Phosphorylation of presenilin-2 regulates its cleavage by caspases and retards progression of apoptosis

JOCHEN WALTER, ALICE SCHINDZIELORZ, JÜRGEN GRÜNBerg, AND CHRISTIAN HAASS*

Central Institute of Mental Health, Department of Molecular Biology, J5, 68159 Mannheim, Germany

Edited by Kai Simons, European Molecular Biology Laboratory, Heidelberg, Germany, and approved December 15, 1998 (received for review August 13, 1998)

ABSTRACT Mutations within the Presenilin-2 (PS-2) gene are associated with early onset familial Alzheimer's disease. The gene encodes a polytopic transmembrane protein that undergoes endoproteolytic processing resulting in the generation of N-terminal and C-terminal fragments (CTFs). PS-2 is also cleaved by proteases of the caspase family during apoptotic cell death. CTFs of PS-2 were shown to inhibit apoptosis, suggesting an important role in the regulation of programmed cell death. Recently, we found that the CTF of PS-2 is phosphorylated in vivo. We mapped the in vivo phosphorylation sites of PS-2 to serine residues 327 and 330, which are localized immediately adjacent to the cleavage sites of caspases after aspartate residues 326 and 329. Phosphorylation of PS-2 inhibits its cleavage by caspase-3. This effect can be mimicked by substitutions of serines 327 and 330 by aspartate or glutamate. In addition, the uncleavable form of PS-2 CTF was found to enhance its antiapoptotic properties, leading to a slower progression of apoptosis. These results demonstrate that PS-2 cleavage as well as its function in apoptosis can be regulated by protein phosphorylation. Alterations in the phosphorylation of PS-2 may therefore promote the pathogenesis of AD by affecting the susceptibility of neurons to apoptotic stimuli.

Alzheimer's disease (AD) is defined by the invariable accumulation of senile plaques and neuronal loss in certain areas of the brain (1). Senile plaques are composed predominantly of the amyloid β-peptide (Aβ), which is derived from the β-amylloid precursor protein by proteolytic processing (2, 3). Whereas most Aβ molecules terminate at amino acid 40 (Aβ40), about 10% of the peptides are elongated by two additional amino acids at their C termini (Aβ42). The elongated form of Aβ42 aggregates much faster and induces neuronal cell death (4, 5). Mutations within the two homologous presenilin (PS) genes, PS-1 and PS-2, are a frequent cause of early onset familial AD (6–8). The mutations increase the production of Aβ42 (9–13), thus strongly supporting a central role of Aβ42 for AD pathology. PS proteins are membrane proteins with 6–8 transmembrane domains (14, 15), which are endoproteolytically processed within the large cytoplasmic loop (conventional proteolytic processing pathway) generating ∼20-kDa C-terminal (CTF) and ∼30-kDa N-terminal fragments (13, 16–18). The resulting fragments are the predominant forms in vivo, whereas very little if any full-length protein can be detected (13, 16–18). In addition, CTFs of PS-2, similar to those derived from proteolytic processing of the full-length protein, can also be generated in vivo by alternative transcription (19) and alternative splicing (20, 21). Increasing evidence suggests that the proteolytic fragments are biologically and pathologically active (22–26).

PS proteins are involved in apoptotic cell death (19, 27–29) and are substrates of proteases of the caspase superfamily (19, 30–32). PS-2 is cleaved by caspases during apoptosis between Asp-329 and Ser-330 and to a minor extent between Asp-326 and Ser-327 in vivo (Fig. 1a; refs. 19, 30, and 31). PS-1 is also cleaved by a member of the caspase superfamily after Asp-345 (31, 32). Caspases appear to be important for the progression of apoptotic cell death. These enzymes are activated by specific proteolysis, which occurs either autocatalytically or by other members of the caspase superfamily (33, 34). The activated enzymes then cleave a number of proteins. Studies analyzing the substrate specificity of caspases revealed that substrate recognition depends on the primary amino acid sequence N-terminal of the cleavage site as well as the critical aspartate residue at P1 (33–35).

In this study we mapped the in vivo phosphorylation sites of the PS-2 CTF to serine residues that are located immediately adjacent to the critical aspartate residues. Phosphorylation at these sites inhibits the caspase-mediated cleavage of PS-2 in vitro and in vivo, demonstrating that caspase-mediated cleavage of PS-2 not only depends on its primary amino acid sequence N-terminal of the critical aspartate but also depends on its phosphorylation status. Furthermore, phosphorylation of the PS-2 CTF appears to enhance its antiapoptotic properties in cell culture.

