Interaction of the Hsp70 molecular chaperone, DnaK, with its cochaperone DnaJ

Won-Chul Suh*, William F. Burkholder†‡, Chi Zen Lu*, Xun Zhao†, Max E. Gottesman†, and Carol A. Gross*§

*Departments of Microbiology and Stomatology, University of California, San Francisco, CA 94143; and †Department of Biochemistry and Molecular Biophysics, College of Physicians and Surgeons, Columbia University, New York, NY 10032

ABSTRACT Chaperones of the Hsp70 family bind to unfolded or partially folded polypeptides to facilitate many cellular processes. ATP hydrolysis and substrate binding, the two key molecular activities of this chaperone, are modulated by the cochaperone DnaJ. By using both genetic and biochemical approaches, we provide evidence that DnaJ binds to at least two sites on the Escherichia coli Hsp70 family member DnaK; under the ATPase domain in a cleft between its two subdomains and at or near the pocket of substrate binding. The lower cleft of the ATPase domain is defined as a binding pocket for the J-domain because (i) a DnaK mutation located in this cleft (R167H) is an allele-specific suppressor of the binding defect of the DnaJ mutation, D35N and (ii) alanine substitution of two residues close to R167 in the crystal structure, N170A and T173A, significantly decrease DnaJ binding. A second binding determinant is likely to be in the substrate-binding domain because some DnaJ mutations in the vicinity of the substrate-binding pocket are defective in either the affinity (G400D, G539D) or rate (D526N) of both peptide and DnaJ binding to DnaK. Binding of DnaJ may propagate conformational changes to the nearby ATPase catalytic center and substrate-binding sites as well as facilitate communication between these two domains to alter the molecular properties of Hsp70.

Molecular chaperones of the Hsp70 family are conserved proteins that modulate intracellular protein folding. By binding to unfolded or partially folded polypeptides, chaperones prevent misfolding and aggregation and promote folding, translocation, and the assembly and disassembly of multiprotein structures (1, 2). Both prokaryotes and eukaryotes have multiple Hsp70 proteins that function in diverse processes. Hsp70s have a highly conserved 44-kDa ATPase domain and a less conserved 10-kDa C-terminal region. The NMR structure of the two conserved domains has been determined (10, 11). A primary binding determinant to Hsp70 is widely believed to be a glycine–phenylalanine rich segment, a cysteine rich segment, and a C-terminal region, of which the J-domain is the most important (9). The J-domain defines this family of proteins, and some members contain only this domain. The NMR structure of this domain has been determined (10, 11). A primary binding determinant to Hsp70 is widely believed to be a universally conserved tripeptide, His–Pro–Asp, located in the loop between helices II and III of the J-domain (12, 13). Point mutations in this tripeptide abolish binding of DnaJ to DnaK (14); mutations in this tripeptide also abolish function of the eukaryotic J-domains in Sec63 and simian virus 40 T antigen (15, 16). To map the sites in DnaK that bind to the J-domain, we searched for allele-specific suppressors of dnaJ mutations located in the invariant tripeptide. We have identified several dnaJ suppressor mutants of dnaID35N and studied their interactions with DnaJ in vitro, using the BLAcore based on surface plasmon resonance (SPR) detection system (Piscataway, NJ) that allows for the direct visualization of protein–protein interactions in real time. Our results provide evidence that the lower cleft of the N-terminal ATPase domain is a binding pocket for the J-domain. A recent study shows (17) that the J-domain alone does not stimulate the ATPase activity of DnaK but that stimulation is restored by the addition of a DnaK substrate peptide along with the J-domain. These results raised the possibility that DnaJ itself might interact with the DnaK peptide-binding site. To pursue this further, we have examined the ability of DnaK C-terminal mutations (18) in the vicinity of the substrate-binding site to bind to DnaJ. Our results suggest that DnaJ exhibits bipartite binding to the Hsp70 molecular chaperone DnaK.

