Serine phosphorylation of human P450c17 increases 17,20-lyase activity: Implications for adrenarche and the polycystic ovary syndrome

LIN-HUA ZHANG*, HENRY RODRIGUEZ*, SHUJI OHNO*, AND WALTER L. MILLER†

Department of Pediatrics and the Metabolic Research Unit, University of California, San Francisco, CA 94143-0978

Communicated by Melvin M. Grumbach, University of California, San Francisco, CA, July 21, 1995 (received for review May 26, 1995)

ABSTRACT Microsomal cytochrome P450c17 catalyzes both steroid 17α-hydroxylase activity and scission of the C17—C20 steroid bond (17,20-lyase) on the same active site. Adrenal 17α-hydroxylase activity is needed to produce cortisol throughout life, but 17,20-lyase activity appears to be controlled independently in a complex, age-dependent pattern. We show that human P450c17 is phosphorylated on serine and threonine residues by a cAMP-dependent protein kinase. Phosphorylation of P450c17 increases 17,20-lyase activity, while dephosphorylation virtually eliminates this activity. Hormonally regulated serine phosphorylation of human P450c17 suggests a possible mechanism for human adrenarche and may be a unifying etiologic link between the hyperandrogenism and insulin resistance that characterize the polycystic ovary syndrome.

The synthesis of sex steroids from pregnenolone or progesterone first requires the 17α-hydroxylation of these steroids to 17α-hydroxypregnenolone and 17α-hydroxyprogesterone, respectively. The C17—C20 carbon bond of either of these 21-carbon steroids is then cleaved to yield the 19-carbon androgens dehydroepiandrosterone (DHEA) and androstenedione, respectively, which are then converted to testosterone and estradiol. Both the 17α-hydroxylation of pregnenolone and progesterone and the subsequent C17—C20 bond cleavage (17,20-lyase activity) of 17α-hydroxypregnenolone and 17α-hydroxyprogesterone are catalyzed by a single enzyme, cytochrome P450c17. Only a single enzyme catalyzing 17α-hydroxylase activity and 17,20-lyase activity can be isolated from steroidogenic tissues (1–4), and transfection of vectors expressing the cDNAs for either bovine (5) or human (6) P450c17 confers both 17α-hydroxylase and 17,20-lyase activity to the transfected cells. There is only one human gene for P450c17 (7) located on chromosome 10q24-q25 (8), and mutations of this gene can destroy all 17α-hydroxylase and 17,20-lyase activity (6, 9–12). Thus it is clear that there is only one enzyme catalyzing both of these activities.

In the testis, all of the precursor steroids are converted to sex steroids—i.e., the effective ratio of lyase activity to hydroxylase activity is unity. However, in the human adrenal cortex, this ratio is under closely regulated control during development. The adrenals of children between 1 and 8 years of age make cortisol (a C21 steroid) but virtually no C19 steroids. Between 7 and 9 years, the adrenals begin to produce DHEA associated with increased adrenal 17α-hydroxylase and 17,20-lyase activity (13) and without an associated change in the secretion of cortisol or adrenocorticotropic hormone (14, 15). DHEA secretion increases steadily, reaching maximal levels at 25–35 years, and afterwards wanes slowly, returning to childhood levels at 70–80 years (16). This onset of adrenal androgen synthesis, an event termed adrenarche, is independent of the gonads or pituitary gonadotropins (17) and only occurs in humans and other higher primates (14). While it has been suggested that adrenal androgens are under the control of a specific pituitary tropic hormone (15, 17), no such hormone has been found (18–20). Other efforts have focused on possible intraadrenal events such as adrenal mass, blood flow, and intra-adrenal steroid concentrations that might affect adrenal androgen production (21). An especially intriguing approach was suggested by the observation that increasing the molar ratio of isolated, purified electron donors, such as P450 oxidoreductase (OR) or cytochrome bs, to porcine P450c17 would increase the ratio of lyase to hydroxylase activity (22). Experiments with transfected COS-1 cells confirm that coexpression of vectors encoding human OR and human P450c17 results in a substantial increase in lyase (23,24) activity. However, it seems unlikely that adrenarche could result from a large increase in the expression of an electron donor, as the activity of adrenal cytochrome P450c21 (steroid 21-hydroxylase), which uses the same electron donors, is unchanged during adrenarche.

