
4. The contracted tensor for a Riemann space is symmetric. Consequently if in (3.1) we replace Γ^i_{jk} by their expressions as Christoffel symbols of the second kind for a Riemann space, the functions $\overline{\Gamma}^i_{jk}$ define an affine space possessing an invariant integral. Hence:

The spaces with paths corresponding to the paths of a Riemann space possess an invariant integral.

CLOSED CONNECTED SETS WHICH ARE DISCONNECTED BY
THE REMOVAL OF A FINITE NUMBER OF POINTS

By John Robert Kline

Department of Mathematics, University of Pennsylvania
Communicated, October 11, 1922

Theorem A. Suppose k is a positive integer and M is a closed connected point set in Euclidean space of two dimensions such that

(1) if $P_1, P_2, \ldots P_k$ are any k distinct points of M, then $M - (P_1 + P_2 + \ldots + P_k)$ is disconnected.

(2) if $Q_1, Q_2, \ldots Q_{k-1}$ are any $(k - 1)$ distinct points of M, then $M - (Q_1 + Q_2 \ldots Q_{k-1})$ is connected.

Under these conditions, M is a continuous curve.\(^1\)

Proof. — Let us suppose that M is not connected im kleinen. Then there exists a point P belonging to M and a circle K with centre at P, such that within every circle whose centre is P there exists a point which does not lie together with P in any connected subset of M that lies entirely within K. Let K_1, K_2, \ldots denote an infinite sequence of circles with centre at P and radius $r/2n$, where r is the radius of K. Let X_n denote a point within K_n such that X_n and P do not lie together in a connected subset of M which lies entirely within K. Let K' denote a circle with centre at P and radius $3r/4$. It follows with the use of a theorem due to Zoretti\(^2\) that there is a closed connected set g_n, containing X_n and at least one point of K' not containing P and lying entirely within or on K'. It may easily be proved that there exist point sets t_{n_1}, t_{m_1}, \ldots such that (1) for every i, t_{n_i} is a closed connected subset of M having at least one point on K' and at least one point on K_1 but no point within K_1 or without K', (2) for no values of i and j ($i \neq j$) does t_{n_i} have a point in common with t_{n_j}. It follows that there exists an infinite sequence of integers q_1, q_2, \ldots such that for every i, $q_i + 1 > q_i$ and a closed connected set t and a sequence of closed connected sets $k_{n_{q_1}}, k_{n_{q_2}}, \ldots$ such that (1) for every i, $k_{n_{q_i}}$ is a subset of $t_{n_{q_i}}$, (2) each of
the sets \(t, k_{q_1}, k_{q_2}, \ldots \) is a subset of \((K')' - K_1\) and contains at least one point on the boundary of \(K_1\) and at least one point on the boundary of \(K'\), (3) if \(P_n q_1, P_n q_2, \ldots \) is a sequence of points such that for every \(i\), \(P_n q_i \) belongs to \(k_{q_i} \), then \(t\) contains every limit point of \(P_n q_1, P_n q_2, \ldots \).

(4) if \(q_1, q_2, q_3, \ldots \) is an infinite sequence of distinct integers belonging to the set \(q_1, q_2, \ldots \) and \(P\) is any point of \(t\), then there exists an infinite sequence of points \(P_{n q_1}, P_{n q_2}, \ldots \) such that for every \(i\), \(P_{n q_i}\) belongs to \(k_{q_i} \), and such that \(P\) is the sequential limit point of \(P_{n q_1}, P_{n q_2}, \ldots \)

Let \(P_1, P_2, \ldots, P_k\) be any \(k\) distinct points of \(t\). Then \(M - (P_1 + P_2 + \ldots + P_k) = M'_1 + M'\), two mutually separated sets.\(^3\) If \(G\) is any point of \(t\), then \(G\) is the sequential limit point of some \(G_{n q_1}, G_{n q_2}, \ldots\) such that for every \(t\), \(G_{n q_i}\) belongs to \(k_{q_i}\). Of the two sets \(M'_1\) and \(M'\), one of them, which we shall denote by \(M_1\), must contain an infinite subsequence of the point set \(G_{n q_1}, G_{n q_2}, \ldots\) But \(M_2\) denotes the other one of the sets \(M'_1\) and \(M'\). But as \(k_{q_i}\) is a connected set, \(k_{q_i}\) belongs to \(M_1\). Hence it follows that \(t - (P_1 + P_2 + \ldots + P_k)\) belongs to \(M_1\).

