Transcription of a *Drosophila* heat shock gene is heat-induced in *Xenopus* oocytes

(microinjection/gene regulation)

RICHARD VOELLMY* and DURI RUNGGER†

*Department of Molecular Biology, University of Geneva, 30, Quai Ernest Ansermet, 1211 Geneva 4, Switzerland; and †Department of Animal Biology, University of Geneva, 30, Rue de l'Ecole de Médecine, 1211 Geneva 4, Switzerland

Communicated by V. Prelog, December 8, 1981

ABSTRACT *Xenopus* cells, like many other eukaryotic cells, respond to heat treatments by increasing the rate of synthesis of a few characteristic proteins, the heat shock proteins. Because of the generality of this response, it seemed possible to examine the expression of isolated heat shock genes in a heterologous system. Phage 122 DNA, containing two identical genes coding for the *Drosophila* 70,000-dalton heat shock protein (hsp70 genes), was microinjected into *Xenopus* oocyte nuclei. The *Drosophila* hsp70 genes are transcribed efficiently in heat-treated oocytes (35–37°C) to give RNA of the correct size and sequence content. Transcription is sensitive to low levels of α-amanitin and therefore is carried out by RNA polymerase II. At normal temperatures (20–25°C) essentially no *Drosophila*-specific RNA is formed. The isolated insert fragment of phage 122 also gives RNA of correct length in heat-treated oocytes which hybridizes to the coding segment of *Drosophila* hsp70 genes only. At normal temperatures, however, its rate of transcription is variable and only RNA heterogeneous in size is formed.

Heat shock genes are present in a wide variety of eukaryotic cells (1–4). These genes are active at higher temperatures but are transcribed at low rates or not at all at normal growth temperatures. In all cells investigated so far, heat shock proteins of 70,000 and ~85,000 daltons were found to be made (1–6). As judged by peptide analysis, heat shock proteins from species as different as *Drosophila* and man have similar structures (ref. 6, unpublished data). These observations demonstrate that both the structure of the genes coding for heat shock proteins and their mode of regulation have been well conserved throughout evolution.

The *Drosophila* genes coding for the major 70,000-dalton heat shock protein (hsp70 genes) have been isolated and characterized in considerable detail (7–11). The hsp70 genes are repeated five to nine times in the haploid *Drosophila* genome (12) and are located at chromosomal regions 87A and 87C (3). Each hsp70 gene (see Fig. 2) consists of a 2.2-kilobase (kb) mRNA coding region, Zc, and a 0.3- to 0.4-kb-long noncoding segment, Znc (13, 14). By now, the nucleotide sequences of the hsp70 genes and some of the more distal 5′ flanking regions have been determined (15–17).

The mechanism by which heat shock genes are activated is not understood as yet. The nature and the location of DNA sequence elements involved in the transcriptional regulation of these genes are unknown. Because of the generality of the heat shock response, it seemed possible to investigate the mechanism of regulation of heat shock gene transcription in a heterologous system. If heat shock gene control sequences were conserved as well as the protein encoding portions, one might expect that control regions associated with heat shock genes of one organism could also be recognized in cells of another organism.

We have chosen microinjection into *Xenopus* oocytes as an assay for studying the expression of *Drosophila* heat shock genes. *Xenopus* oocytes have some major advantages over many other in *vitro* or in *vivo* transcription systems. The transcription of a structural gene in the oocyte not only is dependent on the presence of T-A-T-A but also is evidently influenced by other DNA sequences as well. For instance, the expression of the histone genes is controlled by several sequence elements located in the 5′ flanking extension (18). Whereas viral genes are efficiently read (19, 20), some cell type-specific genes, such as the ones coding for rabbit β-globin (21) or chicken ovalbumin (22), are not specifically transcribed in the oocyte. Moreover, in the oocytes, no crossover events are expected to bring the injected genes into the neighborhood of host DNA sequences that might affect their transcription. Thus, the regulation of the expression of an injected gene solely depends on the presence of its own control sequences.

MATERIALS AND METHODS

hsp70 Genes. The isolation and characterization of phage 122 carrying two *Drosophila melanogaster* hsp70 genes has been described (23). Plasmid 122X14 is a derivative of phage 122 and contains one of the hsp70 genes along with long flanking sequences (23). Plasmid Sal 0 has been constructed by inserting the coding portion of the *Drosophila* hsp70 gene from plasmid 56H5 into the unique Sal I site of pBR322 (14). Plasmid and phage DNAs were prepared as described (7, 24). Phage 122 DNA or the 10.5-kb EcoRI insert fragment isolated from it was used for injection. The DNAs were circularized by incubation with T4 ligase. Routinely, about 30% of the gene fragments were found to be in a circular form as judged by electrophoresis on agarose gels.

