Chronic inhibition of superoxide dismutase produces apoptotic death of spinal neurons

(amyotrophic lateral sclerosis/antioxidant/free radicals/motor neuron/organotypic culture)

JEFFREY D. ROTHSTEIN*,†, LYNN A. BRISTOL‡, BETSY HOSLER§, ROBERT H. BROWN, JR.§, and RALPH W. KUNCL*

*Johns Hopkins University, Department of Neurology, Johns Hopkins University School of Medicine, Meyer 5-119, 600 North Wolfe Street, Baltimore, MD 21287; †Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Building 10, Room 4B17, 9000 Rockville Pike, Bethesda, MD 20892; and §Day Neuromuscular Research Laboratory, Massachusetts General Hospital, Room 6627, MGH-East, Building 149, 13th Street, Charlestown, MA 02129

Communicated by Paul Talalay, January 14, 1994 (received for review November 30, 1993)

ABSTRACT Mutations in the gene for Cu/Zn superoxide dismutase (SOD1) have been detected in some families with an autosomal dominant form of amyotrophic lateral sclerosis; these mutations appear to reduce the activity of this enzyme. To determine whether decreased SOD activity could contribute to motor neuron loss, SOD1 was inhibited chronically with either antisense oligodeoxynucleotides or diethyldithiocarbamate in spinal cord organotypic cultures. Chronic inhibition of SOD resulted in the apoptotic degeneration of spinal neurons, including motor neurons, over several weeks. Motor neuron loss was markedly potentiated by the inhibition of glutamate transport. In this paradigm, motor neuron toxicity could be entirely prevented by the antioxidant N-acetylcysteine and, to a lesser extent, by the non-N-methyl-D-aspartate glutamate receptor antagonist 1-(4-aminophenyl)-4-methyl-7,8-methylenedioxy-5F-2,3-benzodiazepine hydrochloride. These data support the hypothesis that the loss of motor neurons in familial amyotrophic lateral sclerosis could be due to a reduction in SOD1 activity, possibly potentiated by inefficient glutamate transport.

Amyotrophic lateral sclerosis (ALS) is a motor neuron disease characterized clinically by progressive weakness, wasting of muscles, and spasticity due to the slow loss of lower motor neurons in the spinal cord and in the neocortex. Familial ALS represents 5–10% of all cases and is virtually indistinguishable clinically from the more common sporadic form. Mutations in the Cu/Zn superoxide dismutase (SOD1) gene on chromosome 21 have been detected in some families with the autosomal dominant form of familial AML (1, 2). Initial studies indicate that these mutations reduce the activity of SOD1 (2, 3). This protein is a homodimeric metalloenzyme that catalyzes the dismutation of the superoxide anion to oxygen and hydrogen peroxide (4). Excessive levels of oxygen radicals, such as superoxide anion, have been implicated in neuronal injury, either directly or through the formation of more reactive oxygen species such as hydroxyl radicals (5–7). However, it has not been established that a chronic reduction in SOD1 activity diminishes the viability of spinal motor neurons. To investigate this, we have developed a model of slow toxicity in cultured organotypic spinal cord slices which combines the advantages of long-term survival with partially preserved synaptic connections (8). In this model, SOD activity was inhibited by the use of either antisense oligodeoxynucleotides (ODNs) or metal-chelating agents such as diethyldithiocarbamate (DDC), which has been shown to potentiate oxygen radical-induced toxicity in acute preparations (5).

METHODS Organotypic Spinal Cord Cultures. Eight-day-old neonatal rat pups were decapitated, and the spinal cords were rapidly harvested and cultured (8). Culture medium, including any added pharmacological agent, was changed twice weekly. With this technique, >95% of the explants can be maintained in culture for >3 months with excellent organotypic cellular organization. Test drugs were added 8 days after cultures were prepared. Motor neuron survival was measured by counting motor neurons in cresyl violet-stained cultures. Motor neurons were operationally defined as any neuron larger than 30 μm in the ventral horn and were counted as described (8). Biochemical Assays. To determine choline acetyltransferase (ChAT) activity, the spinal cord tissue in each dish (five slices) was pooled and frozen at −75°C until assay. Each culture well represented one time point or drug concentration, and ChAT activity for each time point was calculated from the mean ± SEM of two to eight replicate culture wells. ChAT activity was measured radiometrically with [3H]acetylcoenzyme A (Amersham) (9). Protein content of tissue homogenates was determined by a Coomassie G-250 assay (Pierce).