MATERIALS AND METHODS

Cell Culture, Transfection, and Generation of Stable Cell Lines. HeLa cells and COS-7 cells were maintained in DMEM containing Glutamax and 10% fetal calf serum (GIBCO). Cells were transfected by using Dotap (Boehringer Mannheim) according to the supplier's instructions. HeLa cells stably expressing PS-2 cDNAs cloned in pcDNA3 vector (Invitrogen) were selected and maintained in the above mentioned medium containing 400 μg/ml G418 (GIBCO).

Construction of PS-2 cDNAs and Fusion Proteins. Tagging of the PS-2 cDNA with a sequence encoding the Flag epitope at the C terminus and introduction of the respective point mutations by oligonucleotide-directed mutagenesis was carried out as described (36). The cDNAs encoding the respective PS-2 CTFs were generated by PCR using the full-length PS-2 cDNA as template. Mutations were confirmed by DNA sequencing. The sequences of oligonucleotides used for mutagenesis in this study are available on request. All constructs were cloned into the pcDNA3 vector (Invitrogen). Fusionproteins of the respective PS-2 loop domains (amino acids 297–356) and maltose binding protein (MBP) were generated as

This paper was submitted directly (Track II) to the Proceedings office. Abbreviations: Aβ, amyloid β-peptide; AD, Alzheimer’s disease; CTF, C-terminal fragment; CTFcap, caspase generated CTF; MBP, maltose-binding protein; PK, protein kinase; PARP, poly(ADP-ribose) polymerase; PS, presenilin; STS, staurosporine; OA, okadaic acid; wt, wild type.

*To whom reprint requests should be addressed. e-mail: haass@as200.zi-mannheim.de.

PNAS is available online at www.pnas.org.
Escherichia coli Fusion proteins were expressed in Salmonella enterica and purified with amylose resin (New England Biolabs) according to the supplier's instruction. In Vitro Phosphorylation and Immunoprecipitation. In vivo phosphorylation was carried out as described (36). The coding regions were amplified by PCR by using the primers 5'-CCGCGGATCCGGGATGTTG-GACG-3' and 5'-ACGGCTCGACCTCTTCTTCCAGCTC-3', and the resulting fragments were cloned into the EcoRI/SalI restriction sites of pMAL-c2 (New England Biolabs). Fusion proteins were expressed in E. coli DH5α and purified with amylose resin (New England Biolabs) according to the supplier's instruction.

Induction of Apoptosis and Analysis of PS-2, poly(ADP-ribose) polymerase (PARP), and Caspase-3. Apoptosis in HeLa cells was induced by treatment with staurosporine (STS) alone or in combination with okadaic acid (OA) as indicated. For analysis of caspase-mediated cleavage of PS-2, the protease inhibitor N-acetyl-leucinyl-leucinyl-methionyl (LLnL) (50 μM) was added to the incubation media to protect the cleavage products from degradation (26). After various time periods, cells were lysed in sample buffer and subjected to SDS/PAGE. The PS-2 CTF and PARP were detected by autoradiography of the respective cDNA constructs was monitored by immunoblotting with the monoclonal anti-Flag M2 antibody by using the same membrane as in b. Longer exposure times revealed the presence of PS-2 CTF using caspase-mediated cleavage; data not shown), similar to that observed in Figs. 2 and 3.

RESULTS

Recently, we demonstrated that the CTF of PS-2 is phosphorylated in vivo in the region between amino acids 327 and 330 in the large hydrophilic loop (ref. 36; see also Fig. 1a). This domain contains three potential phosphorylation sites. To identify the phosphorylation sites, we mutagenized serine to