Enzymes and Isotopes. Avian myeloblastosis virus reverse transcriptase was a gift from the National Cancer Institute. EcoRI came from the Microbiological Research Establishment (Porton Down, England). DNA polymerase I was from Boehringer Mannheim, and collagenase grade A was from Calbiochem. RNase-free DNase was a kind gift of W. Schaffner (Zürich). All other enzymes were purchased from New England BioLabs, and the isotopes were from the Radiochemical Center, Amersham, England.

Oocyte Injection and Heat Treatment. Oocytes were isolated from the ovary and defolliculated by digestion with 0.2% collagenase (25). The injection procedure has been described.
in detail (20). Early stage 6 (26) oocytes were used and were centrifuged to visualize the position of the nuclei (27). The only modifications introduced were the use of OR2 medium (28) instead of Barth’s solution and the reduction of the amount of DNA injected to 2–5 ng per oocyte nucleus. Noninjected oocytes were used as controls and treated in parallel.

After DNA injection, the oocytes were incubated for 6–20 hr in OR2 at 20°C to allow chromatin formation on the injected DNA (29, 30). Some oocytes were then injected a second time with [α-32P]GTP (0.1 μCi per nucleus; 1 Ci = 3.7 × 10^{10} becquerels) or α-amanitin (0.1 μg/ml of nuclear volume, 31) or both. After 15 min, the oocytes were incubated for 2 hr at 20°C or 15°C and, in certain experiments, at 28°C.

Analysis of RNA. The RNA was isolated from oocytes as described (32) and treated with RNase-free DNase to eliminate the injected DNA. Drosophila-specific transcripts were analyzed by three different methods. (i) RNA, labeled in vivo with [α-32P]GTP, was hybridized to Southern blots (33) of plasmid subclone Sal 0 digested with Sal I. (ii) Radioactive cDNA complementary to oocyte RNA was prepared by using reverse transcriptase in the presence of [α-32P]dCTP (34). Random pentadecanucleotides (a kind gift of F. F. Spahr) or, where indicated, oligo(dT) was used to prime the reverse transcriptase reaction. Labeled cDNA was then hybridized to Southern blots of plasmid Sal 0. (iii) Transcripts of oocytes were examined directly by the RNA blotting technique developed by Thomas (35). Nick-translated (36) plasmid Sal 0 was used as hybridization probe.

Xenopus Heat Shock Proteins. Established Xenopus laevis epithelial kidney cells (37) were grown at 27°C in dishes in Dulbecco's modified Eagle's medium containing 15% sterile water and 10% fetal calf serum. Subconfluent epithelial cells were preincubated at various temperatures for 2 hr in methionine-free medium. [35S]Methionine (20 μCi/ml) was added subsequently and the cells were incubated for 2 more hr at the same temperature. Defolliculated oocytes, prepared as above, were incubated in OR2 buffer in the presence of [35S]methionine (1 mCi/ml) for 2 hr at different temperatures. Oocytes and epithelial cells were lysed in NaDodSO4 sample buffer (38). Oocyte lysates were centrifuged at 15,000 × g for 10 min to pellet yolk protein. Proteins were then analyzed on NaDodSO4/polyacrylamide gels (38, 39). As size markers, a mixture of 14C-labeled standard proteins or 35S-labeled Drosophila heat shock proteins were used.

RESULTS

Heat Shock Response in Xenopus Cells. Because we intended to study the expression of Drosophila heat shock genes in Xenopus oocytes, it was important to determine whether Xenopus cells respond to heat treatments in a fashion similar to Drosophila cells. These experiments were performed with cultivated epithelial cells and with stage 6 oocytes.

In epithelial cells, two polypeptides of about 85,000 and 70,000 daltons were synthesized at higher rates at 35°C and 37°C than at 20°C and 27°C (Fig. 1a). An additional protein of about 55,000 daltons was found to be heat induced occasionally. The rates of formation of most other proteins did not change significantly between 20°C and 37°C.