E. coli DnaJ is comprised of a J-domain, a glycine–phenylalanine rich segment, a cysteine rich segment, and a C-terminal region, of which the J-domain is the most important (9). The J-domain defines this family of proteins, and some members contain only this domain. The NMR structure of this domain has been determined (10, 11). A primary binding determinant to Hsp70 is widely believed to be a universally conserved tripeptide, His–Pro–Asp, located in the loop between helices II and III of the J-domain (12, 13). Point mutations in this tripeptide abolish binding of DnaJ to DnaK (14); mutations in this tripeptide also abolish function of the eukaryotic J-domains in Sec63 and simian virus 40 T antigen (15, 16). To map the sites in DnaK that bind to the J-domain, we searched for allele-specific suppressors of dnaJ mutations located in the invariant tripeptide. We have identified several dnaJ suppressor mutants of dnaID35N and studied their interactions with DnaJ in vitro, using the BLAcore based on surface plasmon resonance (SPR) detection system (Piscataway, NJ) that allows for the direct visualization of protein–protein interactions in real time. Our results provide evidence that the lower cleft of the N-terminal ATPase domain is a binding pocket for the J-domain. A recent study shows (17) that the J-domain alone does not stimulate the ATPase activity of DnaK but that stimulation is restored by the addition of a DnaK substrate peptide along with the J-domain. These results raised the possibility that DnaJ itself might interact with the DnaK peptide-binding site. To pursue this further, we have examined the ability of DnaK C-terminal mutations (18) in the vicinity of the substrate-binding site to bind to DnaJ. Our results suggest that DnaJ exhibits bipartite binding to the Hsp70 molecular chaperone DnaK.

MATERIALS AND METHODS

PCR-Based Mutagenesis and Selection of DnaK Suppressor Mutants. Random mutagenesis of the entire dnaK gene was performed by PCR with Taq DNA polymerase by using a 5′-primer introduced AfII site that is compatible with NcoI site for ligation and a 3′-primer introduced BamHI site. The PCR reactions contained 10 mM Tris-HCl (pH 8.3), 50 mM KCl, 10 ng of pNRK416, 50 pmol of each primer, 0.2 mM dNTPs, 1.5 mM MgCl2, and 2.5 units of Taq polymerase. pNRK416 carrying wild-type (wt) dnaK obtained from T. Yura (Kyoto Research Park, Japan) was used as a template for PCR. The randomly mutagenized AfII–BamHI dnaK PCR fragments were inserted into NcoI–BamHI sites of the isopropyl-

Abbreviations: SPR, surface plasmon resonance; IPTG, isopropyl-β-D-thiogalactopyranoside; wt, wild type; bccp, biotin carboxyl carrier protein.

‡Present address: Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139.
§To whom reprint requests should be addressed at present: Department of Microbiology and Stomatology, 513 Parnassus, Box 0512, University of California, San Francisco, CA 94143. e-mail: cgross@cgul.ucsf.edu.
β-D-thiogalactopyranoside (IPTG)-inducible ptc vector (Invitrogen) containing the lacI gene and transformed into dnaID35N (CAG25025) or dnaH33Q (CAG13094) by electroporation. Transformants were selected on Luria–Bertani–ampicillin plates at 43°C and then screened for those able to propagate bacteriophage λ. Suppressors were selected in the absence of inducer because expression of wt dnaK under the control of ptc promoter in the absence of IPTG was sufficient to complement the dnaK756 mutation. Suppressor-containing plasmids were purified and retransformed into dnaID35N, dnaH33Q, and ΔdnaI (CAG13718) strains to assess allele-specific suppression. The λ-plating efficiency and the progeny burst size of the dnaJ mutant strain containing the dnaK suppressor were determined as described previously (19).

Plasmids. For the BIAcore-binding experiment, a translational fusion of the carboxyl-terminal 85 amino acids of the biotin carboxyl carrier protein (bccp) fused to the C-terminus of DnaJ was constructed in pET15B (Novagen). Expression of the biotin carboxyl carrier protein (bccp) to the C terminus of the J-domain indicating the location of His-33 → Gln and Asp-35 → Asn (dnaJD35N) was transformed with a plasmid containing each suppressor and tested for growth at 43°C and λ-plating efficiency at 30°C. +, growth at 43°C; −, no growth at 43°C, and +++, ~300 λ plaque-forming units and ~220 λ progeny per infected cell; + + , ~230 pfu and ~75 λ progeny per infected cell; +, ~200 very small plaques and ~30 λ progeny per infected cell; −, no λ growth. For comparison, dnaID35N exhibited no growth at 43°C or λ plating when the plasmid encoded wt dnaK. The isogenic wt strain (MC1061) exhibited growth at 43°C and +++ λ-plating efficiency.