Total SOD activity was measured in sonicated tissue homogenates (1–200 μg of protein) (10). The amount of SOD activity in experimental samples was compared with that in age-matched control cultures.

Antisense ODN Treatment. Organotypic cultures were prepared from 8-day-old rat lumbar spinal cords (8). After 8 days in culture, phosphorothioate ODN was added to the culture medium. Culture medium was changed twice weekly and included fresh phosphorothioate ODN. Cultures were treated with either sense or antisense ODN; the antisense sequence, 5′-CACACGGCCTTCGTCGCCATAACTCGCTAG-3′, spans from 10 bases 5′ to 17 bases 3′ of the start codon (11, 12). Control cultures received either no ODN or sense ODN. Cultures were then assessed in three ways: (i) total SOD activity was measured at selected time points in tissue homogenates, (ii) ChAT activity was measured in sense- and antisense-treated cultures, and (iii) motor neurons were counted in treated cultures stained with cresyl violet. For biochemical assays, each test was generally removed from the culture well and frozen at −75°C until assay.

Abbreviations: ALS, amyotrophic lateral sclerosis; SOD1, Cu/Zn superoxide dismutase; DDC, diethyldithiocarbamate; NMDA, N-methyl-D-aspartate; ChAT, choline acetyltransferase; U83865, (−)-2-[(4,2,6-Di-1-pyridinyl)-1-4-pyrimidinyl]-1-piperazinyl]methyl-3,4-dihydro-2,5,7,8-tetramethyl-2H-1-benzopyran-6-ol dihydrochloride; GYKI-52466, 1-(4-aminophenyl)-4-methyl-7,8-methylenedioxy-5F-2,3-benzodiazepine hydrochloride; ODN, oligodeoxynucleotide.

†To whom reprint requests should be addressed.
Apoptosis and DNA Fragmentation. Apoptotic nuclei were identified in cresyl violet-stained whole cultures by the characteristic condensed chromatin and nuclear fragments (13, 14). Apoptotic cells were quantified at weekly intervals by examining 10 random high-power (×250) fields from cultures stained with cresyl violet. Each time point represents the mean ± SEM of apoptotic nucleus counts from two to eight cultures. Apoptotic nuclei were rarely observed in age-matched control cultures. For confirmation, cultures were stained with Hoechst 33258 (Calbiochem) to identify condensed chromatin (15). Cultures were fixed with 4% paraformaldehyde, stained with Hoechst 33258 (10 μg/ml in phosphate-buffered saline) for 10 min, washed, mounted, and observed with a Zeiss Axiovert fluorescence microscope.

To examine DNA fragmentation, DNA from pooled spinal cord cultures was extracted (15) and then electrophoresed in 1.5% agarose in buffer containing ethidium bromide, along with a 123-bp-ladder standard. To improve visualization of the DNA fragments, the DNA was transferred to GeneScreen membrane (DuPont) and hybridized for 18 hr at 42°C with a universal 36-mer ODN primer (New England Biolabs) labeled at the 3' end with fluorescein-conjugated dUTP (Amersham). Blots were washed under low-stringency conditions [twice for 5 min in 5× standard saline citrate (SSC)/0.1% SDS at room temperature and once for 15 min in 1× SSC/0.1% SDS at room temperature] and incubated with anti-fluorescein-conjugated horseradish peroxidase, followed by an enhanced chemiluminescence detection system (Amersham). Blots were exposed to Kodak XAR-5 autoradiographic film for various times.

Drugs. threo-Hydroxy-DL-aspartate, DDC, N-acetylcysteine, and α-tocopherol were from Sigma. (-)-2-[[4-(2,6-Di-1-pyrrolidinyl-4-pyrimidinyl)-1-piperazinyl]methyl]-3,4-dihydro-2,5,7,8-tetramethyl-2H-1-benzopyran-6-ol dihydrochloride (U83836E) was kindly provided by E. Hall (Upjohn). 1-(4-Aminophenyl)-4-methyl-7,8-methylenedioxy-5H-2,3-benzodiazepine hydrochloride (GYKI-52466) was generously supplied by I. Tarnawa (Institute for Drug Research, Budapest).

