Selective amplification of additional members of the ADP-ribosylation factor (ARF) family: Cloning of additional human and Drosophila ARF-like genes

JENNY CLARK*, LISA MOORE†, ALYSSA KRASINSKAS*, JAMES WAY*, JAMES BATTEY*, JOHN TAMKUN†, AND RICHARD A. KAHN‡

*Laboratory of Biological Chemistry, Developmental Therapeutics Program, Division of Cancer Treatment, National Cancer Institute, National Institutes of Health, Building 37, Room 5D-02, Bethesda, MD 20892; and †Department of Biology, 333 Sinaihew Laboratories, University of California, Santa Cruz, CA 95064

Communicated by Alfred G. Gilman, June 29, 1993 (received for review May 4, 1993)

ABSTRACT The ADP-ribosylation factor (ARF) family is one of four subfamilies of the RAS superfamily of low molecular weight GTP-binding proteins (G proteins). Highly degenerate oligonucleotides encoding two conserved regions were used in a PCR reaction to amplify cDNAs encoding each of the known ARF proteins and eight additional cDNA fragments encoding previously unreported human members of the ARF family. Additional sequences were obtained from yeast or fly libraries by using this technique. These oligonucleotides specifically amplify members of the ARF family but not the structurally related G protein α subunits or members of the other three subfamilies of the RAS superfamily. Fragments obtained by PCR were used to obtain full-length sequences encoding highly homologous ARF-like (ARL) gene products from human and Drosophila melanogaster libraries, termed ARL2 and ARL84F, respectively. The encoded proteins are each 184 amino acids long and are 76% identical, with 40-45% identity to human ARF1 and Drosophila arl-like (arl) proteins. These genes appear to be generally expressed in human tissues and during Drosophila development. The purified human ARL2 protein differed in several biochemical properties from human ARF proteins, including the complete absence of ARF activity. Thus, the ARF family of low molecular weight GTP-binding proteins includes at least 15 distinct but structurally conserved members, most of the functionally conserved ARF proteins and the functionally disparate ARL proteins. The latter proteins currently comprise two distinct gene products in Drosophila (arl and ARL84F) and one in man (ARL2).

ADP-ribosylation factor (ARF) was originally identified as the protein cofactor in the cholera toxin-catalyzed ADP-ribosylation of the stimulatory regulatory component of adenylate cyclase, Gs, (1, 2). It was subsequently shown to be a 21-kDa GTP-binding protein (ref. 3) with cofactor activity dependent on the binding of GTP. More recently ARF proteins have been found to localize to the Golgi complex (4) and to regulate several distinct vesicle transport steps in the exocytic and endocytic pathways, including budding from the endoplasmic reticulum (5) and fusion at the Golgi stacks (6), endosomes (7), and nuclear vesicles (8). Studies are underway to identify functions for each of the distinct gene products in the ARF family and also to define differences in the activities of the more highly conserved members—e.g., ARF1 and ARF3—which are 96% identical. To continue this work and to assess the specificity of cDNA or antibody probes useful in such studies, it is important to identify each of the members of this structurally conserved family.

As the number of ARF activities has increased in recent years, the number of structurally conserved members of the ARF family of low molecular weight GTP-binding proteins has also grown. The first ARF, bovine ARF1, was cloned by screening cDNA libraries with oligonucleotide probes based on partial sequence information (9). A variety of other techniques have now been used to clone members of the ARF family, including functional screens (10-12), low-stringency hybridizations (9, 13, 14), PCR methodologies (15), and serendipity (16, 17). At least 18 cDNA sequences of members of the ARF family from at least nine different organisms have been reported. The encoded proteins have been grouped functionally into the ARF proteins (having cholera toxin co-factor activity and/or the ability to rescue the lethal double mutant arf1− arf2− in yeast) and the ARF-like (ARL) proteins, which are structurally related but lack these activities (17, 18). Alignment of the ARF1 protein sequences with other G proteins revealed (9) that ARF proteins are the most distantly related family in the RAS superfamily and are as related to the G protein α subunits as they are to the RAS superfamily members.

All known members of the ARF family are similar in length, have glycine at position 2 (the site of N-myristoylation), lack the Cys-Ala-Ala-Xaa motif (site of C-terminal carboxypeptidase cleavage, carboxymethylation, and prenylation in most members of the RAS superfamily) and have each of the consensus guanine nucleotide-binding domains. The three consensus sequences found in all guanine nucleotide-binding proteins [Gly-Xaa-Xaa-Xaa-Gly-Lys (GXXXXGK), Asp-Xaa-Xaa-Gly (DXG), and Asn-Lys-Xaa-Asp (NKXD)], where Xaa is any amino acid (19) are also present in the ARF family, but these regions are constrained to Gly-Leu-Asp-Ala-Ala-Lys-Thr (GLDAXAKGT in single-letter code), Asp-(Val or Leu or Ile)-Gly-Gly-Gln (DV, L, or IGGQ), and Asn-Lys-Gln-Asp (NKQD). In addition, the distances between these domains are remarkably conserved among the ARF proteins.

