Corrections

BIOPHYSICS. For the article “Fluorescence polarization of green fluorescence protein,” by Shinya Inoué, Osamu Shimomura, Makoto Goda, Mykhailo Shribak, and P. T. Tran, which appeared in number 7, April 2, 2002, of Proc. Natl. Acad. Sci. USA (99, 4272–4277), the last closing parenthesis on Eqs. 3 and 4 should appear at the end of the equations. The correct equations appear below.

\[I/I_0 = 0.5(\alpha_0 + (\alpha_{ps} + 2\alpha_{ss})\cos^2\phi + (\alpha_{sp} + \alpha_{ss} - \alpha_{ps} - \alpha_{ss})\cos^4\phi). \]

\[I/I_0 = 0.5(\alpha_{ps} + (\alpha_{pp} + \alpha_{ss} - 2\alpha_{ps})\cos^2\phi - (\alpha_{sp} + \alpha_{ss} - \alpha_{ps} - \alpha_{ss})\cos^4\phi). \]

www.pnas.org/cgi/doi/10.1073/pnas.132280599

MEDICAL SCIENCES. For the article “HLTF gene silencing in human colon cancer,” by Helen R. Moinova, Wei-Dong-Chen, Lanlan Shen, Dominic Smiraglia, Joseph Olechnowicz, Lakshmeswari Ravi, Lakshmi Kasturi, Lois Myeroff, Christoph Plass, Ramon Parsons, John Minna, Sylvan B. Green, Jean-Pierre Issa, and Sanford D. Markowitz, which appeared in number 7, April 2, 2002, of Proc. Natl. Acad. Sci. USA (99, 4562–4567; First Published March 19, 2002; 10.1073/pnas.062459899), the author name “Wei-Dong Chen” appeared incorrectly due to a printer’s error. The correct name is “Wei-Dong Chen.” The online version has been corrected.

www.pnas.org/cgi/doi/10.1073/pnas.122187999

NEUROBIOLOGY. For the article “Wild-type and mutated presenilins 2 trigger p53-dependent apoptosis and down-regulate presenilin 1 expression in HEK293 human cells and in murine neurons,” by Cristine Alves da Costa, Erwan Paitel, Marc P. Mattson, Robert Amson, Adam Telerman, Karine Ancolio, and Frédéric Checler, which appeared in number 6, March 19, 2002, of Proc. Natl. Acad. Sci. USA (99, 4043–4048), the authors note that the author name “Marc P. Mattson” should be “Mark P. Mattson.” The online version has been corrected.

www.pnas.org/cgi/doi/10.1073/pnas.122187899

BIOPHYSICS. For the article “Tryptophan zippers: Stable, monomeric β-hairpins,” by Andrea G. Cochran, Nicholas J. Skelton, and Melissa A. Starovasnik, which appeared in number 6, March 19, 2002, of Proc. Natl. Acad. Sci. USA (98, 5578–5583; First Published May 1, 2001; 10.1073/pnas.091100898), the authors note the following. Quantitative analysis of the 1H chemical shifts using the Sander module of AMBER 6.0 reveals that the frequencies of the Hβ and Hε3 resonances of Trp4 and Trp11 (for trpzips 1 and 2) and Trp5 and Trp14 (for trzip4) are inconsistent with the side chain orientations previously determined. Instead, refinement of the structures based not only on NOE-derived distance restraints and dihedral angle restraints, but also on 1H chemical shift-based restraints, indicates that the side chains for these residues actually reside primarily in the 180° χ1 rotamer well, not the –60° rotamer previously indicated. Refined coordinates are available in the Protein Data Bank, www.rcsb.org [PDB ID codes 1LE0 (trpzip1), 1LE1 (trpzip2), and 1LE3 (trpzip4)]. The updated coordinates are very similar to those determined previously; as before, for all three peptides, the two strands are highly twisted. The important difference, however, is that each pair of cross-strand tryptophan rings now shows edge-to-face packing against one another (see Fig. 1) that is conserved among all three trpzip peptides regardless of turn-type.

www.pnas.org/cgi/doi/10.1073/pnas.132227099

www.pnas.orgcgi/doi/10.1073/pnas.1322249099

Fig. 1. Representative structure of trpzip1 refined using 1H chemical shift-based restraints. Edge-to-face packing is observed for Trp11/Trp2 and Trp4/Trp9 cross-strand pairs.

www.pnas.org/cgi/doi/10.1073/pnas.132249099

www.pnas.orgcgi/doi/10.1073/pnas.132227099

www.pnas.org
For the article “Sustained stimulation shifts the mechanism of endocytosis from dynamin-1-dependent rapid endocytosis to clathrin- and dynamin-2-mediated slow endocytosis in chromaffin cells,” by Cristina R. Artalejo, Abdeladim Elhamdani, and H. Clive Palfrey, which appeared in number 9, April 30, 2002, of Proc. Natl. Acad. Sci. USA (99, 6358–6363; First Published April 16, 2002; 10.1073/pnas.082658499), a label at the top of Fig. 3 was omitted due to a printer’s error. The complete figure and its legend appear below.