RESULTS

Organotypic cultures were prepared from rat postnatal lumbar spinal cord and incubated long-term with various doses of DDC (Fig. 1A). Both 1 mM and 5 mM DDC potently inhibited SOD activity in these organotypic spinal cord cultures [by 82 ± 4% (mean ± SEM) and 100 ± 1%, respectively], whereas 0.1 mM DDC inhibited SOD activity by <25%. The viability of motor neurons was monitored either by measuring culture ChAT activity, which is largely restricted to motor neurons in the lumbar spinal cord (16, 17), or by counting motor neurons in cultures stained with cresyl violet (8). DCC at 1 mM became progressively neurotoxic after 4 weeks in culture, as measured by loss of ChAT activity and by counts of large ventral-horn neurons (Fig. 1 A and B). DDC at 5 mM was progressively neurotoxic beginning within 1 week after chronic administration. We were unable to detect any morphological or biochemical evidence that low-dose DDC (0.1 mM) was toxic to motor neurons during the 1 month study period (Fig. 1A). Chronic inhibition of SOD with 1 mM DDC was toxic to both motor neurons and other types of neurons in the cultures (Fig. 1E).

Aside from inhibiting SOD, DDC has a number of properties which could contribute nonspecifically to its toxicity. For example, DDC has weak reducing properties (5). To control for this effect, organotypic cultures were maintained long-term with low concentrations of two potent reducing agents, dithiothreitol and thioglycolate (18). Neither dithiothreitol (10 μM) nor thioglycolate (250 μM) produced significant motor neuron toxicity when maintained for up to 1 month in culture (Fig. 1C).

![Fig. 1. Neurotoxicity produced by chronic inhibition of SOD1 in organotypic cultures of lumbar spinal cord. (A) ChAT activity in spinal cord organotypic cultures as a marker for motor neuron toxicity in the presence of DDC. Cultures were prepared from lumbar spinal cords, and after 8 days in culture, DDC at 0.1 mM (○), 1 mM (●), or 5 mM (▲) was added to the culture medium. These drug concentrations were maintained in all subsequent medium changes. DDC-induced motor neuron toxicity was dose dependent. Shaded bar on the y axis represents control mean ± SEM. (B) Counts of spinal cord motor neurons in control cultures (●) and cultures treated chronically with 1 mM DDC (○). Motor neuron loss occurred concurrently with loss of ChAT activity. (C) Comparison of effects of 4 weeks of DDC (1 mM), dithiothreitol (DTT, 10 μM), or thioglycolate (TGC, 250 μM). For all experiments, statistical significance was tested by Student’s independent t test comparing drug vs. control: *, P < 0.05; **, P < 0.01. (D) Five-week-old control culture stained with cresyl violet. Arrow indicates ventral motor neuron. (E) Loss of ventral motor neurons and generalized cell loss in culture treated for 4 weeks with 1 mM DDC. (Bar = 400 μm.)](image-url)
Fig. 2. Effect of long-term treatments with antisense (■) or sense (●) ODN in organotypic cultures prepared from lumbar spinal cord on SOD activity (A), motor neuron survival as reflected by tissue ChAT activity (B), and cell counts of large ventral horn motor neurons >30 μm in diameter in cresyl violet-stained whole cultures (C). Sense ODN had no effect on SOD activity, ChAT activity, or motor neuron survival. Partial inhibition of SOD by antisense ODN produced mild motor neuron toxicity as reflected by a parallel drop in ChAT activity and motor neuron cell number (B). Each point represents the mean ± SEM of two to six replicate culture wells, each containing five spinal cord slices. Statistically significant differences of antisense ODN treatment vs. control (independent t test): **, P < 0.01.

In addition to inhibiting SOD1 activity, DDC can also decrease glutathione levels in some cell cultures (19). We therefore studied the effects of two other copper-chelating agents which potently inhibit SOD while having little effect on glutathione levels (19). Both agents, triethylenetetramine (1 mM) and tetrakis(2-pyridylmethyl)ethylenediamine (100 μM), produced >50% loss of ChAT activity after 1 and 3 weeks, in culture, respectively. It therefore seems unlikely that the effects of DDC on motor neurons were a consequence of a decrease in glutathione.