Site-Directed Mutagenesis. Point mutations in the DnaK ATPase domain (N147A, D148A, Q152A, R167A, I169A, N170A, T173A, and Q378A) were obtained by oligonucleotide-directed mutagenesis by using the “megaprimed” method (21). The PCR segment carrying each mutation was swapped with the corresponding segment in the His-tagged wt dnaK (pWCS33) and then verified by DNA sequencing.

Production and Purification of Proteins. Proteins were produced in E. coli strain BL21(DE3). Cells were grown at 37°C to mid-log at which time expression of proteins were induced with 1 mM IPTG for 3 hr. Cell lysates were prepared essentially as described previously (22) and the His-tagged proteins were purified as described in the Qiagen protocol. Peak fractions containing DnaK were pooled and dialyzed against buffer of 50 mM Hepes/KOH (pH 7.6), 50 mM KCl, 10 mM MgCl2, and 1 mM DTT. If necessary, proteins were further purified by chromatography through an ATP-agarose column (Sigma) as described previously (22).

SPR Detection of DnaK–DnaJ Interaction. The BIAcore biosensor system (Biacore) (23) was used to measure the relative affinity and kinetics of the interaction between DnaK and DnaJ. Kinetic values obtained are relative because of geometric considerations. We immobilized DnaJ to a streptavidin-coupled sensor chip via a biotin group on the biotin carboxyl carrier protein (bccp) fused to the C-terminus of DnaJ. The DnaJ–bccp fusion protein was functionally active because the fusion protein complemented the growth defect of a ΔdnaI strain. Streptavidin was immobilized through the primary amine to the sensor surface according to the procedure described (23). All binding experiments were performed at 25°C in 50 mM Hepes/KOH (pH 7.6), 50 mM KCl, 10 mM MgCl2, and 0.003% surfactant P-20 with a flow rate of 4 μl min⁻¹. Because the interaction of DnaK and DnaJ is ATP-dependent, DnaK (1 μM) was preincubated in 50 mM Hepes/
RESULTS

Selection of dnaK Suppressor Mutants. We have embarked on a search for dnaK mutants that are allele-specific suppressors of two different dnaJ mutations, dnaJH33Q and dnaJD35N. These mutations are in the universally conserved tripeptide located in the surface loop of J-domain (Fig. 1A). As these dnaJ mutants are unable to grow above 42°C or propagate bacteriophage λ at any temperature, we looked for mutations in PCR-mutagenized dnaK that restored growth at 43°C and then screened among these for mutants allowing λ growth at 43°C. Hence, although the histidine residue does not otherwise wt dnaK. Two dnaK suppressor alleles with the single amino acid changes R167H and I169F exhibited full and partial suppression respectively. A third allele required the combined effects of multiple mutations (Q78R, D79G, M259K, R362H, and K421E) for suppression (Fig. 1B). Suppression by I169F was enhanced by a second mutation, T215A. Interestingly, both R167H and I169F are highly conserved and located in the lower cleft of the DnaK ATPase domain, and T215A is located in the lower cleft as well. These genetic data strongly suggest that the N-terminal ATPase domain of DnaK contains a binding site for DnaJ.

Interaction of DnaJ with the DnaK ATPase Domain. If allele-specific suppression results from amino acid changes in DnaK that restore contacts with DnaJD35N, then they might bind better to DnaJD35N than to wt DnaJ. To test this prediction, we measured relative binding constants by using the BLAcore (Fig. 2), which is based on SPR detection. Of the three mutants tested, only R167H meets this criterion, binding 3- to 4-fold tighter to DnaJD35N than to wt DnaJ (compare Fig. 2A with Fig. 2B). To investigate further the role of R167 in the interaction of DnaK with DnaJ, we truncated the side chain of R167 by alanine substitution mutagenesis. The single mutation from Arg to Ala at position 167 of DnaK results in a 6-fold loss of binding (Fig. 2C). However, the histidine residue does not otherwise wt dnaK. Two dnaK suppressor alleles with the single amino acid changes R167H and I169F exhibited full and partial suppression respectively. A third allele required the combined effects of multiple mutations (Q78R, D79G, M259K, R362H, and K421E) for suppression (Fig. 1B). Suppression by I169F was enhanced by a second mutation, T215A. Interestingly, both R167H and I169F are highly conserved and located in the lower cleft of the DnaK ATPase domain, and T215A is located in the lower cleft as well. These genetic data strongly suggest that the N-terminal ATPase domain of DnaK contains a binding site for DnaJ.