Fig. 3. Dynamin-1 mediates RE, whereas dynamin-2 mediates SE. Cm records from cells in which either affinity-purified (A) antidynamin-1-specific IgG or (B) antidynamin-2-specific IgG, both at 1 mg/ml, were introduced into calf chromaffin cells followed by transient or sustained stimulation. In A, note that antidynamin-1 IgG inhibits RE (a1) but has no effect on SE (a2). In B, antidynamin-2 IgG has no effect on RE (b1) but blocks SE (b2). Note in Bb1 that two rounds of exocytosis/RE occur, whereas in Aa1 the second round of RE is blocked after the antibody has diffused into the cell (in the first round, RE is normal because insufficient antibody has diffused into the cell; the extent of the first exocytosis in Aa1 and Bb1 appears smaller because of simultaneous endocytosis that is largely absent in the second round). (Insets) Reactivity of antidynamin-1 (c1)- and -2 (c2)-specific antibodies with lysates from rat brain synaptosomes (Syn; 10 μg of protein); calf chromaffin (AC) cells (100 μg), and PC12 cells (100 μg); immunoblots were performed as described (9) and developed by using enhanced chemiluminescence.
Tryptophan zippers: Stable, monomeric β-hairpins

Andrea G. Cochran*, Nicholas J. Skelton, and Melissa A. Starovasnik*

Department of Protein Engineering, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080

Communicated by Peter G. Schultz, The Scripps Research Institute, La Jolla, CA, February 28, 2001 (received for review December 19, 2000)

A structural motif, the tryptophan zipper (trpzip), greatly stabilizes the β-hairpin conformation in short peptides. Peptides (12 or 16 aa in length) with four different turn sequences are monomeric and fold cooperatively in water, as has been observed previously for some hairpin peptides. However, the folding free energies of the trpzips exceed substantially those of all previously reported β-hairpins and even those of some larger designed proteins. NMR structures of three of the trpzip peptides reveal exceptionally well-defined β-hairpin conformations stabilized by cross-strand pairs of indole rings. The trpzips are the smallest peptides to adopt an unique tertiary fold without requiring metal binding, unusual amino acids, or disulfide crosslinks.

The design of peptides that have well-defined tertiary structures tests our understanding of the principles governing the folding of larger proteins. Designed sequences (23–28 aa) that adopt the β-β-α “zinc finger” fold have been notable successes (1–3) and are among the smallest protein domains demonstrated to fold cooperatively without assistance from metal ions or disulfide crosslinks (2, 3). Shorter peptides that form three-stranded β-sheets (4) or exhibit partial β-hairpin structure (5–10) undergo extremely broad thermal transitions, suggesting a lower limit of 20–30 aa for a stable tertiary fold. Here we report well-folded peptides of half that size: 12- and 16-residue monomeric β-hairpins, stabilized by tryptophan-tryptophan cross-strand pairs, exhibit reversible and highly cooperative thermal unfolding transitions in water. These tryptophan zippers (trpzips) are minimal units of β tertiary structure and remarkably, for short β-hairpins, have the thermodynamic properties of typical folded proteins.

Short peptides with significant hairpin structure recently have emerged as β-sheet model systems (5, 6). However, even the best reported examples are only marginally stable (∆G_{unf} ≈ 0 at 298 K) (5–10). It is not known whether this stability represents an upper limit for these very small peptides and, if it does not, what residue substitutions might further promote hairpin folding. In particular, cross-strand tertiary interactions have not yet been extensively investigated in these systems. To begin to address this, we determined an experimental energy scale for substitutions in a nonhydrogen-bonded (NHB) strand position of a disulfide-cyclized β-hairpin (11). Unexpectedly, tryptophan was much more stabilizing in this site than other amino acids (≥0.5 kcal·mol$^{-1}$) (11). Further studies showed that paired, cross-strand NHB residues in the cyclized hairpin made roughly independent contributions to stability; thus, a tryptophan-tryptophan cross-strand pair was highly stabilizing (and the best NHB residue pair we identified) (12). Accordingly, it seemed likely that introduction of a second tryptophan-tryptophan cross-strand pair would greatly stabilize the hairpin conformation. We thought that this additional stability would be sufficient to drive folding, even in the absence of a covalent disulfide constraint.

We find that this combination of two Trp-Trp nonhydrogen-bonded cross-strand pairs is generally useful in stabilizing β-hairpin structures. We have characterized four variants having different turn sequences and lengths. In each case, the peptides are highly water-soluble, well-structured, and monomeric. High-resolution NMR structures of three of the peptides show the two cross-strand Trp pairs interdigitating in a zipper-like motif on the surface of the folded peptide. This arrangement of the indole side chains confers unusual spectroscopic properties on the folded molecules, and folding therefore can be monitored readily by changes in CD signal. The stabilities of the trpzips are significantly higher than those reported for other small β-structures (∆G_{unf} = 0.6–1.7 kcal·mol$^{-1}$ at 298 K); on a per-residue basis, the trpzips have stabilities comparable to much larger protein domains (∆G_{unf,max} = 60–120 kcal·mol$^{-1}$·residue$^{-1}$). Because of their small size, unusual stability, and very favorable spectroscopic properties, trpzip peptides should prove useful and quite simple systems in which to study β-structure and folding.

Materials and Methods

Peptide Synthesis. Peptides were synthesized on a Pioneer synthesizer (PerSeptive Biosystems) as C-terminal amides by using standard fluorenlymethoxycarbonyl chemistry, cleaved from resin with 5% trisopropylsilane in trifluoroacetic acid (TFA), and purified by reversed-phase HPLC (acetonitrile/H$_2$O/0.1% TFA). Peptide identity was confirmed by electrospray MS.