It is also possible that DDC could adversely affect neurons in these cultures by inhibiting cytochrome oxidase (complex IV) in mitochondria (20, 21). Because this possibility was difficult to exclude, we conducted parallel experiments to inhibit SOD1 more specifically, using a phosphorothioate antisense ODN corresponding to the 5′ region of the SOD1 mRNA. The 30-mer SOD1 antisense ODN, extending from 10 bases upstream of the start codon to 17 bases downstream (11), was administered at 5 μM to the organotypic cultures twice a week to inhibit synthesis of SOD1 (12). Control cultures were treated with a matching 30-mer sense ODN at 5 μM. Antisense ODN produced a long-term 40–55% inhibition of SOD1 activity which was maximal by 3 weeks in culture (Fig. 2A) (14). Treatment with sense ODN had no effect on SOD1 activity.

To determine whether chronic inhibition of SOD1 by antisense ODN decreased neuronal viability, spinal cord organotypic cultures were incubated with antisense ODN as before. At selected times, ChAT activity was measured to evaluate motor neuron toxicity (Fig. 2B), and motor neurons were counted directly in cresyl violet-stained cultures (Fig. 2C). After treatment of cultures with SOD1 antisense for 4 weeks, significant neurotoxicity was evident as assessed by reductions both in ChAT activity and in numbers of motor neurons per culture (Fig. 2 B and C).

To determine whether the neurotoxicity of SOD inhibition was due to chronic oxidative stress, organotypic spinal cord cultures were cultured with a variety of antioxidants in combination with antisense ODN or DDC. N-Acetylcysteine (100 μM), which can act as an antioxidant, either directly or as a precursor for the antioxidant glutathione (22, 23), provided almost complete protection against oxygen radical toxicity produced by antisense ODN and 1 mM DDC (Fig. 3 A and B). When a higher dose of DDC (5 mM) was used to inhibit SOD (Fig. 3C), α-tocopherol (100 μM) and the antioxidant U83836E (10 μM), but not N-acetylcysteine (data not shown), partially protected against motor neuron toxicity.

It has been hypothesized that motor neuron death in familial ALS may result from SOD mutations in concert with glutamate-induced excitotoxic injury (24). This suggestion is in accord with autopsy studies documenting diminished glutamate uptake in brain homogenates from patients with sporadic ALS (25) and our report that chronic inhibition of glutamate transport with threo-hydroxyaspartate or pyrroldinedicarboxylic acid is toxic to motor neurons in organotypic cultures (8). To determine whether glutamate could exacerbate the oxidative stress induced by DDC, we maintained our organotypic cultures with a nontoxic concentration of DDC (0.1 mM) in combination with a low concentration of threo-hydroxyaspartate (100 μM). This combination of glutamate–transport blockade and DDC markedly potentiated motor neuron death as gauged by accelerated loss of ChAT activity (Fig. 4).

This interaction of glutamate and oxidative stress was explored further with neuroprotective glutamate receptor antagonists. Excess glutamate can lead to the formation of oxygen radicals, through actions at either N-methyl-D-
aspartate (NMDA) or non-NMDA receptors (26, 27). Our previous studies with organotypic cultures demonstrated that glutamate-induced motor neuron toxicity was completely mediated by non-NMDA glutamate receptors (8). For the present experiments, when the noncompetitive, non-NMDA antagonist GYKI-52466 (100 μM) was incubated chronically with cultures exposed to 1 mM DDC, GYKI-52466 provided a small but significant degree of protection against the neurotoxic effects of baseline glutamate in our cultures (Fig. 3B). Whether the source of extracellular glutamate in these experiments was neurotransmitter release or leakage from dying cells is not known.