Studies of the contribution of various residues in P450c17 suggest that specific amino acids are uniquely required for 17,20-lyase activity: the mutation R346A in rat P450c17 (24) or the corresponding mutant R347A in human P450c17 (25) destroys virtually all 17,20-lyase activity while having minimal effects on 17α-hydroxylase activity. Other subtle mutations can also affect this ratio (23–26). As the amino acid sequence of P450c17 cannot change with adrenarche, we have thus considered whether posttranslational modification of P450c17 could alter the ratio of hydroxylase to lyase activity.

We now report that serine phosphorylation of human P450c17 appears to be required for 17,20-lyase activity. We hypothesize that this phosphorylation is developmentally regulated in the adrenal cortex in response to as yet unidentified stimuli, thus suggesting a mechanism for the onset of adrenarche. Furthermore, the association of serine phosphorylation with the induction of androgen synthesis suggests a unifying hypothesis for the two cardinal features of some forms of the polycystic ovary syndrome (i.e., hyperandrogenism and insulin resistance), as serine phosphorylation of the insulin receptor can cause insulin resistance (27, 28).

MATERIALS AND METHODS

Cell Culture and Immunoprecipitations. COS-1 African green monkey kidney cells were grown in monolayer in 10-cm dishes in 10 ml of Dulbecco's modified Eagle's medium/Ham's 21 (DME-H21) containing 4.5 g of glucose per liter and 10% fetal bovine serum and were transfected as described (6). NCI-H295 human adrenocortical carcinoma cells were grown as described (29, 30) and were transfected by calcium phos-

The publication costs of this article were defrayed in part by page charge payment. This article must therefore be hereby marked "advertisement" in accordance with 18 U.S.C. §1734 solely to indicate this fact.
phase precipitates. Kin 8 cells (31), a mutant of mouse adrenal cortical Y1 cells lacking the regulatory subunit of protein kinase A (PKA), were generously provided by Bernard P. Schimmer and were grown as described (32).

Cells were metabolically labeled either with 32P orthophosphate (32P) (1 mCi/ml; 1 Ci = 37 GBq; free of carrier and HCl; Amersham) for 2–4 h in phosphate-free DME-H21 or with $[^{35}]$S methionine (0.1 mCi/ml; >37 TBq/mmol; Amersham) for 1–4 h in methionine-free DME-H21 containing 10% dialyzed fetal calf serum. Labeled cells were lysed in 10 mM Tris-HCl, pH 7.5/20 mM sodium pyrophosphate/20 mM nito-

trophenyl phosphate/1% deoxycholate/1% Triton X-100/0.5% bovine serum albumin/1 mM phenylmethylsulfonyl flu-

oride/200 μM sodium vanadate/aprotinin, leupeptin, and pep-

tatin A each at 20 μg/ml/cystatin at 10 μg/ml. The lysates containing $[^{35}]$S methionine and 32P contained 0.1% and 1.2% SDS, respectively. Lysates were clarified by centrifugation for 30 min at 140,000 ⊥g. The supernatant was precleared with protein A-Sepharose CL-4B beads (Pharmacia) before adding antisera to human P450c17 (23) at a dilution of 1:300. The immune complexes were harvested with protein A-Sepharose CL-4B beads, washed extensively, and analyzed by electrophoresis on SDS/10% polyacrylamide gels. Western immuno-

blotting of one- and two-dimensional gels was done as de-

scribed (23, 33).

Plasmids, Transfections, and Enzyme Assays. The human P450c17 cDNA (34) was subcloned into the expression vector pMT2 (35). The expression vector for the catalytic subunit of cAMP-dependent PKA (RSV-CatI3) (36) was generously pro-

vided by Richard A. Maurer. Plasmids (2 μg) purified by CsCl banding were transfected overnight into COS-1 cells by cal-

cium phosphate precipitates as described (37). After changing the medium, cells were incubated 48 h, washed twice with PBS, washed twice with DME-H21 lacking phosphate or methionine, and then were used for metabolic labeling as above or for enzymatic hormonal conversion assays. Enzymatic assays used $[^{3}H]$pregnenolone (925 GBq/mmol; DuPont/NEN) or 17α-[3H]hydroxyprogrenolone (618 GBq/

mmol; Amersham) in DME-H21 containing 10% fetal calf serum. Steroids were extracted and analyzed by TLC exactly as described (6, 23).