CD Spectroscopy and Analysis of Thermal Denaturation Curves. Spectra were acquired with an Aviv Instruments (Lakewood, NJ) model 202 spectrophotometer. Peptide concentrations were determined spectrophotometrically as described (13). Melting curves were acquired at 229 nm with 1.5-min equilibration at each temperature and an averaging time of 15 s. Thermal denaturation was reversible, as judged by recovery of CD signal (≥95%) upon cooling. In addition, reverse melting curves were acquired for trpzips 1 and 4 (see Fig. 1B). Reverse and forward curves were identical in shape, with ±0.5 K shift in T$_m$. As a model for the unfolded state of the peptides, the melting curve (linear) of an equimolar mixture of the trpzips half peptides SWTWEG and NKWTWK was measured. Data for the trpzip peptides then were fit to a two-state unfolding equilibrium as described (14), fixing the unfolded baseline. Folded baselines, T$_m$, ∆H$_m$ (ΔH at T$_m$), and ∆C$_p$ were allowed to vary. For trpzips 5 and 6, the unfolded baseline could be fit directly to the experimental data. ∆H$_m$ was calculated from the fit parameters (ΔH/ΔT). Errors in Table 2 were generated by the fitting algorithm (KALEIDAGRAPH, Synergy Software, Reading, PA) and are given to indicate the quality of the fits to the particular experimental data set. However, when fitting different data sets, ∆H$_m$ and ∆C$_p$ values vary by ~10%, as is typical in thermal denaturation experiments (15).

We find that fitting with ∆C$_p$ fixed to 0 (as described in studies of the native gb1 peptide) (7, 8) results in significant overestimates of hairpin population at lower temperatures; this portion of the stability curve is especially sensitive to errors in ∆C$_p$ (15). Fitting the trpzip denaturation curves in this manner required large shifts in T$_m$ (~5–10 K higher than the minimum in a

Abbreviations: trpzip, tryptophan zipper; COSY, correlation spectroscopy; rmsd, rms deviation; NOE, nuclear Overhauser effect.

Data deposition: The peptide structures have been deposited in the Protein Data Bank, www.rcsb.org [PDB ID codes 1HRW (trpzip1), 1HRX (trpzip2), and 1HS0 (trpzip4)].

*To whom reprint requests should be addressed. E-mail: andrea@gene.com or star@gene.com.

The publication costs of this article were defrayed in part by page charge payment. This article must therefore be hereby marked “advertisement” in accordance with 18 U.S.C. §1734 solely to indicate this fact.
derivative plot) and generated fits of lower quality. In addition, van’t Hoff plots show clear curvature through the transition region, indicating a nonzero ΔC_p. From our data on trpzip4, 5, and 6, we can estimate $\Delta C_p \approx 200$ cal mol$^{-1}$K$^{-1}$ for the gb1 peptide, which is sufficient to explain the discrepancy between our population estimate for the gb1 hairpin and those previously reported (7, 8). Recently, a nonzero ΔC_p (≈ 100 cal mol$^{-1}$K$^{-1}$) was reported for the unfolding of a 12-residue hairpin related to gb1 (10).

Analytical Ultracentrifugation. Samples (in 20 mM potassium phosphate, 150 mM KCl, pH 7.1; 277 K) were analyzed in a Beckman XL-A ultracentrifuge at rotor speeds of 40 and 55 krpm. Peptide concentration was monitored by absorbance at or near 290 nm. Data for both speeds and two initial peptide concentrations (60 and 200 μM) were fit simultaneously to a nonideal single species model by using the program NONLIN (16). Allowing nonideality improved the fit for the 200 μM samples while only slightly changing the reduced apparent molecular weight σ ($\approx +6\%$). For all three peptides, data from 60-μM samples fit an ideal model (e.g., see Fig. 2) with random residuals. Expected σ values were determined from partial specific volumes based on residue composition, calculated buffer density, and monomer formula weights (17).

NMR Spectroscopy and Structure Calculations. NMR samples contained 1–3 mM peptide in 92% H$_2$O/8% D$_2$O, pH 5.5 (trpzip1 and trpzip2) or pH 6.0 (trpzip4 and gb1,41–56), with 0.1 mM 3-(trimethylsilyl)-1-propane-1,2,3,3-d$_4$-sulfonic acid (DSS) as a chemical shift reference. All spectra were acquired on a Bruker DRX-500 or DRX-600 spectrometer at 288 K. Double quantum filtered correlation spectroscopy (2QF COSY), total correlation spectroscopy ($\tau_m = 90$ ms), rotating-frame Overhauser effect spectroscopy ($\tau_m = 150$ ms), and nuclear Overhauser effect (NOE) spectroscopy ($\tau_m = 100$ ms) experiments were acquired as described (18) with gradient coherence selection (19) or excitation sculpting (20) for water suppression. Proton resonances were assigned by standard methods (21). $J$$^H_{HN}$-$H\alpha$ peaks in 2QF-COSY spectra processed to 30% of the maximum $J$$^H_{HN}$-$H\alpha$ intensity were obtained by fitting Lorentzian lines to the antiphase doublet $J$$^H_{HN}$-$H\alpha$ peaks (2QF COSY) to high-resolution in F_2, $J$$^H_{HN}$-$H\alpha$ were extracted from COSY-35 spectra (35° mixing pulse) acquired on D$_2$O solutions of the peptides. Distance and dihedral angle restraints were calculated by using the hybrid distance geometry/simulated annealing program DGGI (23); 50 of those were further refined by restrained molecular dynamics by using the AMBER all-atom forcefield implemented in DISCOVER as described (22). Twenty structures having the lowest restraint violation energy and good geometry were chosen to represent the solution conformation of each peptide. The structure with the lowest rms deviation (rmsd)