![Fig. 1. The PS-2 CTF is phosphorylated on serine residues 327 and 330 in vivo.](image-url)
alnine at positions 327, 330, and 335 within recombinant cDNA constructs corresponding to the authentic PS-2 CTF. Expression of these constructs results in the generation of PS-2 CTFs similar to those produced in vivo by proteolytic processing, alternative splicing, and alternative transcription (13, 18–21). In vivo phosphorylation was analyzed in COS-7 cells that were transfected with the respective PS-2 cDNAs by labeling with [32P]orthophosphate. Cell lines such as COS, HeLa, and kidney 293 are frequently used to analyze proteolytic processing of presenilins and β-amyloid precursor protein. Results derived from biochemical experiments in such transfected cell lines were completely confirmed in neuronal cell lines as well as brain tissue (9–18, 22, 25, 30). The PS-2 CTFwt (wild type) and the PS-2 CTFS327/330A are phosphorylated to similar extents (Fig. 1b). In contrast, phosphorylation of PS-2 CTFS327C330 was reduced and that of CTFS330A was almost completely suppressed (Fig. 1b). As reported previously (36), the deletion mutant PS-2 CTFS327/330E completely abolished phosphorylation. Immunoblot analysis revealed that the constructs used were expressed at similar levels (Fig. 1c). Very similar data were obtained in experiments analyzing the phosphorylation of the respective PS-2 CTF derived from proteolytic processing of full length PS-2 (data not shown). These results indicate that serine residues 327 and 330 are in vivo phosphorylation sites of the PS-2 CTF. Both serine residues, Ser-327 and Ser-330, are located immediately adjacent to the essential Asp-326 and Asp-329, which are required for caspase recognition (Fig. 1a; refs. 30 and 31).

We therefore investigated whether phosphorylation of the PS-2 CTF at these sites could affect its cleavage by caspases. PS-2 CTFs were immunoprecipitated from HeLa cells labeled with [32P]orthophosphate in vivo and then incubated in the presence or absence of purified active caspase-3, which was shown previously to cleave PS-2 in vitro (19). Treatment with caspase-3 resulted in decreased amounts of PS-2 CTF and in the generation of a smaller cleavage product (PS-2 CTFcap, Fig. 2a). In contrast, the phosphorylated form of PS-2 CTF did not decrease on treatment with caspase-3. Furthermore, PS-2 CTFcap is not phosphorylated. These data indicate that caspase-3 cleaves selectively unphosphorylated forms of PS-2 CTF, whereas phosphorylated forms of PS-2 CTF are protected against caspase-mediated cleavage. To determine whether this effect of phosphorylation could be mimicked by substitution of the in vivo phosphorylation sites with a charged amino acid, we mutagenized serines 327 and 330 to aspartates. Fusion proteins of PS-2wt, Loop, and MBP (PS-2-MBP) were incubated in the presence or absence of caspase-3. As shown in Fig. 2b, fusion proteins carrying the PS-2 wt sequence or serine-to-alanine substitutions (S327/330A) are readily cleaved by caspase-3. In contrast, a fusion protein carrying the corresponding serine-to-aspartate substitutions (S327/330D) was not cleaved by caspase-3 in vitro. Therefore, the introduction of aspartate residues can be used to mimic phosphorylated serine residues as it has been shown for the functional analysis of other phosphoproteins (37, 38).

We next investigated whether mimicking phosphorylation by the introduction of negatively charged amino acids also protects PS-2 CTF from caspase-mediated cleavage in vivo. Serine residues 327 and 330 were substituted either by alanine residues to generate unphosphorylatable forms or by aspartate or glutamate residues. Transient overexpression of the PS-2 CTFwt resulted in the generation of the smaller CTF (CFcap), indicating proteolytic processing by caspases (Fig. 3a, Upper). This is consistent with previous results demonstrating the induction of apoptosis upon transient overexpression of PS-2 (28, 31). Substitution of Ser-327 or Ser-330 to alanine residues had no influence on this cleavage (Fig. 3a, Upper). In contrast, substitution of Ser-330 by aspartate (CTFS330D) efficiently inhibited the generation of CTFcap whereas substitution of Ser-327 (CTFS330D) reduced caspase-mediated cleavage to some extent (Fig. 3a, Upper). The substantially weaker effect of the S327D mutation is consistent with previous studies demonstrating that caspase-mediated cleavage occurs predominantly after Asp-329 (see Fig. 1a; refs. 30 and 31). The corresponding double mutations CTFS327/330D and CTFS327/330E almost completely inhibited caspase-mediated cleavage (Fig. 3a, Upper). Very similar data were obtained on transient overexpression of full-length PS-2wt or the corresponding serine mutations (Fig. 3a, Lower).

These results indicate that phosphorylation of the PS-2 CTF at serine residues 327 and 330, which are located immediately adjacent to the caspase recognition sites, inhibits caspase-mediated cleavage of PS-2.