Phosphoamino Acid Analysis. 32P-labeled human P450c17 was isolated by immunoprecipitation of rabbit anti-human P450c17 and protein A-Sepharose CL-4B as described above, then analyzed by electrophoresis on an SDS/10% polyacryl-

amide gel, and electoblotted to nitrocellulose membranes. The P450c17 band was cut out, digested with trypsin, then hydrolyzed with 5.7 M HCl, and analyzed by thin-layer elec-

trophoresis in two dimensions at pH 1.9 and pH 3.5. Autora-

diograms were compared to the ninhydrin-stained plates, all as described (38, 39).

Microsomal Assays. Human fetal adrenal microsomes were prepared by homogenizing 300 mg of tissue in 2 ml of 0.25 M sucrose/5 mM EDTA, pH 7.4, clearing debris at 9000 × g for 20 min, and centrifuging at 105,000 × g for 1 h. The crude pellet was washed in 0.1 M KPO$_4$ buffer, pH 7.4/0.1 mM EDTA; the microsomes were harvested at 105,000 × g for 1 h, resuspended in 3 ml of 0.1 M KPO$_4$ buffer/0.1 mM EDTA/20% (vol/vol) glycerol, and stored at −20°C. The protein content was 2.6 mg/ml, and the P450 content measured by CO-difference spectra using a millimolar extinction of ΔE$_{50}$-

496 = 91 M$^{-1}$cm$^{-1}$ (40) was 0.99 nmol/mg of protein.

P450c17 activity was measured by incubating 12 μg of microsomal protein and 1 nmol of $[^{3}H]$pregnenolone in 0.2 ml of 100 mM KPO$_4$ (pH 7.4), 1 mM MgCl$_2$, 0.4 mM NADP$^+$, 5 mM glucose 6-phosphate, and 0.2 unit of glucose-6-phosphate dehydrogenase at 37°C for 30 min. Steroids were extracted with 0.8 ml of ethyl acetate in 2,2,4-trimethylpentane (1:1, vol/vol), concentrated by evaporation, and analyzed by TLC in benzene/acetone (8:1, vol/vol). OR activity was assayed by mea-

suring the rate of reduction of 50 μM cytochrome c by 11.2 μg of microsomal protein in 100 μl of 0.3 M KPO$_4$, pH 7.4/50 μM NADPH, assessed at 550 nm using a millimolar extinction of 21 M$^{-1}$cm$^{-1}$ (41).

RESULTS

Human P450c17 Is a Phosphoprotein. To determine if there might be posttranslational modification of P450c17 that would influence its charge (e.g., phosphorylation) more than its molecular mass, we performed two-dimensional gel electrophoresis of proteins extracted from human fetal adrenal and identified P450c17 isoforms by Western blotting. The majority of the immunodetectable P450c17 was found in a single spot, but a small amount of P450c17 was also seen with a somewhat more basic isoelectric point (data not shown). Because some hepatic (42, 43) and steroidogenic (44, 45) P450 enzymes may be phosphorylated, we used human adrenal NCI-H295 cells to determine if the charge variants of P450c17 were due to phosphorylation. NCI-H295 cells make C$_19$ steroids and 17-

hydroxylated C$_19$ steroids (29) and express abundant P450c17 mRNA (30) and immunodetectable protein. NCI-H295 cells were labeled with either 32P, or $[^{35}]$S methionine for 2.5 h and then treated for another 2 h with or without 200 μM 8Br-cAMP, and the P450c17 protein was immunoharvested with rabbit anti-

human P450c17 and staphylococcal protein A-Sepharose and analyzed by SDS/polyacrylamide gel electrophoresis. The 2-h treatment with 8Br-cAMP increased incorporation of $[^{35}]$S methionine, an index of total P450c17 protein, by about one-third, but incorporation of 32P, an index of phosphorylation, increased 4-fold (Fig. 1). Thus it appears that P450c17 is phosphorylated in response to cAMP in NCI-H295 cells.

P450c17 Is Phosphorylated by a cAMP-Dependent Protein Kinase. To elucidate the mechanisms of P450c17 phosphorylation further, we used nonsteroidal COS-1 cells transfected with vectors expressing human P450c17. Our pECE-

based expression vector for P450c17 expresses useful levels of P450c17 activity (6, 10, 11, 23, 25) but yields modest levels of immunodetectable P450c17 protein. Therefore we built a new P450c17 expression vector in pMT2 (35), which expressed substantially more P450c17 and which confirmed that P450c17 could be phosphorylated in COS-1 cells (Fig. 2). When COS-1 cells transfected with this vector were stimulated for 2 h with 200 μM 8Br-cAMP, there was no change in immunoprecipitabil-