<table>
<thead>
<tr>
<th>Table 1. Sequences of trpzip and gb1 peptides</th>
</tr>
</thead>
<tbody>
<tr>
<td>trpzip1</td>
</tr>
<tr>
<td>trpzip2</td>
</tr>
<tr>
<td>trpzip3</td>
</tr>
<tr>
<td>gb1, 41–56</td>
</tr>
<tr>
<td>trpzip4</td>
</tr>
<tr>
<td>gb1</td>
</tr>
<tr>
<td>trpzip5</td>
</tr>
<tr>
<td>trpzip6</td>
</tr>
<tr>
<td>gb1</td>
</tr>
</tbody>
</table>

All peptides were synthesized as C-terminal amides; $p = \alpha$-proline. Residue numbers for the gb1 peptide correspond to those of the parent 56-residue B1 domain.
Table 2. Thermal unfolding and sedimentation analysis of trpzip peptides

<table>
<thead>
<tr>
<th>Parameter</th>
<th>trpzip1</th>
<th>trpzip2</th>
<th>trpzip3</th>
<th>trpzip4</th>
<th>trpzip5</th>
<th>trpzip6</th>
</tr>
</thead>
<tbody>
<tr>
<td>T_{m}, K</td>
<td>323.0 ± 0.3</td>
<td>345.0 ± 0.1</td>
<td>351.8 ± 0.2</td>
<td>343.1 ± 0.1</td>
<td>315.8 ± 0.2</td>
<td>317.7 ± 0.5</td>
</tr>
<tr>
<td>ΔH_m, cal·mol$^{-1}$</td>
<td>10,790 ± 120</td>
<td>16,770 ± 60</td>
<td>13,020 ± 70</td>
<td>21,860 ± 60</td>
<td>13,320 ± 140</td>
<td>10,290 ± 300</td>
</tr>
<tr>
<td>ΔS_m, cal·K$^{-1}$·mol$^{-1}$</td>
<td>33.4</td>
<td>48.6</td>
<td>50.0</td>
<td>63.7</td>
<td>42.2</td>
<td>32.4</td>
</tr>
<tr>
<td>ΔC_p, cal·K$^{-1}$·mol$^{-1}$</td>
<td>231 ± 4</td>
<td>281 ± 2</td>
<td>195 ± 2</td>
<td>380 ± 4</td>
<td>325 ± 10</td>
<td>236 ± 17</td>
</tr>
<tr>
<td>σ_{obs}/σ_{calc}</td>
<td>1.02 ± 0.04</td>
<td>1.01 ± 0.04</td>
<td>1.00 ± 0.04</td>
<td>n.d.</td>
<td>n.d.</td>
<td>n.d.</td>
</tr>
</tbody>
</table>

Thermal melts were acquired with 20 μM peptide samples in 20 mM potassium phosphate, pH 7.0. σ = reduced apparent molecular weight, as determined from sedimentation data fit to a nonideal single-species model (see Materials and Methods). n.d. = not determined; the thermal denaturation curve of trpzip4 was identical at 5-fold higher peptide concentration (100 μM vs. 20 μM). Thermal unfolding parameters of $\Delta H = 11,600$ cal·mol$^{-1}$ and $\Delta S = 39$ cal·K$^{-1}$·mol$^{-1}$ have been reported for the gb1 peptide, assuming $\Delta C_p = 0$; (see also Materials and Methods).

to the average coordinates of the ensemble was chosen as the representative structure (model 1 in the Protein Data Bank file).

The concentration dependence of the NMR spectra of trpzip2 and trpzip4 was evaluated by one-dimensional 1H NMR (10-fold and 100-fold dilution of samples used to acquire two-dimensional data; final concentrations: 1.2 mM, 120 μM, and 12 μM for trpzip2, and 3.2 mM, 320 μM, and 32 μM for trpzip4). For both peptides, there were small chemical shift changes (in all cases $\Delta \delta \leq 0.08$ ppm between concentrated and 10-fold diluted samples, and $\Delta \delta \leq 0.02$ ppm between 10-fold and 100-diluted samples). For example, the trpzip2 peak with the largest $\Delta \delta$ was that from W4H in the 1.2 mM sample; this proton resonates at 5.656 ppm (2.0 ppm upfield from concentrated and 10-fold diluted samples). For example, the trpzip2 peak with the largest $\Delta \delta$ was that from W4H in the 1.2 mM sample; this proton resonates at 5.656 ppm (2.0 ppm upfield from the expected random coil position; ref. 21). This peak shifts 0.043 ppm downfield (120 μM sample), and an additional 0.004 ppm downfield upon further dilution (12 μM sample). In contrast, analytical ultracentrifugation indicates that trpzip2 is monomeric up to at least 200 μM. Taken together, these data imply that limited self-association may be occurring at millimolar concentrations. The fact that the $\Delta \delta$ are extremely small indicates that self-association does not significantly perturb the peptide structure; furthermore, there are no NOEs indicative of a specific interaction between monomers. Thus, the calculated structures accurately represent the monomer conformations.

