The line described, S232, was isolated by this procedure from a culture that had been treated 1 month earlier with 0.3% ethyl methanesulfonic acid for 3 hr. It is not known if the variant was induced by the mutagen.

Labeling Cells. Suspension culture cells used in uptake and efflux experiments were filtered through 500-μm nylon mesh, washed three times, and suspended in culture medium at a fresh weight of 400 mg/100 ml. Washing and resuspension were done with the medium used for growth. Sulfate uptake and efflux studies were done in 1 mM MgCl₂/1 mM CaCl₂/1 mM 4-morpholineethanesulfonic acid/2% glucose, pH 5.0. Cells were washed three times in this medium, suspended at 20 mg fresh weight/ml and dispensed as indicated below.

Uptake Experiments. In uptake experiments, 0.5-ml portions of the cell suspension were placed in 10-ml disposable culture tubes (Scientific Products). Two hours later, uptake was initiated by addition of [³⁵S]sulfate (Amersham) and an appropriate amount of carrier K₂SO₄ in 0.5 ml of medium. The final sulfate concentration was 0.1 mM. Incubation was done at 27°C with continuous shaking at 200 rpm. After a fast uptake in the first 15 min, uptake was linear up to 5 hr. Thus, a 2-hr labeling period was used as an index of the rate of uptake. At the end of the uptake period (2 hr), the reaction was terminated by the addition of 5 ml of 10 mM K₂SO₄ in the same medium. The cells were collected by vacuum filtration and washed five times. Dried filter discs (Whatman GFC) were assayed in scintillation fluid. At least two tubes were used for each treatment and the data presented are the mean of at least two experiments. A control for nonspecific adsorption, zero incubation time, was subtracted from each result.

Labeling Specific Metabolites. In experiments to examine the labeling of specific metabolites, a modified method of Hodson (13) was used. Tubes of labeled cells were prepared as above except that 1 ml of 10 mM iodoacetamide was added at the time indicated. After a further 10 min of incubation, cells were washed as described above. Cells from four tubes were collected for each sample and frozen. The next day each sample was suspended in 4 vol of water, boiled for 2 min, and the debris was spun down. Portions of the clear supernatant were spotted on thin-layer chromatography plates (Kontes LK6DF). The compounds were separated by ascending chromatography with 88% phenol/concentrated NH₄OH/H₂O (174:1:26). The dry plate was exposed to x-ray film and the located compounds were cut out and assayed in scintillation fluid.
Efflux Experiments. In efflux experiments, cells starved for sulfur for 6 days were used. First, 15–150 ml of cell suspension was loaded with 35S-sulfate in Erlenmeyer flasks. At the end of the labeling period (1–5 hr), cells were collected by gentle filtration, washed four times in sulfur-free incubation medium, scraped from the filter, and suspended in the same medium at 10 mg fresh weight/ml. Typically, 15–20 ml of cell suspension were incubated in a 25-ml Erlenmeyer flask.

Efflux was measured by removing 1-ml samples of cell suspension, pelleting the cells by centrifugation, and assaying the radioactivity in 0.5 ml of supernatant. Sulfate-stimulated efflux was initiated by the addition of K$_2$SO$_4$ to a final concentration of 2 mM unless otherwise stated. Sulfate-stimulated efflux was initiated 2 hr after washing the cells. All incubations were carried out at 25°C with shaking at 120 rpm.

Estimates of intracellular sulfate were made by comparing sulfur soluble in acidic BaCl$_2$ with total sulfur in boiled cell extracts collected 2 hr after washing. Specifically, 40 mg of cells was collected by vacuum filtration and boiled for 2 min in 0.76 ml of 20 mM K$_2$SO$_4$. The debris was spun down. Two 0.2-ml samples were taken, to one was added 0.2 ml of 100 mM BaCl$_2$ in 1 M HCl and to the other was added HCl alone. The samples were spun down again to remove the precipitate and 0.2-ml samples of supernatant were assayed for radioactivity. Sulfate was estimated from the difference between the two treatments.

All assays were done by using 4 ml of 3a70B counting cocktail (Research Products International) and a Beckman LS 250 counter. Specific activities of 35S-sulfate were varied during the experiments but were generally 0.5–2 mCi/mmol (1 Ci = 3.7 x 1010 becquerels).