The morphology of neurons chronically exposed to DDC or to SOD1 antisense ODN was quite distinctive, with several features indicative of apoptosis, including dense chromatin masses, condensation of chromatin at the nuclear membrane, and nuclear fragmentation (Fig. 5 A–C) (13, 14). In addition, DNA from DDC-treated organotypic cultures was degraded in a pattern resembling the oligonucleosomal "ladder" seen after endonuclease activation (Fig. 5D) (15). Temporally, the appearance of neurons with these features paralleled the development of SOD inhibition and the loss of ChAT activity (Fig. 5E). Cells with this apoptotic appearance were rarely observed in cultures subjected to chronic inhibition of glutamate uptake by threo-hydroxyaspartate (data not shown); in such cultures the major morphological feature was early cellular vacuolization and late necrosis (8, 28). The selectivity of neuronal loss for motor neurons was not formally studied. However, after 3–4 weeks of treatment with antisense ODN, there was a clear loss of motor neurons in cultures which had evidence of only mild overall injury.

DISCUSSION

These studies demonstrate that chronic reduction in SOD1 activity is toxic to motor neurons in vitro. A corollary implication is that reduced SOD1 activity in ALS patients with SOD1 mutations may also be directly toxic to motor neurons in vivo. Because SOD1 is ubiquitously expressed throughout all tissues, including those in the central nervous system (29), it is likely that some factor other than SOD1 mutations themselves accounts for the selective degeneration of motor neurons in familial ALS. Our data indicate that one...
such factor may be the excitotoxic influence of the neurotransmitter glutamate. Inhibition of glutamate transport markedly potentiated the toxicity of low levels of the compound DDC. These observations suggest that impaired glutamate transport, or even baseline glutamatergic activity, may target motor neurons and contribute to their loss in ALS. Other oxidative insults in motor neurons (e.g., hydroxyl radicals and peroxynitrite (30) or other metabolic stresses) might also contribute to motor neuron death.

The motor neuron death induced by the SOD1 antisense ODN was associated with a reduction in SOD1 activity of about 50%. This is approximately the level of SOD1 activity loss detected in tissues of familial ALS patients with SOD1 mutations. Because dominantly inherited diseases are not generally associated with a loss of function (31), it remains possible that the SOD1 mutations in familial ALS patients are lethal because they confer some novel, cytotoxic function on the enzyme in addition to reducing its SOD activity.

Chronic SOD1 inhibition appears to cause apoptotic death of neurons which is separable by antioxidants in our cultures. One implication of this finding is that excessive free radicals, presumably including the superoxide anion, trigger a sequence of events culminating in endonuclease activation. This is consistent with reports that oxidative stress can induce apoptosis both in embryonic neurons and in neural cell lines (32, 33). Conversely, in some neural lines, overexpression of SOD1 diminishes apoptosis (D. E. Bredesen, personal communication). Our data also suggest the hypothesis that motor neuron death may be apoptotic in familial ALS patients with SOD1 mutations. This is potentially of therapeutic importance, as some neurotrophic factors (NGF, BDNF, NT-3, and CNTF) as well as other proteins (e.g., BCL2) can rescue primary neurons from apoptotic cell death (35, 36).

To what extent the loss of SOD1 in cultures treated with antisense ODN produced selective motor neuron toxicity was not explored in this study, but preliminary observations suggest that motor neurons are more sensitive to oxygen radical toxicity than other neurons in the organotypic spinal cord culture.

The neuroprotective effect of both a non-NMDA glutamate receptor antagonist and antioxidants in this model suggests that these agents may be beneficial in the treatment of ALS. The positive results of recent, preliminary clinical trials with riluzole (37), a drug that alters glutamatergic neurotransmission (34, 38, 39), appear to validate this therapeutic approach.

We thank R. Ratan, P. Henkart, and J. Voron for helpful discussions. M. Dykes-Hoberg, L. Jin, and M. Lehr provided technical assistance. GYKI-52466 was generously supplied by István Tarnawa of The Institute for Drug Research (Budapest, Hungary), and U83836E was supplied by The Upjohn Co. These investigations were supported by grants from the National Institute of Neurological Disorders and Stroke (R.W.K., J.D.R., R.H.B., and B.H.), the Jay Slotkin Fund for Neuromuscular Research (R.W.K.), the Muscular Dystrophy Association (J.D.R., R.H.B., and B.H.), and the ALS Association (R.H.B.). R.H.B. also receives support from the C. B. Day Investment Co., the Pierre L. de Bourgknecht ALS Research Foundation, and the Mary May MacLellan ALS Research Foundation.