Results and Discussion

The peptide trpzip1 (Table 1) consists of a representative type II’ turn sequence (EGNK) flanked by the sequence WTW. An additional residue was added to each end of the peptide to permit cross-strand hydrogen bonding between the termini. Residues in hydrogen-bonded positions of the strands were taken from sequences used in our other studies (11, 12) and have not been optimized. Perhaps surprisingly, given that one-third of the residues are tryptophan, the peptide is freely soluble in water at millimolar concentrations. Trpzip1 has an unusual CD spectrum with intense exciton-coupled bands at 215 and 229 nm (Fig. 1A, 1 inset), indicating interaction between the aromatic chromophores (24). Furthermore, the near UV CD spectrum of trpzip1 has well-defined bands at the longer wavelength absorption maxima of tryptophan (Fig. 1A Inset), indicating that the indole side chain are in a defined chiral environment. In proteins, such near UV CD bands are often taken as evidence for fixed tertiary structure.

Trpzip1 has a reversible, cooperative thermal denaturation curve with a midpoint at 323 K (Fig. 1B). The data are of exceptionally high quality for a β-peptide: folding may be monitored sensitively at the 229-nm exciton-coupled band, where sample absorbance causes few problems. Very poor signal-to-noise ratio is frequently a problem in CD-monitored folding studies of other small β-structures; see, for example, ref. 4. Reverse and forward melting curves overlay closely (Fig. 1B), demonstrating that the thermal transition is reversible. The melting temperature does not shift with peptide concentration (20–150 μM; Fig. 1B Inset), suggesting that trpzip1 does not self-associate at these concentrations. The thermal denaturation data fit well to a two-state model and reveal that folding is enthalpically favorable at ambient temperatures, with a significant heat capacity change (Table 2).

We synthesized two variants in which the Gly-Asn turn sequence of trpzip1 was replaced by stronger turn promoting sequences (trpzip2 and 3; Table 1). Trpzip2 and trpzip3 have CD spectra that overlay closely with that of trpzip1 (not shown) and, likewise, exhibit reversible and cooperative melting behavior. Thermodynamic parameters for trpzip2 and 3 are similar to those of trpzip1, with stability curves (and T_m) shifted to higher temperatures (Fig. 1C; Table 2). Interestingly, the denaturation curve for trpzip2 (Asn-Gly turn) is distinctly more cooperative than those of trpzip1 or 3 (D-Pro-Asn turn). Trpzip2 also appears to be more stable than trpzip3 at low temperatures, despite previous conclusions that the D-Pro-Asn turn (and the related II’ turn D-Pro-Gly) are more stabilizing than Asn-Gly (11, 25, 26). Instead, the conformational restriction of the D-proline appears to confer additional stability only at relatively high temperatures. Equilibrium ultracentrifugation confirms that all three trpzip peptides sediment as single species of the expected monomer molecular weights (Fig. 2; Table 2).

The three-dimensional structures of trpzip1 and trpzip2 were determined by NMR. All 1H resonances were assigned by conventional two-dimensional methods at 288 K, pH 5.5. (One-dimensional data are consistent with the peptides being predominantly monomeric at the millimolar concentrations used to acquire the two-dimensional data; see Materials and Methods.) Overall, the NMR data are of unusually high quality for short, linear peptides and provide strong evidence that the molecules are highly structured. The chemical shift dispersion is remarkable, allowing accurate measurement of the majority of Hα-Hα and Hα-Hβ coupling constants and unambiguous assignment of nearly all NOE peaks; the number and intensity of observed NOE peaks are comparable to those routinely seen with small, stable proteins. Likewise, in addition to NOE-based distance restraints, numerous backbone dihedral angle restraints (derived from extreme J_{NN-1}) could be included in the structure calculations. Furthermore, the tryptophan side-chain conformations are all well defined, having χ_1 angles of $\sim 60^{\circ}$ (indicated by analysis of J_{NN-1} and local rotating-frame Overhauser effects). The high population of the folded state under the conditions of the NMR experiments, as well as the quality of the data, validate the high precision of the structures calculated for these peptides.3 Trpzip1 adopts a β-hairpin conformation with the expected type II’ β-turn (Fig. 3A). Cross-strand tryptophan

3Very recently, the structure of U(1–17)T9D, a variant of the N-terminal β-hairpin of ubiquitin, was reported (Protein Data Bank code 1E0Q) (27). The estimated population of the folded hairpin was only 64%; nevertheless, the NMR resonances were unusually well resolved, and it was possible to attribute particular NOEs to the unfolded state. This deconvolution of the NOE data allowed the calculation of folded-state structures with good geometry and no distance restraint violations > 0.5 Å (27). The precision of the ensemble (backbone rmsd = 0.59 Å) is close to that of the trpzip (see Table 3), however, as those authors note, the structure of the folded state of U(1–17)T9D may be more dynamic than indicated by the final ensemble (27).
respectively), we find no evidence by NMR for the hairpin that of the wild-type gb1 peptide (7, 8), and the melting denaturation curve of trpzip4 is much more cooperative than the gb1 and trpzip hydrophobic clusters.