Interaction of DnaJ with the DnaK ATPase Domain. If allele-specific suppression results from amino acid changes in DnaK that restore contacts with DnaJD35N, then they might bind better to DnaJD35N than to wt DnaJ. To test this prediction, we measured relative binding constants by using the BLAcore (Fig. 2), which is based on SPR detection. Of the three mutants tested, only R167H meets this criterion, binding 3- to 4-fold tighter to DnaJD35N than to wt DnaJ (compare Fig. 2A with Fig. 2B). To investigate further the role of R167 in the interaction of DnaK with DnaJ, we truncated the side chain of R167 by alanine substitution mutagenesis. The single mutation from Arg to Ala at position 167 of DnaK results in a 6-fold loss of binding (Fig. 2C). However, the histidine residue does not otherwise wt dnaK. Two dnaK suppressor alleles with the single amino acid changes R167H and I169F exhibited full and partial suppression respectively. A third allele required the combined effects of multiple mutations (Q78R, D79G, M259K, R362H, and K421E) for suppression (Fig. 1B). Suppression by I169F was enhanced by a second mutation, T215A. Interestingly, both R167H and I169F are highly conserved and located in the lower cleft of the DnaK ATPase domain, and T215A is located in the lower cleft as well. These genetic data strongly suggest that the N-terminal ATPase domain of DnaK contains a binding site for DnaJ.

Interaction of DnaJ with the DnaK ATPase Domain. If allele-specific suppression results from amino acid changes in DnaK that restore contacts with DnaJD35N, then they might bind better to DnaJD35N than to wt DnaJ. To test this prediction, we measured relative binding constants by using the BLAcore (Fig. 2), which is based on SPR detection. Of the three mutants tested, only R167H meets this criterion, binding 3- to 4-fold tighter to DnaJD35N than to wt DnaJ (compare Fig. 2A with Fig. 2B). To investigate further the role of R167 in the interaction of DnaK with DnaJ, we truncated the side chain of R167 by alanine substitution mutagenesis. The single mutation from Arg to Ala at position 167 of DnaK results in a 6-fold loss of binding (Fig. 2C). However, the histidine residue does not otherwise wt dnaK. Two dnaK suppressor alleles with the single amino acid changes R167H and I169F exhibited full and partial suppression respectively. A third allele required the combined effects of multiple mutations (Q78R, D79G, M259K, R362H, and K421E) for suppression (Fig. 1B). Suppression by I169F was enhanced by a second mutation, T215A. Interestingly, both R167H and I169F are highly conserved and located in the lower cleft of the DnaK ATPase domain, and T215A is located in the lower cleft as well. These genetic data strongly suggest that the N-terminal ATPase domain of DnaK contains a binding site for DnaJ.

Interaction of DnaJ with the DnaK ATPase Domain. If allele-specific suppression results from amino acid changes in DnaK that restore contacts with DnaJD35N, then they might bind better to DnaJD35N than to wt DnaJ. To test this prediction, we measured relative binding constants by using the BLAcore (Fig. 2), which is based on SPR detection. Of the three mutants tested, only R167H meets this criterion, binding 3- to 4-fold tighter to DnaJD35N than to wt DnaJ (compare Fig. 2A with Fig. 2B). To investigate further the role of R167 in the interaction of DnaK with DnaJ, we truncated the side chain of R167 by alanine substitution mutagenesis. The single mutation from Arg to Ala at position 167 of DnaK results in a 6-fold loss of binding (Fig. 2C). However, the histidine residue does not otherwise wt dnaK. Two dnaK suppressor alleles with the single amino acid changes R167H and I169F exhibited full and partial suppression respectively. A third allele required the combined effects of multiple mutations (Q78R, D79G, M259K, R362H, and K421E) for suppression (Fig. 1B). Suppression by I169F was enhanced by a second mutation, T215A. Interestingly, both R167H and I169F are highly conserved and located in the lower cleft of the DnaK ATPase domain, and T215A is located in the lower cleft as well. These genetic data strongly suggest that the N-terminal ATPase domain of DnaK contains a binding site for DnaJ.
contribute net binding energy to the interaction with DnaJD35N, it is necessary for a fully functional interaction. To define further the individual amino acid side chains in this region of DnaK that are important for interaction with DnaJ, we truncated the surface exposed residues around R167 using alanine-scanning mutagenesis. Alanine substitution of two residues, N170 or T173, decreased binding to DnaJ 10-fold (Fig. 3). N170, T173, and R167 are clustered within the lower cleft of the ATPase domain, suggesting that this cleft region is a binding pocket for the J-domain flexible loop containing the invariant tripeptide. An electrostatic surface potential diagram (Fig. 4) is consistent with this idea. It identifies the groove between the two subdomains of the ATPase domain, in which N170 and T173 are located, as the most likely candidate for a DnaJ-binding pocket because it has a cluster of negatively charged residues adjacent to R167 that could interact with positively charged residues located in the J-domain helix II. R167 that is highly conserved among various organisms could interact electrostatically with D35 of DnaJ. A recent NMR experiment examining binding of 15N-labeled DnaJ2–75 to DnaK is consistent with the idea that the invariant peptide in the flexible loop, especially D35, as well as residues located in the outer surface of helix II, interact with DnaK ATPase domain (8). A completely independent approach, reported in the accompanying manuscript also argues that the lower cleft of the ATPase domain of DnaK binds to DnaJ (27).