Based on the high degree of conservation of the GTP-binding domains in ARF family members, we have developed a technique for isolating new ARF-encoding genes from any species and report the sequence of two here. To provide evidence that the number of ARF family members in humans alone is at least 15, rather than the 5 currently published, and probably more.

MATERIALS AND METHODS

PCR. Completely degenerate oligonucleotides were synthesized encoding most of the first two consensus regions for GTP-binding proteins, including the sense strand of D(G or

Abbreviations: ARF, ADP-ribosylation factor; ARL, ARF-like; RT-PCR, reverse-transcribed PCR.

†To whom reprint requests should be addressed.

‡The sequences reported in this paper have been deposited in the GenBank data base (accession nos. L13687 for human ARL2 and L14923 for Drosophila ARL84F).
Expression of Human ARL2 Protein in Bacteria. The full-length coding region of ARL2 was obtained by RT-PCR and engineered at the same time to include an NdeI site at the initiating methionine and a BamHI site 6 bp 3' of the stop codon to allow directional subcloning into the pET3C vector of Studier et al. (27, 28). Transfected BL21 (DE3) cells were grown at 30°C to a density of A600 = 0.4, before induction with 30 μM isopropyl thiogalactoside and continued growth for about 15 hr. At this point ARL2 represented about 10% of total bacterial protein. Purification of ARL2p was achieved by the same method used for other ARF proteins from bacteria (29). From 1 liter of bacterial culture about 7 mg of purified ARL2 was obtained.

RESULTS AND DISCUSSION

Amplification of Fragments of the Additional Members of the ARF Family. We sought a comprehensive method to identify additional members of the ARF family of low molecular weight GTP-binding proteins in a given cell type or tissue. The strategy used was PCR amplification of cDNA fragments using totally degenerate oligonucleotide primers corresponding to two highly conserved portions of ARF and ARL proteins. The distance between these two consensus GTP-binding domains (34 amino acids or 102 bp) is also well conserved in all members of the ARF family. The templates used in the original PCR reaction were plasmids derived from a human fibroblast cDNA library. After 40 rounds of amplification, the major product(s) was about 170 bp long, as predicted for a 102-bp insert, flanked by two primers 35 bp long (Fig. 1, lane A). This major product from the PCR reaction was purified and directionally cloned into pBlueScript prior to DNA sequencing. One hundred clones were selected at random and sequenced, from which 81 inserts were read (others either lacked insert or could not be read). The >100 bp of DNA sequence generated was sufficient to unambiguously identify each of the currently published human ARF family members; including ARFs 1 (13, 30), 3 (13), 4 (10, 15), 5 (14), and 6 (14). As seen in Table 1, we also obtained eight additional cDNA fragments from the human fibroblast library. The number of times each of these cDNA fragments was detected is similar to that of the known ARF proteins (see Table 1). The encoded human protein fragments were found to be 26–97% identical to the homologous region of human ARF1 (Table 1). This is within the range of sequence conservation observed for known members of the...
Table 1. Number of times each previously known (regular type) and additional (boldface type) ARF and ARL gene was identified by PCR from a human fibroblast cDNA library

<table>
<thead>
<tr>
<th>PCR identifications, no.</th>
<th>% identity to human ARF1</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARF1</td>
<td>3</td>
</tr>
<tr>
<td>ARF3</td>
<td>3</td>
</tr>
<tr>
<td>ARF4</td>
<td>32</td>
</tr>
<tr>
<td>ARF5</td>
<td>6</td>
</tr>
<tr>
<td>ARF6</td>
<td>1</td>
</tr>
<tr>
<td>ARL1</td>
<td>13</td>
</tr>
<tr>
<td>ARL2</td>
<td>4</td>
</tr>
<tr>
<td>UNK1</td>
<td>6</td>
</tr>
<tr>
<td>UNK2</td>
<td>3</td>
</tr>
<tr>
<td>UNK3</td>
<td>1</td>
</tr>
<tr>
<td>UNK4</td>
<td>1</td>
</tr>
<tr>
<td>UNK5</td>
<td>2</td>
</tr>
<tr>
<td>UNK6</td>
<td>2</td>
</tr>
</tbody>
</table>

UNK is the designation for a previously unknown ARF or ARL cDNA. Relatedness of the human protein fragments is shown as the percent identity compared to the same region of human ARF1, excluding primer-binding domains.