It follows that \(P_1 + M_2\) is connected. For suppose \(P_i + M_2 = H_1 + H_2\), two mutually separated sets and such that \(P_i\) is in \(H_1\). Then \(M - (P_i + 1 + P_i + 2 + \ldots + P_i + k - 1) = M_2 + P_i + M_1 = H_1 + H_2 + M_1\). Clearly neither of the sets \(H_1 + M_1\) and \(H_2\) contains a limit point of the other one. Thus \(H_1 + M_2\) is connected.

Let us pick out any \(k - 1\) distinct points \(P_1, P_2, \ldots, P_{k-1}\) of \(t\). Let \(G\) and \(H\) denote any two distinct points of \(t - (P_1 + P_2 + \ldots + P_{k-1})\). Then \(M - (G + P_1 + P_2 + \ldots + P_{k-1}) = S_1 + S_2\), two mutually separated set of which \(S_1\) contains \(t - (G + P_1 + P_2 + \ldots + P_{k-1})\). Likewise \(M - (H + P_1 + P_2 + \ldots + P_{k-1}) = H_1 + H_2\), two mutually separated sets of which \(H_1\) contains \(t - (H + P_1 + P_2 + \ldots + P_{k-1})\). Now \(H_1\) contains \(G\). Hence the connected set \(G + S_2\) is contained entirely in \(H_1\) while \(H_2\) is entirely in \(S_1\). If \(Q\) is any point of \(t - (P_1 + P_2 + \ldots + P_{k-1})\), then \(M - (P_1 + P_2 + P_3 + \ldots + P_{k-1} + Q) = M_1 + M_2\), two mutually separated sets. Let \(t_0\) denote that one of the sets \(M_1\) and \(M_2\) which does not contain \(t - (P_1 + P_2 + \ldots + P_{k-1} + Q)\). Let \([t_0]\) denote the set of sets thus obtained. If \(H_1\) and \(H_2\) are any two distinct points of \(t - (P_1 + P_2 + \ldots + P_{k-1})\), \(t_{H_1}\) and \(t_{H_2}\) have no points in common. We can pick out of each of the sets \([t_0]\) a definite point \(X_{t_0}\). We thus obtain a non-denumerable infinity of distinct points. One point \(B\) of \([X_{t_0}]\) must be a limit of \([X_{t_0}]\) - \(B\). Hence there exists a sequence \(B_{1}, B_{2}, B_{3}, \ldots\) of \([X_{t_0}]\) - \(B\) approaching \(B\) as its sequential limit point. Now \(B\) belongs to \(t_B\) for some point \(B'\) of \(t - (P_1 + P_2 + \ldots + P_{k-1})\) while \(B_i(i = 1, 2, 3, \ldots)\) belongs to \(t_{B_i}\) for some point \(B'_i\) of \(t - (P_1 + P_2 + \ldots + P_{k-1})\). Now \(M - (B' + P_1 + P_2 + \ldots + P_{k-1}) = M_1 + t_{B'}\). Now \(M_1\) contains \(t - (B + P_1 + P_2 + \ldots + P_{k-1})\) and hence \(B_i\) is in \(M_1\). Hence
\(B_1 + B_2 + B_3 \ldots \) is a subset of \(M_1 \). Thus \(B \) of \(t_B \) cannot be a limit point of \(B_1 + B_2 \ldots \). Hence we are led to a contradiction if we suppose \(M \) is not connected in kleinen. Hence \(M \) is a continuous curve.

2. The case where \(k = 1 \).—We shall first prove several introductory lemmas.

Lemma A. Suppose \(M \) is a closed connected set such that (1) \(M \) contains a point \(A \) such that \(M - A \) is connected, (2) if \(B \) is any point of \(M \) different from \(A \), then \(M - B \) is the sum of two separated sets one of which is bounded. Then \(M \) is a ray from \(A \).