The protein patterns of oocytes incubated at different temperatures are shown in Fig. 1b. In both oocytes and epithelial cells, induction of heat shock proteins occurred at around 35–37°C. Similar heat shock protein patterns were observed in cells and oocytes (Fig. 1). As in the epithelial cells, a 55,000 dalton protein was found to be strongly heat-induced in some oocytes. It seems worth noting that the oocyte lysates contained some highly abundant, high molecular weight proteins (Fig. 1b, arrowheads) which may influence the migration properties of other proteins. We therefore did not attempt to determine the exact molecular weights of the oocyte heat shock proteins by using these gels.

In contrast to epithelial cells, most of the proteins normally made in oocytes were not synthesized anymore during heat treatments. This finding suggests that, in oocytes as in Drosophila cells, heat shock mRNAs are preferentially translated during heat treatment (40, 41).

Our results show that a 2-hr heat treatment at 37°C triggers the oocyte heat shock response. Heat shock genes in Drosophila cells are activated under the same conditions. Most of the experiments aimed at transcribing cloned Drosophila genes therefore were performed with oocytes treated in this fashion.

Injection of Drosophila Genes. Phage 122 (see map in Fig. 2) carries two identical Drosophila hsp70 genes (each consisting of regions Z1 and Zω) arranged head-to-head around a central, asymmetrical spacer region of 0.9 kb (23). The Drosophila DNA segment in phage 122 derives from chromosomal region 87A.

Phage 122 DNA or the isolated 10.5-kb EcoRI insert fragment of it was circularized and injected into nuclei of early stage 6 Xenopus oocytes. Naked DNA introduced into oocyte nuclei is packed with nucleosomes within a few hours (29, 30). Oocytes were therefore routinely incubated for 6–24 hr at 20°C after the injection of Drosophila heat shock genes. After this incubation period the oocytes were either heat-shocked at 35–37°C for 2 hr or further incubated at 20°C. To label newly made RNA in vivo, [α-32P]GTP was injected into the oocytes prior to the final 2-hr incubation. RNAs were subsequently extracted, treated with RNase-free DNase, and then analyzed by different methods.

Transcription of Drosophila hsp70 Genes in Heat-Treated Oocytes. RNA from heat-treated oocytes carrying phage 122 DNA or its isolated insert fragment and from heat-treated control oocytes was reverse transcribed in the presence of [α-

Drosophila hsp70 Genes are Heat-Activated in Oocytes.

RNA made during the 2-hr heat treatment or the control incubation in oocytes carrying phage 122 DNA or the 10.5-kb phage 122 EcoRI fragment was labeled in vivo with $[^{32}P]dTCTP$. After extraction the labeled RNAs were hybridized to Southern blots of Drosophila hsp70 genes. Drosophila hsp70 gene transcripts were synthesized by the oocytes only during heat treatment at 35–37°C (Fig. 3a). No Drosophila-specific mRNA was made at 20°C or at 28°C. Transcription of the phage 122 genes in heat-treated oocytes could be blocked by low concentrations of α-amanitin. Thus, the Drosophila hsp70 genes on phage 122 are transcribed by RNA polymerase II in oocytes as in Drosophila cells. Transcription of the hsp70 genes on the isolated phage 122 fragment was also heat-stimulated (Fig. 3b). However, this stimulation varied in different experiments. As is evident from the data in Fig. 3b, the isolated genes are transcribed nonspecifically to some extent because a fraction of Drosophila-specific RNA synthesis was resistant to α-amanitin.

That the genes on phage 122 are heat-activated in oocytes was confirmed in additional experiments. RNAs from heat-treated or untreated oocytes carrying the Drosophila genes were reverse transcribed in the presence of [32P]dTCTP with random pentadecanucleotide primers. Equal amounts of the different cDNAs were then hybridized to filter-bound Drosophila hsp70 genes (33). Again the phage 122 hsp70 genes were transcribed only in heat-treated oocytes (Fig. 4b). Similar observations were made with isolated phage 122 genes. The extent of stimulation of transcription of the isolated genes varied as in the experiments described above.

Size of Drosophila hsp70 RNA Synthesized in Oocytes. RNA from oocytes containing phage 122 DNA or the 10.5-kb gene fragment was analyzed by the blotting technique of Thomas (35). Nick-translated Drosophila hsp70 genes were used as hybridization probes. In heat-treated oocytes, most of the Drosophila-specific transcripts were of the same length as hsp70.
RNA from Drosophila cells (2.2 kb; see Fig. 4a). The variable amounts of Drosophila-specific RNA that formed mainly in untreated oocytes containing the isolated phage 122 insert fragment were heterogeneous in size. These RNAs were, on the average, longer than authentic hsp70 mRNA.