The trpzip peptides may be compared with a previously described β-hairpin peptide taken from the B1 IgG-binding domain of protein G. The peptide gb1 (residues 41–56 of the B1 domain) exhibits partial hairpin character, estimated at ~40% (278 K) by NMR (28). More recently, the estimated hairpin population has doubled, based on fluorescence-monitored folding studies (7) and additional NMR experiments (8). The peptide appears to be stabilized by a cluster of four hydrophobic residues (W43, Y45, F52, and V54) (7, 28, 29). From NOEs observed for the peptide (28), and from the structure of the sequence in the parent protein (30), the hydrophobic strand residues are expected to occupy adjacent nonhydrogen-bonded sites on one face of the hairpin. This is precisely the arrangement of tryptophan residues in the trpzip peptides, allowing the direct comparison of the gb1 and trpzip hydrophobic clusters.

As expected from the stability of trpzips 1–3, replacement of gb1 residues Y45, F52, and V54 with tryptophan yields an extremely broad thermal denaturation curve (10). These experiments show that the gb1 hydrophobic cluster is not sufficient to maintain a significant hairpin population without additional stabilizing elements. To explore this in more detail, we reintroduced individually into trpzip4 the Phe-Tyr and Trp-Val cross-strand pairs, so folding can be monitored by CD (229 nm, as for the other trpzips). We find both trpzip5 and trpzip6 to be much less stably folded than trpzip4 (Table 2; Fig. 4) but more stably folded than wild-type gb1. From our earlier studies in disulfide-cyclized hairpins (12), we expect ~1 kcal·mol⁻¹ loss in stability for each gb1 cross-strand pair (Tyr-Phe or Trp-Val) relative to Trp-Trp. In agreement with this expectation, unfolding free energies (298 K) are 1.69, 0.57, and 0.49 kcal·mol⁻¹ for trpzip 4, 5, and 6, respectively. Therefore, assuming additive stabilization from the two pairs (12), we estimate ΔG°(unf) ~ −0.6 kcal·mol⁻¹ for gb1 at 298 K (~0 kcal·mol⁻¹ in ref. 7; see Materials and Methods). Our population estimate for gb1 agrees closely with the lower estimate originally reported (28).

As observed for the other trpzip peptides, the NMR data for trpzip4 are of exceptional quality and support the conclusion that the molecule is well folded (see Tables 4–6, which are published as supplemental material on the PNAS web site, www.pnas.org). The fingerprint region of the trpzip4 COSY spectrum shows dramatic chemical shift dispersion, especially when compared with the spectrum for wild-type gb1 peptide (Fig. 5A). Chemical shifts represent population-weighted averages of all conformational states packed intimately against one another, with less contact between adjacent tryptophan pairs. Analysis of trpzip2 reveals a very similar structure, only deviating from trpzip1 by having a type I′ β-turn at residues 6 and 7 (Fig. 3B; Table 3).

As expected from the stability of trpzips 1–3, replacement of gb1 residues Y45, F52, and V54 with tryptophan yields an exceptionally well-folded β-hairpin (trpzip4; Table 1). The thermal melting curve for trpzip4 is more cooperative than those of trpzips 1–3, yielding thermodynamic parameters that reflect this difference (Table 2). Trpzip4 is also more stable than trpzips 1–3, yielding thermodynamic parameters that reflect this increased stability. The gb1 cross-strand pair (Tyr-Phe or Trp-Val) relative to Trp-Trp. In agreement with this expectation, unfolding free energies (298 K) are 1.69, 0.57, and 0.49 kcal·mol⁻¹ for trpzip 4, 5, and 6, respectively. Therefore, assuming additive stabilization from the two pairs (12), we estimate ΔG°(unf) ~ −0.6 kcal·mol⁻¹ for gb1 at 298 K (~0 kcal·mol⁻¹ in ref. 7; see Materials and Methods). Our population estimate for gb1 agrees closely with the lower estimate originally reported (28).

As observed for the other trpzip peptides, the NMR data for trpzip4 are of exceptional quality and support the conclusion that the molecule is well folded (see Tables 4–6, which are published as supplemental material on the PNAS web site, www.pnas.org). The fingerprint region of the trpzip4 COSY spectrum shows dramatic chemical shift dispersion, especially when compared with the spectrum for wild-type gb1 peptide (Fig. 5A). Chemical shifts represent population-weighted averages of all conformational states packed intimately against one another, with less contact between adjacent tryptophan pairs. Analysis of trpzip2 reveals a very similar structure, only deviating from trpzip1 by having a type I′ β-turn at residues 6 and 7 (Fig. 3B; Table 3).

As expected from the stability of trpzips 1–3, replacement of gb1 residues Y45, F52, and V54 with tryptophan yields an exceptionally well-folded β-hairpin (trpzip4; Table 1). The thermal melting curve for trpzip4 is more cooperative than those of trpzips 1–3, yielding thermodynamic parameters that reflect this difference (Table 2). Trpzip4 is also more stable than trpzips 1–3, yielding thermodynamic parameters that reflect this increased stability. The gb1 cross-strand pair (Tyr-Phe or Trp-Val) relative to Trp-Trp. In agreement with this expectation, unfolding free energies (298 K) are 1.69, 0.57, and 0.49 kcal·mol⁻¹ for trpzip 4, 5, and 6, respectively. Therefore, assuming additive stabilization from the two pairs (12), we estimate ΔG°(unf) ~ −0.6 kcal·mol⁻¹ for gb1 at 298 K (~0 kcal·mol⁻¹ in ref. 7; see Materials and Methods). Our population estimate for gb1 agrees closely with the lower estimate originally reported (28).