RESULTS

Isolation, Selenate Resistance, and Chromosome Counts of the Variant Line. The variant line, S232, was isolated from the parental line, HA, by selecting for resistance to the sulfane analog, selenate, during growth on djenkolate, a poor sulfur source. Reuney has shown that tobacco cells are extremely selenate sensitive when grown on this sulfur source and suggested that the sensitivity was due to derepression of the enzymes of sulfate assimilation (14). We used djenkolate as the sulfur source because it does not suppress sulfate, and presumably selenate, uptake in carrot cells (see below). The S232 line is resistant to selenate when grown on djenkolate and has remained stable for 2.5 years in the absence of selection. The LD$_{95}$ (dose of drug reducing the callus plating efficiency by 95%) values are ~30 and 300 μM for the HA and S232 lines, respectively. Callus reinitiated from plants derived from the two lines have the same resistance as the original lines. HA and S232 are of comparable ploidy, consisting of 70% haploid cells with the remainder being largely diploid cells. The data are consistent with S232 resulting from either a mutation or a stable shift in gene expression that has occurred in haploid tissue. Until this question can be resolved by sexual or somatic crosses, we feel such lines should be referred to as variants, a term that is neutral regarding the nature of the alteration.

Control of Sulfate Uptake. Sulfate uptake was measured in samples of the two lines grown under a variety of conditions of sulfur nutrition. Sulfate uptake is clearly conditioned by the sulfur source supplied for growth (Fig. 1). In HA cells, prior sulfur starvation results in high levels of uptake while previous growth on sulfate or cystine suppresses it. Although cells supplied with a sulfur source grow for at least 2 weeks without subculture, sulfur-starved cells typically cease growth after day 6; however, on supplementation with sulfate or cystine, the latter will grow without a lag period. Cystine is more effective than sulfate in suppressing uptake early in the culture cycle; it is less effective than sulfate beyond day 4.

In the S232 variants, sulfur starvation results in high levels of uptake, usually higher than in HA (Fig. 1). Growth on sulfate suppresses it; sulfate is less effective in S232 compared with HA at early times (day 2) but is considerably more effective than in HA beyond day 4. The most striking difference between the two cell lines is in the suppression of uptake by cystine. The variant cells have little or no capacity to accumulate sulfate when grown on this sulfur source. Uptake in S232 is 1/5 to 1/10 that in HA grown under the same conditions. Cells grown on d-cystine or djenkolate give patterns similar to sulfur starvation in both lines.

Sulfate Efflux in the Two Lines. Preliminary experiments with cells uniformly labeled with sulfate (long-term labeling for 1 month) showed that the S232 line accumulated small pools of sulfate compared with HA. This result was surprising because the uptake capacity as is similar to that of HA in cells grown on sulfate. In an attempt to reconcile these two observations, we examine the efflux of sulfate from sulfate-loaded cells.

The loss of sulfate from sulfate-loaded cells of both lines is shown in Fig. 2. The effluxed material is sulfate, not other sulfur compounds, because cochromatographs with sulfate and is precipitated by acidic BaCl$_2$. HA cells leak slightly after washing; in the absence of external sulfate, some of this loss can be reabsorbed (Fig. 2A, curve 4). If sulfate is added at 2 hr, a slight sulfate-stimulated efflux is observed (curve 1). Since the sulfate-stimulated efflux can be inhibited by agents that inhibit sulfate uptake (cystine [curve 2] and cycloheximide [curve 3]), efflux is presumed to occur via the sulfate uptake system. Both cystine and cycloheximide cause progressive loss of uptake capacity; >60% is lost in 2 hr of incubation.

The S232 line has larger faster effluxes under all conditions. In the absence of external sulfur sources, a large efflux is observed that is not dependent on added sulfate (Fig. 2B, curve 4). Much of this loss can be reabsorbed after 2 hr. If sulfate is added at 2 hr, a second large and fast efflux is observed (curve 1). In this treatment, nearly half the initial load was lost by the end of the experiment. The sulfate-stimulated efflux is inhibited by cystine and cycloheximide, suggesting that it is mediated by the same mechanisms as in HA, presumably via the uptake system (curves 2 and 3).

Metabolite Pools in Sulfate-Fed Cells. In short-term experiments, S232 cells take up sulfate slightly faster than HA; smaller pools of reduced compound are found in these cells (Fig. 3). Consequently, the sulfate pool in S232 represents a larger proportion of the sulfur recovered. In both lines, cysteine rap-
FIG. 2. Efflux of sulfate from loaded HA (A) and S232 (B) cells
under a variety of conditions. Curves: 1, Addition of K$_2$SO$_4$ at 2 hr
(final concentration, 2 mM); 2 and 3, cells were suspended in the pres-
ence of 1 mM cysteine or 10 ppm cycloheximide, respectively, and
treated 2 hr later with K$_2$SO$_4$ (final concentration, 2 mM); 4, no ad-
ditions. Total loaded sulfur determined at the start of the experiment
was 8.3 and 8.5 nmol/10 mg fresh weight for HA and S232, respec-
tively. Efflux was determined as nmol/10 mg fresh weight of cells.