To prove this phenomenon under defined apoptotic stimuli, HeLa cells stably expressing the PS-2 CTFwt were incubated in the presence or absence of STS and OA, two inducers of apoptosis (30–32, 39). In untreated cell cultures, no caspase-mediated cleavage of PS-2 CTFwt was observed (Fig. 3b). This is consistent with previous results (40, 41) demonstrating that stable expression of PS-2 does not induce apoptosis (in con-
contrast to the high level expression on transient transfection; see also Fig. 3a). As a control, we analyzed caspase-mediated cleavage of PARP, a marker of apoptosis (30). No cleavage of PARP was observed in these cells, also demonstrating that apoptosis was not induced by stable overexpression of the PS-2 CTFwt under control conditions. On treatment with STS/OA, apoptosis was not induced by stable overexpression of the PS-2 CTFwt, and PARP was observed in these cells, also demonstrating that cleavage of PARP, a marker of apoptosis (30). No cleavage of PARP and the PS-2 CTF were detected by immunoblotting by using anti-PARP antibodies, respectively. Note that caspase-3 was activated in all three cell lines treated with STS and OA induced apoptosis more potently than either drug alone (data not shown). As a control, cells were incubated with the carrier alone. PARP and the PS-2 CTF were detected by immunoblotting using anti-PARP and anti-Flag antibodies, respectively. Note that on stable expression of PS derivatives, apoptosis is not induced, which is consistent with previous results (40, 41). (b) HeLa cells stably expressing PS-2 CTFwt, CTFS330D, or CTFS327/330D were incubated in the absence or presence of 1 μM STS/1 μM OA for 6 h. Analysis of PARP and PS-2 CTF was carried out as described in b. The p11 subunit of caspase-3, which is generated during its proteolytic activation (33, 35), was detected by immunoblotting using antibody anti-CPP32p11 (Santa Cruz Biotechnology). Note that caspase-3 was activated in all three cell lines treated with STS/OA.

Because CTFs of PS-2 were shown to inhibit apoptosis (19, 27), we investigated the effect of phosphorylation of the PS-2 CTF on its apoptotic properties. Apoptosis was induced in HeLa cell lines stably expressing the PS-2 CTFwt or mutants mimicking phosphorylated PS-2 CTF (CTFS330D or CTF327/330D) and was monitored either by analyzing the cleavage of PARP or the fragmentation of nuclear DNA. Quantitation of PARP cleavage 4 h after induction of apoptosis with STS revealed that ≈80% of cellular PARP was cleaved in cells stably transfected with PS-2 CTFwt (Fig. 4a). In contrast, in cells transfected with PS-2 CTFS330D or with CTF327/330D, <40% of cellular PARP was cleaved (Fig. 4a). Quantitating apoptotic cell death by labeling nuclear DNA fragments in situ also demonstrated that expression of PS-2 CTFS330D or PS-2 CTF327/330D inhibits apoptosis (Fig. 4b), whereas expression of the unphosphorylatable PS-2 CTFS330D had no significant effect (data not shown). As observed on prolonged treatment with STS, PARP also is cleaved in cells expressing PS-2 CTFs, which mimic phospho-derivatives (see Fig. 3c). Therefore, to determine whether phosphorylation of the PS-2 CTF does not entirely block STS-induced apoptosis, but rather retards its progression, PARP cleavage was analyzed at various time points after induction of apoptosis. Cleavage of PARP occurred after 6 h in HeLa cells expressing the PS-2 CTFwt. After 3 h, ≈50% of cellular PARP was cleaved, and after 4 h PARP was almost completely proteolyzed (Fig. 4c). In contrast, cells stably expressing PS-2 CTFS330D or CTF327/330D, revealed a significant retardation of PARP cleavage (Fig. 4c).
FIG. 4. The phosphorylation site mutants inhibit the progression of apoptosis. (a) Four hours after induction of apoptosis, HeLa cells stably expressing PS-2 CTFwt, CTFS330D, or CTFS327/330D were lysed and cleavage of cellular PARP was analyzed by immunoblotting by using a 125I-labeled secondary antibody and quantitated by using PhosphorImaging. (b) Nuclear DNA fragmentation was analyzed 4 h after induction of apoptosis. Values represent means ± SD of triplicate experiments. The CTFwt itself showed a trend to inhibited apoptosis as compared with untransfected HeLa cells (data not shown), which is consistent with previous results (19, 27). (c) Cells were lysed after induction of apoptosis at the time points indicated. Cellular PARP was analyzed by immunoblotting. Note that caspase mediated cleavage of PARP is significantly delayed in cells expressing the PS-2 CTFS330D or CTFS327/330D as compared with cells expressing the CTFwt.