Interaction of DnaJ with the DnaK Substrate-Binding Domain. Although the J-domain alone cannot stimulate the ATPase activity of DnaK, addition of a DnaK substrate restores stimulation (17), raising the possibility that DnaJ itself might interact with the DnaK substrate-binding site. We therefore tested a set of seven DnaK mutations (18) in the vicinity of the peptide-binding site for DnaJ binding (Fig. 5). Of these, two (G400D and G539D) had previously been found to have an increased K_D for binding the peptide NR (NR-LLLTG), one (D526N) exhibits altered kinetics of interaction with peptide NR without affecting the K_D (W.F.B. and M.E.G., unpublished data) and the remaining four mutants have little or no effect on peptide NR binding. The interactions of these mutant DnaKs with DnaJ mirrors their interactions with peptide. Only the two DnaK mutants (G400D and G539D) with an altered K_D for binding peptide exhibited an altered K_D for binding to DnaJ. Moreover, G400D, which had the more

FIG. 3. Effect of the mutations in DnaK ATPase domain on the binding to DnaJ. Data are shown as the ratio of the dissociation equilibrium constants ($K_D = k_d/k_a$) of the mutants as compared with that of the wt ($K_D = 70$ nM). Data were determined by SPR and represent the average of at least three independent experiments.

FIG. 4. Electrostatic surface potentials of the ATPase domain of DnaK (PDB ID code 1DKG) (24) with A167 modeled to R167 by using the program O (25) and the J-domain of DnaJ (PDB ID code 1XBL) (11). Areas of positive and negative charges are colored blue and red, respectively. The electrostatic surface potentials were calculated and displayed by using the program GRASP (26). Residue 167 in the original PDB file is Ala instead of Arg (commonly used if the density for a residue is hard to define). The difficulty in identifying the density of residue 167 indicates that this residue is disordered. The high mobility of this residue suggests that residue 167 is not involved in intramolecular interaction within the DnaK ATPase domain but could be involved in intermolecular interaction with the D35 located in the J-domain. The groove between the 1A and 1IB subdomains of the ATPase domain has a patch of negative electrostatic surface potential, which is likely a potential binding pocket for the exposed positively charged residues on helix II of the DnaJ J-domain.
severe peptide binding defect, also had a slightly more severe defect in DnaJ binding. Most significantly, DS26N, which exhibited an ~20-fold increase in the on/off rates for substrate peptide without affecting the K_D of the reaction (W.F.B. and M.E.G., unpublished data), also shows an ~3-fold increase in the on/off rates for DnaJ without affecting the K_D of this interaction (Table 1). The most likely interpretation of these data is that DnaJ makes contact in the C-terminal substrate-binding domain of DnaK. We believe that the alternative interpretation, attributing the DnaJ-binding defects to altered interaction of DnaJ with the ATPase domain, is considerably less likely. The substrate-binding defects of these DnaK mutants observed in the isolated C-terminal fragments, arguing that the defects do not arise from altered interdomain interaction. Moreover, it is difficult to adequately explain the phenotype of DS26N, the enhanced rate mutant with this interpretation. None of these mutations in the substrate-binding domain of DnaK alter specific DnaK-peptide contacts, so we cannot distinguish whether DnaJ binds to the substrate-binding site itself or in close proximity to this site. Some substrates, such as AP protein (28), are believed to bind first to DnaJ and then be transferred to DnaK. Binding of DnaJ in the vicinity of the substrate-binding site could facilitate transfer of substrate polypeptide from DnaJ to DnaK.