Proof.—By methods similar to those of § 1, it follows that our set is a continuous curve. Let \(P \) denote any point of \(M \), different from \(A \). Then \(M - P = M_1 + M_2 \), two mutually separated sets of which \(M_1 \) is bounded. It follows by a theorem due to Mazurkiewicz that \(M_2 \) is unbounded. Now \(P + M_1 \) is closed and connected. We shall show that the point \(A \) is in \(M_1 \). For suppose \(A \) were in \(M_2 \). Let \(G_1 + G_2 + G_3 \ldots \) be a countable set such that every point of \(M \) either belongs to the set or is a limit point of the set. Now let \(G_{n_1} \) be the point of lowest subscript of \(G_1, G_2, \ldots \) in \(M_1 \). Let \(M - G_{n_1} = M_{11} + M_{12} \), two mutually exclusive separated sets of which \(M_{12} \) contains \(A \). It follows that \(M_2 \) is a subset of \(M_{12} \), that \(P \) is in \(M_{12} \) and \(M_{11} \) is a subset of \(M_1 \) and hence bounded. Let \(G_{n_2} \) be the point of lowest subscript of \(G_{n_{11}}, G_{n_{12}}, \ldots \) which is in \(M_1, M_2 \). Now \(M - G_{n_2} = M_{21} + M_{22} \), two mutually separated sets of which \(M_{22} \) contains \(A \). It follows that \(M_{12} \) is a subset of \(M_{22} \), \(G_{n_1} \) is in \(M_{22} \) and \(M_{21} \) is a subset of \(M_{11} \). Continue this process. For any \(i, n_i \) \(M \). The closed bounded sets \((G_{n_1} + M_{11}), (G_{n_2} + M_{21}) \ldots \) are such that for every \(i \) \((G_{n_{i+1}} + M_{i+1,1}) \) is a subset of \((G_{n_i} + M_{i,1}) \). Hence they have at least one point \(X \) in common. As \(X \neq A, M - X = M' + M' \), two mutually separated sets of which \(M' \) contains \(A \). For every \(i, G_{n_i} + M_{i,2} \) must be a subset of \(M' \) while \(M_{i,1} \) contains \(M' \). Now let \(G_8 \) be the point of lowest subscript in \(M' \). Now \(G_8 \) is in \(M_{8-1,1} \) and is different from \(G_{n_8} \). Hence at this stage we did not choose the point of lowest subscript. Thus we have proved that \(A \) must be in \(M_1 \).

It may easily be proved that \(M_1 + P \) is connected and connected in kleinen. Thus there is an arc \(AP \) from \(A \) to \(P \) lying wholly on \(M_1 + P \). We shall now show that this arc \(AP \) contains the whole of \(M_1 + P \). Suppose some point \(H \) of \(M_1 \) not on the arc. Then there is on \(M_1 + P \) an arc \(HP \) from \(H \) to \(P \). Let \(T \) denote the first point of the arc \(AP \) which is an arc of \(HP \). Now as \(H \neq A, M - H = G_1 + G_2 \) two mutually separated sets of which \(G_2 \) contains \(P \). Hence the connected set \([M_2 + P + \text{arc } AP] \) is on \(G_2 \) which is thus unbounded. But we have proved that \(A \) cannot belong to the unbounded set. Thus all points of \(M_1 + P \) are on arc \(AP \).
Let T be any bounded closed connected subset of M containing A. If S is any point of M not belonging to T, then $M - S = M_1 + M_2$, where M_1 contains A and is bounded. It follows that T belongs entirely to M_1. But $M_1 + S$ is an arc of M from A to S. If P is any point of arc $AS - T$, then there is an arc PS of M free entirely of points of T. As any bounded closed connected subset containing more than one point of an arc is still an arc the set T must be an arc from A to some point H of M_1. Now $M - H_1 = W_1 + W_2$, two mutually separated sets of which W_1 contains A. It follows that $W_1 + H_1$ is the set T while H_1 is the only point of T which is a limit point of $M - T$. Thus M is a ray from A.

Lemma B. In case $k = 1$, the set M of §1 is unbounded.

Lemma C. In case $k = 1$, the set M of §1 contains no simple closed curve.

For a proof of Lemmas B and C, compare Mazurkiewicz's article.

Theorem 1. In case $k = 1$ and P is any point of M, then there is an open curve 1 of M containing P.