DISCUSSION

In this study, we demonstrate that phosphorylation of the PS-2 CTF on serine residues at the caspase recognition sites not only blocks its cleavage by caspases but also alters its functional properties during apoptosis.

Caspase recognition was previously shown to depend on the primary amino acid sequence preceding the essential aspartate residue (33–35). However, our findings indicate that phosphorylation of PS-2 on serine residues 327 and 330 can regulate apoptotic cleavage. Phosphorylation of the PS-2 loop domain clearly inhibits caspase-mediated cleavage in vitro and in vivo. Substitution of the in vivo phosphorylation sites of PS-2 by unphosphorylatable alanine residues did not inhibit its caspase-mediated cleavage. In contrast, mimicking phosphorylated residues by aspartate or glutamate substitutions inhibits cleavage of PS-2 by caspases during apoptosis. It is important to note that a number of other caspase substrates, such as retinoblastoma protein, fodrin, and focal adhesion kinase (33, 34), contain potential phosphorylation sites within their caspase-recognition motif. As demonstrated previously, the PS-1 CTF is also phosphorylated in vitro (42, 43). Interestingly, serine residue 346 adjacent to aspartate 345, which is required for caspase recognition of PS-1, is located within a consensus sequence for protein kinases (PK) A and C. Because the PS-1 CTF is known to be phosphorylated by PKA and PKC (42, 43), it is tempting to speculate that phosphorylation of PS-1 also regulates its cleavage by caspases. Phosphorylation of caspase substrates may therefore represent a novel in vivo regulatory mechanism to protect these proteins from proteolytic degradation. This conclusion is supported by a recent in vivo study, demonstrating the inhibition of caspase-mediated cleavage of IkBa by phosphorylation (44). Although the functional role of caspase cleavage during apoptosis remains to be clarified in detail, it is believed that it either activates proapoptotic or inactivates antiapoptotic proteins (33, 34). Antiapoptotic effects of the PS-2 CTF have been described previously (19, 27, 28). Because phosphorylation of the PS-2 CTF was found to protect against caspase-mediated cleavage, this will result in stabilization of the antiapoptotic protein. Indeed, we could demonstrate that cellular expression of PS-2 CTF mutant proteins, which mimic constitutively phosphorylated forms, results in a marked inhibition of apoptosis.

Increasing evidence suggests that protein phosphorylation/dephosphorylation plays a role in the regulation of apoptosis. Agents affecting the activities of protein kinases (e.g., STS) or phosphatases (e.g., OA), can modulate apoptotic cell death (45, 46). In addition, PKC\(\alpha\) (47), MEKK-1 (48), focal adhesion kinase (49), and PKC-related kinase-2 (50) are cleaved by caspases during apoptosis. Recently, it was found that protein phosphatase 2A is also activated by caspase-mediated cleavage during apoptosis (51), suggesting that changes in the phosphorylation status of certain proteins modulate the progression of apoptosis. Indeed, PS-2 could be such a candidate, because we demonstrated that its antiapoptotic properties depend on its phosphorylation status. To our knowledge this is the first example demonstrating that phosphorylation of a “death substrate” at the caspase recognition site modulates its (anti)apoptotic properties.

AD is characterized by massive neuronal cell loss in susceptible regions of the brain (52), and increasing evidence suggests that this neuronal loss may be initiated by apoptosis (53). Furthermore, it was shown that the Volga German mutation (N141I) of PS-2 enhances the proapoptotic activity of PS-2 (27). In addition, an increased level of the PS-2 caspase fragment was found in brain of a familial AD patient carrying the same mutation (30). Both results suggest that caspase-mediated cleavage of PS-2 plays an important role in AD. As found in this study, phosphorylation regulates the cleavage of PS-2 during apoptosis and enhances its antiapoptotic properties. Alterations in the phosphorylation of PS-2 could therefore influence the pathogenesis of AD by affecting the susceptibility of neurons for apoptotic stimuli. Thus, PS-2 may play a role not only in early-onset familial AD but in the development of sporadic AD as well.

We thank Drs. M. Peter, D. Teplow, and members of our laboratory for critically reading this manuscript. This work was supported by a grant from the Deutsche Forschungsgemeinschaft (SFZ317) and funds from Boehringer Ingelheim.