ite $[^{35}]$P450c17, but 32P-labeling of P450c17 increased 3-fold (Fig. 3, lanes 1–7). Similarly, when this P450c17 vector was cotransfected with a vector expressing the catalytic subunit of PKA (RSV-CatI3) (36), the incorporation of 32P increased about 2-fold (Fig. 3, lanes 8 and 9). By contrast, incubation for 2 h with phorbol 12-myristate 13-acetate at 20 ng/ml did not alter 32P incorporation (lanes 10 and 11). Thus the phospho-

ylation of P450c17 in COS-1 cells appears to be catalyzed by a cAMP-dependent protein kinase. To determine if PKA phosphorylates P450c17, we performed the same experiment in Kin 8 cells, a derivative of mouse adrenocortical Y1 cells that

![Fig. 1. Labeling of P450c17 in human adrenal NCI-H295 cells. Cells (2 × 10⁶) were labeled for 2.5 h with $[^{35}]$S methionine or 32P and then for another 2 h without (Control) or with (cAMP) 200 μM 8Br-

cAMP. The cells were lysed and the immunoharvested P450c17 was displayed on an SDS/10% poly-

acrylamide gel. Size markers are in kDa. The data are representative of three experiments.](https://example.com/fig1.png)
lack the regulatory subunit of PKA (32). After transfection with the P450c17 expression vector, incubation of Kin 8 cells with \(^{32}P \), yielded no detectable \(^{32}P \)-labeled P450c17, and cotransfection with RSV-Cat\(\beta \) yielded minimally detectable \(^{32}P \)-labeled P450c17 (lanes 12 and 13). Thus P450c17 appears to be phosphorylated in a cAMP-dependent fashion, but PKA appears to play a relatively minor role in this phosphorylation.

P450c17 Is Phosphorylated at Serine (and Threonine) Residues. The apparent role of PKA in P450c17 phosphorylation would suggest that P450c17 might be phosphorylated at serine and possibly threonine residues. To determine the chemical identity of the phosphorylated residues, we performed two-dimensional phosphoamino acid analysis (39). Direct HCl treatment of the P450c17 phosphoprotein isolated from an SDS gel did not yield complete hydrolysis; however, when the protein was first digested with trypsin, followed by HCl, complete hydrolysis was achieved. As shown in Fig. 4, about 70–80% of the \(^{32}P \) was associated with serine residues, and the remainder was associated with threonine residues.

Dephosphorylation of P450c17 Reduces 17,20-Lyase Activity. The induction of 17,20-lyase activity in cells treated with cAMP was often difficult to assess because untreated cells retained some 17,20-lyase activity and some phosphorylation of P450c17. Therefore, we also assessed the effect of dephosphorylation of P450c17 in vitro. Microsomal preparations of transfected cells did not contain enough total P450 to permit measurement by CO-difference spectra (data not shown), but microsomes from human fetal adrenal tissue yielded about 1 nmol of P450 protein per milligram of total protein. When adrenal microsomes were incubated with \(^{3}H \)pregnenolone or 17\(\alpha \)-\([H]\)hydroxypregnenolone, they exhibited both 17\(\alpha \)-hydroxylase and 17,20-lyase activity. However when microsomal proteins were dephosphorylated with alkaline phosphatase, the microsomes lost 17,20-lyase activity, but not 17\(\alpha \)-hydroxylase activity, in a time-dependent fashion (Fig. 6). As P450c17 activity requires electrons donated by microsomal OR, we determined whether alkaline phosphatase affected this enzyme. Even twice the amount of alkaline phosphatase used above had no effect on OR activity (Fig. 6B). The persistence of 17\(\alpha \)-hydroxylase and OR activities after treat-
oment with alkaline phosphatase shows that the loss of 17,20-
ylase activity was not due to proteolysis [as suggested (45)].
Similarly the persistence of 17α-hydroxylase activity with both
pregnenolone and progesterone substrates, an activity that
requires NADPH, shows that the alkaline phosphatase-
induced loss of 17,20-lyase activity was not due to dephospho-
ylation of this cofactor. Alkaline phosphatase treatment also
did not alter the substrate-induced difference spectrum of total
microsomal P450 incubated with either pregnenolone or 17α-
hydroxypregnenolone (Fig. 7). Thus alkaline phosphatase
treatment did not degrade P450c17, and dephosphorylation of
P450c17 diminished 17,20-lyase activity without altering the
substrate binding.

