Neurobiology. In the article “Brain and heart sodium channel subtype mRNA expression in rat cerebral cortex” by Paul J. Yarowsky, Bruce K. Krueger, C. Erik Olson, Ernest C. Clevinger, and Robert D. Koos, which appeared in number 21, November 1, 1991, of Proc. Natl. Acad. Sci. USA (88, 9453–9457), it is requested that the following correction be noted. We reported that mRNAs coding for all four isoforms of the rat brain voltage-dependent sodium channel (subtypes I, II, IIA, and III) are expressed to various degrees in rat cerebral cortex. Moreover, expression of mRNA for types II and IIA channels, which differ in only 36 bases and six amino acids, was found to be developmentally regulated, with type II mRNA expressed in the neonate but not in the adult and with type IIA expressed at all postnatal times. Our conclusions were based on a strategy in which specific restriction enzyme sites in the published sequences (1–3) were exploited to identify which subtypes were represented in a PCR product generated with primers matched to identical sequences in all four subtypes. We have subsequently cloned these PCR products and analyzed them by restriction mapping and sequencing. All expected subtypes (I, II, IIA, and III) were present; however, analysis of 25 type II PCR products (derived from three PCRs) revealed a single unexpected base change in all clones. Specifically, we noted a guanine at nucleotide 654 that had previously been reported to be a cytosine (1). A similar finding of a guanine at site 654 in the type II sequence was recently reported (4). This nucleotide change creates a BamHI restriction site in the type II sequence at the same position as in the type IIA sequence, and thus this site cannot be used to distinguish between the subtypes as we had previously suggested. By using RNA from neonatal rat cortex, we have now found that the 256-base-pair fragment generated by cutting the 626-base-pair PCR product with BamHI is itself completely cut by Sfu I (specific for type II), indicating that what we had concluded was type IIA mRNA in neonatal cortex was in fact type II mRNA. Thus, little or no type IIA mRNA is expressed in neonatal cortex. In light of these findings, we now conclude that whereas relative type II sodium channel mRNA expression is substantial at birth and falls to negligible levels in the adult (as we previously reported), type IIA mRNA is actually very low at birth and rises to become the dominant sodium channel component in the adult. Thus, the degree of differential regulation during development is even greater than we had previously suggested. Similar conclusions concerning types II and IIA sodium channel expression have been drawn by Sarao et al. (4).

Cell Biology. In the article “GP-2/THP gene family encodes self-binding glycosylphosphatidylinositol-anchored proteins in apical secretory compartments of pancreas and kidney” by Shin-Ichi Fukuoka, Steven D. Freedman, Heron Yu, Vikas P. Sukhatme, and George A. Scheele, which appeared in number 4, February 15, 1992, of Proc. Natl. Acad. Sci. USA (89, 1189–1193), the following correction should be noted. Due to a printer’s error, the two rightmost lanes of Fig. 5 were omitted. The correct figure and legend are shown below.

![Image](image-url)

Fig. 5. Canine tissue distribution of mRNA transcripts hybridizing to dog pancreatic GP-2 and human kidney THP cDNAs. Results are shown for membranes washed under low-stringency conditions and exposed to x-ray film for 8 hr in the presence of one intensifying screen. P, parotid; S, submandibular; Lu, lung; Li, liver; Sp, spleen; St, stomach; K, kidney; Pa, pancreas; Pa’, pancreas poly(A)+ RNA. Lanes Pa and Pa” on the far right are a shorter exposure (1 hr). (A) Probed with dog pancreatic GP-2 cDNA. (B) Probed with human kidney THP cDNA. 28S and 18S rRNAs are indicated by arrowheads.

Industrial Ecology Colloquium. In the paper “Industrial ecology: A philosophical introduction” by Robert A. Frosch, which appeared in number 3, February 1992, of Proc. Natl. Acad. Sci. USA (89, 800–803), the author’s affiliation was omitted and should be added to page 800 as follows: General Motors Research and Environmental Staff, 30500 Mound Road, Warren, MI 48090-9055.

Paul J. Yarowsky
Bruce K. Krueger
C. Erik Olson
Ernest C. Clevinger
Robert D. Koos
Thomas A. Gustafson