As observed for the other trpzip peptides, the NMR data for trpzip4 are of exceptional quality and support the conclusion that the molecule is well folded (see Tables 4–6, which are published as supplemental material on the PNAS web site, www.pnas.org). The fingerprint region of the trpzip4 COSY spectrum shows dramatic chemical shift dispersion, especially when compared with the spectrum for wild-type gb1 peptide (Fig. 5A). Chemical shifts represent population-weighted averages of all conformational states packed intimately against one another, with less contact between adjacent tryptophan pairs. Analysis of trpzip2 reveals a very similar structure, only deviating from trpzip1 by having a type I′ β-turn at residues 6 and 7 (Fig. 3B; Table 3).

As expected from the stability of trpzips 1–3, replacement of gb1 residues Y45, F52, and V54 with tryptophan yields an exceptionally well-folded β-hairpin (trpzip4; Table 1). The thermal melting curve for trpzip4 is more cooperative than those of trpzips 1–3, yielding thermodynamic parameters that reflect this difference (Table 2). Trpzip4 is also more stable than trpzips 1–3, yielding thermodynamic parameters that reflect this increased stability. The gb1 cross-strand pair (Tyr-Phe or Trp-Val) relative to Trp-Trp. In agreement with this expectation, unfolding free energies (298 K) are 1.69, 0.57, and 0.49 kcal·mol⁻¹ for trpzip 4, 5, and 6, respectively. Therefore, assuming additive stabilization from the two pairs (12), we estimate ΔG°(unf) ~ −0.6 kcal·mol⁻¹ for gb1 at 298 K (~0 kcal·mol⁻¹ in ref. 7; see Materials and Methods). Our population estimate for gb1 agrees closely with the lower estimate originally reported (28).

As observed for the other trpzip peptides, the NMR data for trpzip4 are of exceptional quality and support the conclusion that the molecule is well folded (see Tables 4–6, which are published as supplemental material on the PNAS web site, www.pnas.org). The fingerprint region of the trpzip4 COSY spectrum shows dramatic chemical shift dispersion, especially when compared with the spectrum for wild-type gb1 peptide (Fig. 5A). Chemical shifts represent population-weighted averages of all conformational states packed intimately against one another, with less contact between adjacent tryptophan pairs. Analysis of trpzip2 reveals a very similar structure, only deviating from trpzip1 by having a type I′ β-turn at residues 6 and 7 (Fig. 3B; Table 3).

As expected from the stability of trpzips 1–3, replacement of gb1 residues Y45, F52, and V54 with tryptophan yields an exceptionally well-folded β-hairpin (trpzip4; Table 1). The thermal melting curve for trpzip4 is more cooperative than those of trpzips 1–3, yielding thermodynamic parameters that reflect this difference (Table 2). Trpzip4 is also more stable than trpzips 1–3, yielding thermodynamic parameters that reflect this increased stability. The gb1 cross-strand pair (Tyr-Phe or Trp-Val) relative to Trp-Trp. In agreement with this expectation, unfolding free energies (298 K) are 1.69, 0.57, and 0.49 kcal·mol⁻¹ for trpzip 4, 5, and 6, respectively. Therefore, assuming additive stabilization from the two pairs (12), we estimate ΔG°(unf) ~ −0.6 kcal·mol⁻¹ for gb1 at 298 K (~0 kcal·mol⁻¹ in ref. 7; see Materials and Methods). Our population estimate for gb1 agrees closely with the lower estimate originally reported (28).

As observed for the other trpzip peptides, the NMR data for trpzip4 are of exceptional quality and support the conclusion that the molecule is well folded (see Tables 4–6, which are published as supplemental material on the PNAS web site, www.pnas.org). The fingerprint region of the trpzip4 COSY spectrum shows dramatic chemical shift dispersion, especially when compared with the spectrum for wild-type gb1 peptide (Fig. 5A). Chemical shifts represent population-weighted averages of all conformational states packed intimately against one another, with less contact between adjacent tryptophan pairs. Analysis of trpzip2 reveals a very similar structure, only deviating from trpzip1 by having a type I′ β-turn at residues 6 and 7 (Fig. 3B; Table 3).
Fig. 4. Temperature dependence of folding of trpzips 4–6 (calculated from the thermodynamic parameters listed in Table 2). Our estimated curve for gb1 was calculated by assuming that mutations in trpzip4 (i.e., those present in trpzips 5 and 6) have independent and additive effects on hairpin stability ($\Delta G_{\text{fold,gb1}} = \Delta G_{\text{fold,trpzip4}} + \Delta G_{\text{fold,trpzip5}} + \Delta G_{\text{fold,trpzip6}}$) (12) and is nearly identical in shape to previously reported gb1 denaturation curves based on fluorescence (7) or NMR (8) measurements. However, our estimated population for the folded conformation of gb1 is much closer to that in the original report (28) than to later estimates (7, 8).