Proof.—Suppose $M - P = M_1 + M_2$, two mutually separated sets. It follows that $P + M_i$ $(i = 1, 2)$ is a continuous curve. Hence by a theorem due to Kuratowski, there is a ray from P which is a subset of $M + M_i$ $(i = 1, 2)$. The sum of these rays is an open curve through P.

Theorem 2. If P is any point of M then there are at most a finite number of rays $l_1, l_2 \ldots l_n$ of M such that l_i and l_j $(i = 1, 2 \ldots n, j = 1, 2 \ldots n$ and $i \neq j)$ have no point in common other than P.

Theorem 3. Within any circle there are but a finite number of points $P_1, P_2, \ldots P_n$ which are such that at each point P_i there are three or more rays of M having no point in common other than P_i.

Theorem 2 follows immediately by methods similar to those used previously in the paper. The proof of Theorem 3, omitted here, will be given in a subsequent paper.

3. The case $k = 2$.

Suppose k is an integer which is greater than or equal to 2 and M is a point set satisfying the conditions of Theorem A. Let $P_1 + P_2 \ldots P_k$ denote any k distinct points of M. Then $M - (P_1 + P_2 \ldots P_k) = M_1 + M_2$ two mutually separated sets. It is easy to show that $M_1 + (P_1 + P_2 + \ldots + P_k)$ is connected. We shall now show that $M_1 + (P_1 + P_2 + \ldots + P_k)$ is connected in kleinian. The proof is evident if R is any point of $M_1 + P_1 + P_2 \ldots P_k$ such that $R \neq P_i$ for $i = 1, 2, \ldots k$. Suppose $R = P_j$ and let K be any circle having P_j as centre. Put about R as centre a circle K' lying within K and such that there is within or on K' no point of the set $P_1 + P_2 \ldots + P_{j-1} + P_{j-1} + \ldots + P_k$. As M is connected in kleinian there is a circle K'' with centre at R, lying within K' and such that T is any point of M within K'', then T and R lie in a connected subset of M that lies within K'. It may easily be proved that T and R are the end-points of a simple continuous arc of M lying entirely within K'.
Let H be any point of $M_1 + P_1 + P_2 + \ldots + P_k$ in K'', different from R. Then there is an arc $R \times H$ from H to R belonging to M and lying entirely in K'. From the manner in which K' was chosen it follows that $R \times H - R$ is a subset of $M_1 + M_2$. Now $R \times H - R$ is connected and one point of it, H, lies in M_1. Hence as M_1 and M_2 are mutually separated, M_2 can contain no point of $R \times H - R$. Hence $R \times H$ is a subset of $M_1 + P_1 + P_2 + \ldots + P_k$. Thus $M_1 + P_1 + P_2 + \ldots + P_k$ is a continuous curve. In like manner $M_2 + P_1 + P_2 + \ldots + P_k$ is a continuous curve.

There is in $M_1 + P_1 + P_2 + \ldots + P_k$ ($i = 1, 2$) a simple continuous arc $P_1 X_1 P_2$. As these arcs have in common at most k points and have the same end-points, it is clear that there is a simple closed curve J which is a subset of $P_1 X_1 P_2 + P_1 X_2 P_3$ and thus a subset of M.

Let us suppose there are points of M not on J.

There are two cases:

Case I. There is a point T of M within J. Let A be any point of J. Then there is an arc $A \times T$ of M. Let T' be the first point of $A \times T$ going from T to A which is on J. Take $Q_1 + Q_2 + \ldots + Q_{k-1}$, $k - 1$ distinct points of J such that for every value of i from 1 to $k - 1$, $Q_i \neq T'$.

Now $M = (T + Q_1 + Q_2 + \ldots + Q_{k-1}) + M_1 + M_2$, two mutually separated sets of which M_1 contains T'. As $TT' - T$ is connected all points of $TT' - T$ belong to M_1. Consider the set $T + Q_1 + Q_2 + \ldots + Q_{k-1} + M_2$. This set is a continuous curve and hence there is an arc TQ_1 lying entirely on this set. Let Q' be the first point of the arc TQ_1 going from T to Q_1 which is on J. Then arc TT' and TQ' is an arc of $T'TQ'$ lying except for its end-points entirely within J. Now there must be points of M not on $J + T'TQ'$. For suppose that $M = J + T'TQ'$. There are two possibilities:

(a) $k = 2$. Let H and K be two points of J such that Q' and T' separate H and K on J. Then it is clear that $J - H - K + Q'T'T'$ is connected, contrary to hypothesis.