DISCUSSION

Our genetic and biochemical data suggest that DnaJ interacts with at least two distinct sites on DnaK. The invariant tripeptide in the flexible loop of the J-domain binds to the underside of the ATPase domain in a cleft between the two subdomains; and another part of the J-domain or another region of DnaJ binds at or near the DnaK substrate-binding site. Binding of DnaJ to DnaK is dependent on both ATP binding (29) and the consequent conformational changes of DnaK (W.-C.S. and C.A.G., unpublished data). ATP binding to the ATPase domain of Hsp70 or DnaK induces subtle conformational changes in the N-terminal ATPase domain followed by significant conformational changes in the C-terminal substrate-binding domain through the interdomain communication. We argue that the ATP-induced conformational changes in both domains are required for binding of DnaJ to DnaK.

The ATPase domain of Hsp70 is homologous in its three dimensional structure to those of actin and hexokinase, both of which undergo subdomain rearrangement after binding ATP (30). If the ATPase subdomains of DnaK are similarly reoriented upon ATP binding, the DnaJ-binding cleft between the subdomains of the ATPase domain could be exposed. Arguing for such a rearrangement is the fact that domain IIB in bovine Hsc70-ADP is rotated 14° compared with its position in a nucleotide free DnaK–GrpE complex. Although this conformational change has been attributed to complexation with GrpE (24), it also could be caused by subdomain rearrangement between the nucleotide free and bound states of DnaK.

Our data suggest that DnaJ binding to the substrate-binding domain also may require an ATP-induced conformational change. Upon binding ATP, the substrate-binding domain of DnaK shifts from a “closed” to an “open” form permitting rapid substrate binding (4, 31, 32). Increased accessibility to substrate has been suggested to result from opening an α-helical “lid” covering the β-sandwich substrate-binding region. The D526N mutant is proposed to increase the on-rate for substrate by affecting lid opening, thus mimicking the effect of ATP (W.F.B. and M.E.G., unpublished data). Because this mutant increases the on-rate for DnaJ, it is very likely that ATP binding also exposes the C-terminal DnaJ-binding site.

We suggest that DnaJ binding leads to further conformational changes in both domains of Hsp70. Binding of the invariant peptide located in the disordered loop to the inter-subdomain cleft is likely to require an induced fit mechanism (11) and could propagate a conformational change either directly or indirectly (through the coupling with the substrate-binding domain) to the nearby ATP catalytic center that would facilitate ATP hydrolysis. Binding of DnaJ in the vicinity of the substrate-binding pocket may enhance substrate transfer to Hsp70 as well as alter substrate binding/release properties either by direct interaction or by an allosteric mechanism. Most importantly, the dual binding of DnaJ to Hsp70 may facilitate signaling between the two key domains of Hsp70. Such interactions may underlie the functional specificity of some DnaJ–Hsp70 pairs.

We thank J. Wild for providing strain dnaD35N, Dr. B. Bukau for sharing unpublished results, Dr. D. A. Agard, M. Lonetto, and C. Chan for helpful discussions, W. Lau for initial BLACore experiments, and members of the Gross laboratory, Dr. W. A. Hendrickson and Dr. E. Blackburn for critical reading of the manuscript. Supported by a National Institutes of Health Grant GM6278-13.

Table 1. Comparison of apparent association and dissociation rate constants (k_a, k_d) between wt and D526N DnaK for the interaction with immobilized wt DnaJ

<table>
<thead>
<tr>
<th></th>
<th>Apparent k_a, M$^{-1}$ s$^{-1}$</th>
<th>Apparent k_d, s$^{-1}$</th>
<th>Apparent K_D, nM</th>
</tr>
</thead>
<tbody>
<tr>
<td>wtDnaK-DnaJ</td>
<td>2.3 (±0.2) × 104</td>
<td>1.6 (±0.1) × 10$^{-3}$</td>
<td>70 (±10)</td>
</tr>
<tr>
<td>D526N-DnaJ</td>
<td>8.2 (±4.6) × 104</td>
<td>4.0 (±1.1) × 10$^{-3}$</td>
<td>50 (±19)</td>
</tr>
</tbody>
</table>

Data were determined by SPR and are the average of at least three independent experiments.