Only the Coding Regions of Drosophila hsp70 Genes are Transcribed in Heat-Shocked Oocytes. That Drosophila hsp70 mRNA and RNA made from injected Drosophila hsp70 genes in heat-treated oocytes are of the same length suggested that only the RNA coding regions of these genes are transcribed in heat-treated oocytes. To confirm that injected Drosophila hsp70 genes are transcribed specifically, RNA from heat-treated oocytes containing phage 122 DNA was isolated.

To obtain a probe representative of all RNA sequences, 32P-labeled cDNA to oocyte RNA was prepared by the random priming procedure. The cDNA was then hybridized to Southern blots of various restriction digests (Fig. 5a) of plasmid 122X14 which contains one of the phage 122 genes together with long stretches of 5' and 3' flanking sequences (Fig. 5c). Hybridization occurred only to 122X14 fragments that contained segments of the RNA coding region (Fig. 5b). That different parts of the RNA coding sequence were labeled equally well (Fig. 5b, lane 3) supports our earlier finding that oocytes make full-length transcripts of Drosophila hsp70 genes.

The same result was obtained when cDNA prepared from RNA of oocytes containing the inserted insert fragment of phage 122 was used for hybridization.

These experiments show that Drosophila hsp70 genes are specifically transcribed in Xenopus oocytes. The expression of these genes which are heat-activated in situ is also heat-controlled in the oocytes.

DISCUSSION

Heat activation of injected DNA as described here seems to be specific for Drosophila hsp70 genes. By contrast, polyoma virus DNA is less efficiently transcribed at 35°C than at 20°C (unpublished data). We have used both phage 122 DNA and the isolated insert fragment. The presence of phage λ segments does not induce nonspecific transcription of the hsp70 genes. This is of practical interest because genes linked to various plasmid vectors have been shown to be transcribed, either exclu-
sively or to a significant extent, by read-through of polymerase that appears to initiate on vector sequences. The rabbit β-globin gene is nonspecifically transcribed when linked to pBR322 vector sequences but is inactive by itself (21). Chicken ovalbumin cDNA is transcribed when linked to PMB9 plasmid sequences (22). Our observations suggest that phage λ DNA does not induce such nonspecific transcription events. Thus, genes cloned in phage λ can be directly used for injection into oocytes without further isolation.

In contrast to the *Drosophila* hsp70 genes in phage λ, isolated hsp70 genes are transcribed to a variable extent also at 20°C. The RNA made at this low temperature is heterogeneous in size and much larger than authentic hsp70 mRNA. Because low concentrations of α-amanitin do not completely block transcription of the isolated genes, it seems likely that RNA polymerase I or III is involved in the formation of the heterogeneous-size DNA. This abnormal activity of the isolated gene fragment is not yet understood. Possibly, the preparation of the gene segment by restriction and electrophoresis has introduced occasional nicks and gaps into the DNA that may be used as additional transcription initiation sites. Nevertheless, it is clear that transcription of the isolated genes is heat-stimulated and that correct transcripts are only made in heat-treated oocytes.

Heat shock genes are present in various eukaryotic organisms. The genes from the different organisms code for proteins of similar size and structure (refs. 1–6; unpublished data). Very little is known about the mechanism of control of heat shock gene activity. Experiments using amino acid analogues such as canavanine suggest that a labile protein is involved in the activation of the heat shock genes (1). The exact role, however, of this hypothetical protein has not yet been established. Whatever the mechanism of heat activation of heat shock genes may be, it must be based on the interaction of proteins or RNA with a DNA signal sequence unique to heat shock genes. Our experiments on the expression of *Drosophila* heat shock genes in *Xenopus* oocytes demonstrate that the heat shock genes from six different organisms are activated by similar mechanisms and that the injected *Drosophila* DNA contains the relevant signal sequence(s). Thus, the *Xenopus* oocyte system can be used as an assay for identifying the *Drosophila* heat shock gene control sequence(s).

We thank Dr. P. Bromley for his help with the preparation of labeled cDNA probes and for critical reading of this manuscript. We also thank F. Bourquin and O. Jenny for the photographs and H. Felder for preparing the manuscript. This work was supported by grants from the Swiss National Science Foundation to Dr. M. Crippa (3.689.080) and A. Tissières (3.512.75), from the A. and L. Schmidheiny Foundation to A. Tissières, and by a stipend to R.V. from the Emil Barell Foundation of Hoffman-La Roche.