(b) $k > 2$. Then $M - Q' - T' = Q'HT' + Q'KT' + Q'T'T'$ and hence is not connected, which is contrary to assumption.

Hence there is a point E not on $J + Q'T'T'$. There are two possibilities.

(a') E is without J. It follows there are $k - 1$ distinct points of M, $E_1, E_2, \ldots, E_{k-1}$ without J. Consider $M = (E_1 + E_2 + \ldots + E_{k-1} + T) = M_1 + M_2$, two mutually separated sets such that T' is in M_1. It follows that all points of the connected set $J + Q'T'T' - T$ are in M_1. Now $T + E_1 + \ldots + E_{k-1} + M_2$ is a continuous curve. Hence there is an arc TYE_1 lying entirely in $T + E_1 + E_2 + \ldots + E_{k-1} + M_2$. Hence TYE_1 has no point in common with J. But as T is within and E_1 is without J, the arc TYE_1 must have at least one point in common with J. Thus in case a' we are led to a contradiction.

(b') E is within J. Hence E is either (i) within $HQ'T'T'H$ or (ii) within
$Q'KT'TQ'$. But in case (i) we have a point E within $HQ'T'TH$ and a point K without the same closed curve which is impossible by methods of case a' while in case (ii) we have E within $Q'KT'TQ'$ and H without the same closed curve.

Thus we are led to a contradiction if we suppose a point of M is within J. In exactly the same manner we can prove that no point of M is without J. Hence $M = J$. But as any simple closed curve is connected by the omission of any pair of its points, then k cannot be greater than 2.

Thus we are in a position to state the following theorems:

Theorem 4. If M is a closed connected point set in Euclidean space of two dimensions such that (1) if P is any point of M, then $M - P$ is connected, (2) if Q and R are any two distinct points of M, then $M - Q - R = M_1 + M_2$, two mutually separated sets. Under these conditions M is a simple closed curve.\(^8\)

Theorem 5. If K is any positive integer greater than 2, then there is no closed connected set M satisfying the following conditions.

(a) If P_1, P_2, \ldots, P_k are any k distinct points of M then $M - (P_1 + P_2 + \ldots + P_k)$ is disconnected.

(b) If $Q_1, Q_2, \ldots, Q_{k-1}$ are any $k - 1$ distinct points of M, then $M - (Q_1 + Q_2 \ldots Q_{k-1})$ is disconnected.

\(^1\) The term *continuous curve* is here used in the sense suggested by Professor R. L. Moore, who applies this term to sets which are closed, connected and connected im kleinen. Cf. R. L. Moore, *Trans. Amer. Math. Soc.*, 21 (1920), p. 347. A set of points is said to be connected im kleinen if for every point P of M and every circle K with centre at P there exists a circle $K_{h,p}$ within K and with centre at P such that if X is a point of M within $K_{h,p}$ then X and P lie together in some connected subset of M that lies entirely within K. Cf. Hans Halm, *Ueber die Allgemeinsten ebene Punktmengen, die stetiges Bild einer Streichs ist*, *Jahrb. der Deut. Math. Ver.*, 23 (1914), pp. 318–22.

\(^3\) Two points sets are said to be mutually separated if neither contains a point or limit point of the other one. Cf. R. L. Moore, loc. cit., p. 341.

\(^4\) It is understood that subscripts are reduced modulo k.

\(^5\) An open curve is a closed and connected point set which is separated into two connected sets by the omission of any one of its points. If P is a point of an open curve M, the point set obtained by adding P to either of the two sets into which M is separated by the omission of P is called a ray. Prof. R. L. Moore proves that a ray is a continuous curve M containing a point A such that every bounded continuous subset of M that contains A has just one boundary point with respect to M. Cf. R. L. Moore, loc. cit., p. 347.

\(^8\) Compare H. Tietze, *Ueber Stetige Kurven und Jordansche Kurven*, *Math., Zts.*, 5 (1919), p. 289. Tietze makes the assumption that the set is connected im kleinen. This is really a consequence of his other conditions.