ARF family—e.g., SAR1 (12) and CIN4 (11)—are 33% and 25% identical to *S. cerevisiae* ARF1, respectively. The occurrence and spacing of the consensus GTP-binding domains, the extent of sequence relatedness, and frequency of detection of the additional cDNA fragments are all consistent with the conclusion that these cDNA fragments are derived from currently uncharacterized members of the ARF family.

To confirm the human origin of the eight inserts, genespecific oligonucleotides were used to amplify specific gene fragments (between 44 and 88 bp long) from both the original fibroblast cDNA library and a hippocampal cDNA library (31). Specific oligonucleotides derived from each of the eight DNA sequences reported here successfully amplified fragments of the predicted sizes from each of these libraries. Thus, each of the eight fragments is present in two independently constructed human cDNA libraries, indicating that each represents a portion of a previously unreported human member of the ARF family.

The analysis of PCR reactions using redundant oligonucleotide primers was also performed, although to a more limited extent, with genomic *D. melanogaster* or *S. cerevisiae* libraries as templates as described. Again, the major products of the reactions were ~170 bp in length (Fig. 1, lanes B and C). Of 19 inserts analyzed from the fly library, 11 originated from the previously identified ARF gene (17). Moreover, three additional cDNA fragments encoding Arl protein sequences were identified from the fly library. The yeast library yielded four different inserts out of 20 clones sequenced, including both ARF1 (9) and ARF2 (32) and two additional sequences. However, two members of the ARF family in *S. cerevisiae*, CIN4 and SAR1, were not detected in this search. Although overall these are the two least conserved members of the ARF family, visual inspection confirms that the redundant oligonucleotides used in the PCR should anneal to each of these genes and serve as primers in the PCR. Two other ARF family members have been cloned from human cDNA libraries, and the full length of the coding regions has been sequenced (R.A.K., unpublished observation). These two ARL proteins should also have been amplified with the redundant primers used to generate the data in Table 1. These data indicate that we may not have identified all of the members of the ARF family in either organism by these analyses. Increasing the number of insertions analyzed, using other libraries, or using human genomic DNA or reverse-transcribed mRNA as template will likely lead to the identification of even more members of the ARF family. The presence of internal BamHI or SalI sites in this portion of a genomic or cDNA fragment would also likely prevent its isolation by this procedure. Thus, the number of members in the ARF family remains uncertain but is at least 15 distinct proteins.

To begin the work of fully characterizing the gene products identified, we have cloned and sequenced the full-length protein-coding regions encoding two of these fragments, one from a human library and one from *Drosophila*. These two chosen as the fragments were found to be highly related (82% identity, 91% homology) and likely represent homologues of the same gene. This degree of structural conservation between these species also makes it likely that the protein plays an important and conserved role in cell regulation.

Cloning and Sequence Analysis of Human ARL2 and *Drosophila* Arl84F. The cloning of a human cDNA and *Drosophila* gene, each encoding ARL proteins are described. The two predicted protein sequences are shown in Fig. 2, aligned with human ARF1 and *Drosophila* arl. Individual comparisons between proteins reveal that these human and fly proteins are 76% identical. This level of identity makes it likely that the human and fly proteins are functional homologues, but in the

Fig. 2. Alignment of human ARL2 and *Drosophila* Arl84F proteins with human ARF1 and *Drosophila* arl. Identities in all four proteins are indicated by an asterisk and homologies by a period. Overall identity is 31% and similarity 70%. The locations of the two introns that interrupt the coding region of Arl84F are indicated by "/" at positions 22 and 140 of the protein. The locations of the regions used to design redundant oligonucleotide primers are shown in boldface type.
under these points but then rapidly...}