DISCUSSION

Adrenarche is a developmentally programmed increase in
17,20-lyase activity. To date, no mechanism for adrenarche has
been proposed that accounts for a large increase in 17,20-lyase
activity without altering 17α-hydroxylase activity. We now
propose that serine/threonine phosphorylation of adrenal
P450c17 by a cAMP-dependent kinase can account for the
available observations concerning adrenarche and several
related phenomena. Previous studies show that additional
reducing equivalents are required for 17,20-lyase activity—e.g.,
from P450 oxidoreductase or cytochrome b5 (22, 23, 46, 47).
The phosphorylation of P450c17 obviously does not directly
provide the increased reducing equivalents needed for 17,20-
lyase activity but may increase the affinity of P450c17 for
the electron donor. A related example appears to be the R346A
mutation in rat P450c17 (R347A in human), which selectively
destroys 17,20-lyase activity while retaining 17α-hydroxylase
activity (24, 25). Computer graphic modeling predicts that this
residue is not part of the catalytic substrate-binding pocket but
instead will be exposed to solvent on the surface of the
proximal face of the enzyme where it would participate in
the initial charge recognition and binding between P450
reductase and the enzyme (25, 48). Similarly, phosphorylation
of P450c17 may increase its electrostatic affinity for electron
donors, thus favoring 17,20-lyase activity.

While the physiologic trigger to adrenarche and/or P450c17
phosphorylation remains unknown, we would speculate that
insulin-like growth factor I (IGF-I) may be a good candidate.
Serum levels of IGF-I rise and fall in a pattern that is
contemporaneous with DHEA secretion. Both insulin and
IGF-I transmit their signals by initiating tyrosine autophos-
phorylation of the insulin/IGF-I receptors, whereas the phos-
phorylation of serine and threonine residues diminishes signal
transduction (27, 28). Patients with the polycystic ovary syn-
drome have hyperinsulinism and a postreceptor form of insulin
resistance without a change in insulin binding, apparently in
FIG. 7. Substrate-induced difference spectra. Microsomes (300 μg of protein) were used intact or were incubated with 5.28 units of alkaline phosphatase for 8 min, treated with EDTA, washed twice with 100 mM potassium phosphate buffer followed by a 60-min centrifugation at 105,000 × g, and resuspended in 100 mM potassium phosphate/20% glycerol at 1.48 mg of protein per ml. Substrate-induced spectra were recorded (3 min after addition) of 1 μM pregnenolone (Preg) or 17α-hydroxypregnenolone (170H Preg) to untreated (intact) or phosphatase-treated microsomes containing 0.5 μM P450 protein. Data are from a single experiment.

association with increased serine phosphorylation of the insulin receptor (49). We hypothesize that a common pathway results in excessive serine phosphorylation of the insulin receptor in a wide variety of tissues and of adrenal and ovarian P450c17 in patients with the polycystic ovary syndrome, thus increasing adrenal and ovarian 17,20-lyase activity, causing hyperandrogenism, and decreasing insulin sensitivity by a common mechanism. The nature of the responsible kinase(s) is unknown. The insulin receptor can undergo serine phosphorylation in response to several isozymes of protein kinase C (28), by cAMP-dependent kinases (50), by a casin protein (51), and possibly by the insulin receptor itself (52). Our results suggest that a cAMP-dependent mechanism, but not a phorbol 12-myristate 13-acetate-sensitive protein kinase C mechanism, will phosphorylate P450c17 in adrenal cells, but other kinases may function in ovarian theca cells. Thus, while normal adrenal phosphorylation of P450c17 might be triggered at adenarchal, abnormal activation of serine phosphorylation, perhaps in response to dystonic secretion of luteinizing hormone might simultaneously increase (i) the serine phosphorylation of ovarian P450c17, causing ovarian hyperandrogenism, and (ii) the serine phosphorylation of insulin receptors, causing insulin resistance, thus providing a common pathway for the two principal features of some forms of the polycystic ovary syndrome.

We thank Dr. John E. Shively for productive discussions, Dr. Richard A. Maurer (University of Oregon) for the RSV-Ca1β vector, and Dr. Bernard P. Schimmer (University of Toronto) for the Y1 and Kin 8 cells. This work was supported by a fellowship from the Chengu Scholars Program (L.Z.), National Institutes of Health physician/scientist award K11 DK02123 (H.R.), a grant from the College of Pharmacy Nihon University and a research fellowship from the Uehara Memorial Foundation (S.O.), and National Institutes of Health Grants DK37922 and DK42154 and March of Dimes Grant 6-396 (W.L.M.).