Idly reaches a small stable pool that serves as a precursor to an
expanding glutathione pool. Both pools are smaller in S232.
(Cysteine, glutathione, and sulfate account for >98% of the sul-
fur-containing compounds recovered by this method. Early inter-
mediates would probably be destroyed by the extraction. In
some experiments, traces of methionine have been observed.)
The apparent inconsistency between short- and long-term ex-
periments, S232 possessing more sulfate than HA in short-term
experiments but less in long-term ones, is probably due to the
significant net efflux in S232 cells in long-term experiments.

Patterns of Efflux and Compartmentation. We reasoned that
the high efflux rates observed in S232 might be a conse-
quency of possessing a larger sulfate pool at comparable loading
levels. To test this hypothesis, cells of both lines were loaded
to different extents, washed, and incubated for 2 hr in the ab-

cence of external sulfate. A sample was taken and the initial sul-

fate pool was determined. Efflux was then initiated by the ad-
dition of sulfate. The amount lost at each time point was
subtracted from the initial pool and the data were plotted semi-
logarithmically (Fig. 4).

When examined in this way, effluxes from both lines can be
resolved into two components of different slopes, an initial fast
efflux during the first hour and a second slower efflux during
the first five hours (and beyond). In higher plant tissues, effluxes
having two or more distinct phases are frequently found
and have been attributed to subcellular compartmentation (15).
The fast component would result from efflux from the cytoplasm
and the second, slow, efflux, would result from loss from the
vacuole. The two phases of efflux will be referred to as cyto-
plasmic and vacuolar, in accordance with the above model, al-
though other explanations are possible. Examination of Fig. 4
reveals that in S232 both effluxes are faster and, further, the
cytoplasmic efflux contains a larger proportion of the cellular
sulfate than it does in HA. The latter result implies that S232
has a larger proportion of the cellular sulfate in the cytoplasm
and hence less in the vacuole. Since the second efflux is also
faster, what is presumed to be the vacuolar sulfate must be more
available to efflux in this line. The differences in efflux rates
cannot be fully explained by the differences in reduction (see
Discussion).

Effect of Extracellular Sulfate on Efflux. To further char-
acterize the effluxes of the two lines, the effect of various levels
of extracellular sulfate was examined. The rate of the initial ef-
flux shows the same pattern of dependence on extracellular sul-
fate despite the difference in rate (Fig. 5A). The requirement
for external sulfate is high; efflux rates are of the order of a few
nanomoles per milliliter per hour, but require 2 µmol of ex-
ternal sulfate per ml to be maximal. If the role of the external
sulfate were merely to prevent reabsorption of leaked sulfate,
the level required might be expected to be lower. The require-
ment for external sulfate can be approximated to Michaelis–
Monten kinetics, a Lineweaver–Burk plot of the same data is
shown in Fig. 5B. K_m values are 3.6 ± 0.1 and 3.1 ± 1 × 10^{-4} M
for HA and S232, respectively. This phenomenon again sug-
gests that this efflux is carrier mediated, with the external
sulfate behaving as a substrate in the process. For purposes
of comparison, K_m values for uptake in short time periods are
-3 × 10^{-5} M in both lines (i.e., \approx10 as much).

Effect of Intracellular Sulfate Level on Efflux. In an attempt
to measure the affinity of internal sites involved in efflux, the
relationship between the initial rates of the cytoplasmic and the

FIG. 3. Sulfur-containing compounds found in sulfate-fed HA (A)
and S232 (B) cells after various periods of incubation with 35SO$_4$2-
Compounds were separated as their acetamidated derivatives. Curves:
1, sulfate; 2, reduced glutathione; 3, cysteine. Compound pools were
determined as nmol/10 mg fresh weight of cells. Each point is the mean
of two independent experiments; bars represent 1 SD and are omitted
where smaller than the symbol representing the point.

FIG. 4. Sulfate remaining in loaded HA (A) and S232 (B) tissue
after various periods of sulfate-stimulated efflux. Values were calcu-
lated from the initial pool and the amount lost at each time point. Each
curve represents a flask of cells loaded to a different initial level by
a different loading concentration. SO$_4$2 was determined as nmol/10 mg
fresh weight of cells.
presumed vacuolar effluxes to the initial intracellular sulfate pool was examined (Fig. 6). As noted above, both effluxes are faster in the S232 line but the cytoplasmic efflux is increased more than the vacuolar efflux. The rate of vacuolar efflux shows a linear relationship to the total pool in both cell lines. The increase in cytoplasmic efflux with respect to the total pool is a saturating curve in both cell lines. Probably, the development of a plateau in the cytoplasmic efflux curve represents not the saturation of sites involved in efflux but rather a shift in the subcellular distribution of sulfate. For example, in the S232 line at low loading levels (<3 nmol/10 mg), 25% of the pool is recovered in the cytoplasmic efflux. In contrast, at high loading levels (10 nmol/10 mg), only 12–14% of the pool is recovered in this efflux. This effect can be seen in Fig. 4; a similar shift is observed in the HA line but cannot be accurately quantified because the cytoplasmic efflux is absolutely small, constituting <2% of the total pool.