Biochemical Characteristics of ARL2. The human ARL2 protein was produced in and purified from bacteria to allow biochemical characterization. High-affinity binding of guanosine-5′-[γ-32P]triphosphate to purified recombinant ARL2 was rapid, reaching steady state within 10–15 min at 30°C (data not shown). Guanine nucleotide exchange on ARL2 lacked the requirement for phospholipids previously described (3) for ARF proteins. Optimal conditions for binding included millimolar levels of magnesium and 0.1% Lubrol PX. Under these conditions a stoichiometry of 0.72 mol of guanine nucleotide-binding site per mol of ARL2 protein was achieved. Specific binding was detected in the absence of detergents or phospholipids but was highest and stabilized in 0.1% Lubrol PX. Intermediate levels of binding were observed in 1% sodium cholate or 3 mM dimyristoyl phosphatidylcholine and 0.1% sodium cholate [optimal conditions for nucleotide exchange on ARF proteins (3)]. Binding in low levels of magnesium reached a maximum at very early time points but then rapidly declined. This phenomenon was also observed when binding was performed in the absence of any detergent and likely represents denaturation of the protein under these conditions. Addition of higher levels of magnesium was thought to stabilize the binding of nucleotides and protect against denaturation. The intrinsic rate of GTP hydrolysis was also determined under different conditions and found to be quite low. The maximal rate of GTP hydrolysis observed was 0.0074 min⁻¹. This rate is slower than the rate of nucleotide exchange and likely represents the limiting rate of hydrolysis itself. Thus, the guanine nucleotide-binding characteristics of ARL2 are quite distinct from those of ARF proteins, including the rapid attainment of high stoichiometries of nucleotide binding in the absence of phospholipids and presence of millimolar free magnesium.

The ability of ARF proteins to serve as cofactor in the ADP-ribosylation of G₁₂ by cholera toxin is not currently understood within the context of its physiological role in the regulation of vesicle transport. However, this ARF assay remains an important functional discriminator of ARF proteins (10, 17, 34). Recombinant ARL2 was found to be completely lacking in this activity. Indeed, recombinant ARF1 has at least a 10⁴-fold higher specific activity in the ARF assay. This finding, more than any other, explains the naming of this new protein and gene as an ARL rather than an ARF.

Techniques such as 5′ and 3′ rapid amplification of cDNA ends and RT-PCR should allow the rapid cloning of the full-length coding regions of the other human ARF family members. The regulated expression of dominant alleles of ARF proteins has recently been shown to cause dramatic...
changes in phenotype, which can be used to help define the
physiological role(s) for these proteins in cell regulation
(R.A.K., unpublished observation). In addition, expression
in bacteria of members of the ARF family provides large
amounts of purified material for biochemical tests of nucleo-
tide binding, ARF activity, and other protein functions.
Thus, the identification of new members of the family may
now be followed relatively quickly with functional studies
to define unique roles for each member of this expanding family
of regulatory proteins.

The two human cDNA libraries used were the generous gift of Dr.
Michael Brownstein (Laboratory of Cell Biology, National Institute
of Mental Health). We thank Drs. Adi Gazdar and John Minna
(Southwestern Medical School, Dallas) for the gift of the NCI-H209
small-cell lung cancer cell line. We thank Dr. Paul Randazzo (Lab-
oratory of Biological Chemistry, National Cancer Institute) for his
availability in performing nucleotide binding and ARF assays. This
work was supported in part by grants from the University of
California Cancer Research Coordinating Committee and the Amer-
ican Cancer Society Junior Faculty Award to J.T. We are grateful for
the continuing support of the Developmental Therapeutics Program,
Division of Cancer Treatment, National Cancer Institute.

1. Schleifer, L. S., Kahn, R. A., Hanski, E., Northup, J. K.,
20-23.
6228-6234.
7906-7911.
4. Stearns, T., Willingham, M. C., Botstein, D. & Kahn, R. A.
Chem. 267, 13053-13061.
6. Kahn, R. A., Randazzo, P., Serafini, T., Weiss, O., Rulka, C.,
Clark, J., Amherdt, M., Roller, P., Orci, L. & Rothman, J. E.
Chem. 267, 13047-13052.
85, 4620-4624.
10. Kahn, R. A., Kern, F. G., Clark, J., Gelmann, E. P. & Rulka,
53, 629-636.
2691.
6101-6105.
14. Tsuchiya, M., Price, S. R., Tsai, S.-C., Moss, J. & Vaughan,
15. Monaco, L., Murtagh, J. J., Newman, K. B., Tsai, S., Moss,
2206-2210.
2123-2138.
17. Tamkun, J. W., Kahn, R. A., Kissinger, M., Brizuela, B. J.,
Acad. Sci. USA 88, 3120-3124.
yogy: GTPases in Biology, eds. Dickey, B. & Birnbaumer, L.
(Springer, Heidelberg), in press.
ylation Res. 9, 435-448.
21. Rose, M. D., Novick, P., Thomas, J. H., Botstein, D. & Fink,
Methods in Molecular Biology (Elsevier, New York), 1st Ed.
Natl. Acad. Sci. USA 85, 8998-9002.
26. Engels, W. R., Preston, C. R., Thompson, P. & Eggleson,
113-130.
28. Studier, F. W., Rosenberg, A. H., Dunn, J. J. & Dubendorff,
Chem. 264, 21066-21072.
5495-5513.