DISCUSSION

The control of sulfate uptake by the supplied sulfur source in the HA line is similar to that in tobacco cells (7–9). The sulfate-stimulated effluxes from both lines are inhibited by cystine and by cycloheximide, treatments that strongly inhibit uptake. The result suggests that uptake and efflux are mediated by the same system and, further, that both agents result in the loss, inactivation, or unavailability of sites needed for both uptake and efflux. The effect of cycloheximide is general in the sense that it also inhibits amino acid uptake in these cells (data not shown) and a variety of uptake systems in tobacco cells (16). It is not clear whether this is a result of high turnover rates for proteins involved in higher plant uptake systems or some less specific effect of the drug. The loss of efflux capacity in cystine-treated cells results from either the loss of sites involved or competition for such sites by sulfate generated intracellularly from the cystine.

The S232 line is a stable variant that has pleiotropic alterations in sulfate uptake and assimilation. These alterations include (i) hypersuppression of uptake by cystine, (ii) deficiency in sulfate reduction, and (iii) higher rates of sulfate efflux in the presence and absence of extracellular sulfate. Sustained effluxes from both lines are highly dependent on extracellular sulfate; the levels required are high. The observation that effluxes from both lines can be approximated to Michaelis–Menten kinetics with extracellular sulfate plotted as substrate suggests that the effluxes represent a carrier-mediated reaction rather than nonspecific leakage of cellular sulfate. The apparent K_m with respect to external sulfate, is the same in the two lines despite the difference in rates.

Attempts to measure the affinity of sites involved in efflux with respect to intracellular sulfate in the two lines were unsuccessful. The fastest phase of efflux in both lines gave a saturating curve with respect to total cell sulfate but this appears to reflect a shift in compartmentalization of the sulfate. The second, presumably vacuolar, efflux showed no saturation in the range examined. This may reflect either that sites involved in efflux cannot be saturated or that their apparent K_m is >1 mM. The latter may be the case, as studies on sulfate effluxes from *Neurospora* gave a K_m of 20 mM for efflux with respect to total intracellular pool of sulfate (17).

The difference in compartmentalization, high cytoplasmic sulfate in S232 and low in HA, could potentially explain the difference in efflux rates. One might propose the cytoplasmic efflux is faster in S232 merely because there is more sulfate in the cytoplasm; however, this does not explain why the vacuolar efflux is also faster.

The kinetic and control properties of the effluxes between the two cell lines are the same; the only differences appear to be in the rates and magnitudes of the fluxes. We propose that uptake and efflux occur in carrot cells by the same system, as in *Neurospora* (17). If this is accepted, it must be proposed that S232 is altered such that the uptake–efflux system is more reversible. The hypersuppression of uptake by cystine might be the result of increased inactivation or inhibition of the altered sulfate permease by some metabolite derived from cystine.

This explanation leaves two aspects of the phenotype of this line unexplained: the deficiency in sulfate reduction and the abnormal compartmentalization. A single explanation of the S232 variant that could account for its diverse phenotypes would be that the same permease is used throughout the endomembrane system. This would explain the high cytoplasmic sulfate as a backflux from the vacuole and the deficiency in reduction as due to inability of the plastids to accumulate enough sulfate for reduction to proceed faster. This model is supported by the observation that vacuolar efflux is faster in S232 than in HA. An alternative explanation would be that S232 has a second lesion impairing sulfate reduction in addition to the altered permease. The observed high cytoplasmic sulfate would be the
result of failure to deplete the sulfate in this compartment by reduction.

Intermediate models are, of course, possible. A partial block in sulfate reduction and the same uptake–efflux system at plasma-membrane and tonoplast would explain the observations.

The central question of how cystine and sulfate control sulfate uptake remains unsolved. None of the observations presented in this paper is incompatible with feedback regulation by the intracellular sulfate pool as proposed by Smith (8, 9). On the other hand, no evidence supporting the suggestion was found. Resolution of the nature of the control of sulfate uptake in higher plants will have to await some means of quantifying the sites involved irrespective of their activity. This can only be done by identifying the protein(s) involved.

We thank Dr. Leonard Kelly, Genetics Department, University of California, Berkeley, for helpful discussions.