Fig. 5. NMR analysis of trpzip4. (A) Overlay of the COSY fingerprint regions for the wild-type gb1 peptide (red) and trpzip4 (black); the location of crosspeaks is indicated for both peptides and are labeled for trpzip4. (B) Ensemble of 20 structures of trpzip 4 compared with the minimized mean structure of the B1 domain of protein G (Protein Data Bank code 2GB1) (30); backbone atoms of protein residues 46–52 were superposed on the mean coordinates of the ensemble, yielding a r.m.s.d of 0.67 Å.

![Graph showing temperature dependence of folding](image)

By generally accepted criteria (36), the trpzip peptides behave as folded proteins: presently, they are the smallest all-natural linear polypeptides to do so. Their per-residue thermodynamic parameters (ΔG, ΔH, and ΔC_p) are comparable to those of larger protein domains (15, 37), indicating that, like other proteins, the folding of the trpzip hairpins is driven by burial of hydrophobic surface area (37) (i.e., tryptophan side chains). However, trpzips might exceed that of the average protein domain. In the case of trpzip3, this appears to be offset thermodynamically by the α-proline-containing trpzip3 is more typical of globular proteins.) The observation of an unusually large configurational component of ΔS_{int} suggests that the degree of structural definition in the folded state of the trpzips might exceed that of the average protein domain. In the case of trpzip3, this appears to be offset thermodynamically by the α-proline, which might be expected to increase order in the unfolded state.

Despite its utility in stabilizing β-hairpin structures, we have not found examples of the trpzip motif in the protein structure database. It is unlikely that such a stable substructure would be

1One might think that, even in a poorly structured peptide, the observed chemical shift dispersion might result simply from the presence of four Trp residues. We do not believe this is likely. Although it is true that aromatic rings can induce chemical shifts in nearby protons, very large ring-current shifts would require a relatively fixed orientation between them. It should be noted that the partially structured gb1 peptide itself has three aromatic residues (Trp, Tyr, and Phe) at the positions of the four Trp residues of trpzip4, yet the observed dispersion is much less extreme.

2It should be noted that the partially structured gb1 peptide itself has three aromatic residues (Trp, Tyr, and Phe) at the positions of the four Trp residues of trpzip4, yet the observed dispersion is much less extreme.

3From these data, taken together with the thermal denaturation curves (Fig. 4), we conclude that trpzip4 has a much higher folded population than the gb1 peptide and that the cross-strand tryptophan pairs of the trpzip motif are superior to the hydrophobic cluster of gb1.

4The structure of trpzip4 shows Trp-Trp packing and strand orientations similar to those observed in trpzips 1 and 2 (Table 3; Fig. 5B), despite the fact that there are six rather than four intervening turn residues. Trpzip4 extends the strands by another residue and presents a type I β-turn, with K50 adopting a positive ϕ angle. The turn geometry of trpzip4 is indistinguishable from that of the same turn in the full-length B1 domain (30) within the error of the structure determinations (Fig. 5B). The twist of the two strands, however, is markedly different between the peptide and the protein; the protein is only modestly twisted (2GB1; $\Theta \approx 20^\circ$), whereas trpzip4 is highly twisted ($\Theta \approx 70^\circ$) (32). This large twist is within the range observed in natural proteins (32) and still allows good hydrogen-bonding geometry. The high degree of twist would appear to result from the cross-strand Trp-Trp packing, because it is observed in all three trpzip structures. However, the extreme twist may be a general characteristic of two-stranded sheets (32). Interestingly, in a molecular dynamics study of the wild-type gb1 peptide (33), an initially rather flat starting conformation (derived from the structure of the intact B1 domain) relaxed into more twisted conformations resembling trpzip4. The backbone coupling constants (see Tables 4–6) for tryptophan residues in the three peptides (7.1–8.2 Hz) are lower than those of the intervening hydrogen-bonded threonine residues (8.9–9.8 Hz), consistent with the alternating less and more negative ϕ angles that are a hallmark of a twisted sheet (34). The geometry of the trpzip is that expected for an antiparallel β-coiled coil (32, 34, 35).
required within a larger globular domain, and if it were present, it might not pack well with other structural elements. For example, in contrast to our results with trpzip4, we expect that mutation of Y45, F52, and V54 to tryptophan in the intact 56-residue B1 domain would disrupt the core of the protein (30). However, when searching sequence databases, we did find several potential trpzips (not shown). One set of examples occurs in some V4 loops from HIV gp120. The V4 loop is highly variable in sequence, and it is not visible in the reported structure of gp120 (38). We synthesized one V4 loop, TWTWNG-SAWTWN (GenBank accession no. AAA44126), and found it to exhibit a CD spectrum indistinguishable from those of trpzips 1–3 (not shown). The first tryptophan in the peptide corresponds in sequence, and it is not visible in the reported structure of gp120 (38), suggesting that, in this particular V4 loop, the β-strand is extended slightly, with the trpzip sequence forming a β-hairpin.

Finally, it is interesting to compare the relatively simple design process we have used here with other recently described methods. In the automated procedure described by Mayo and co-workers (2, 3), all residues of the hairpin would be considered to occupy “surface” positions, and, accordingly, would be restricted to small, polar, or charged residues. Our data show clearly that proper arrangement of surface hydrophobic groups can stabilize a specific folded structure without causing aggregation. Such hydrophobic clusters occur on the surface of natural proteins (39) and may well help determine the folded structure. In the case of our hairpin peptides, the additive contributions to stability from cross-strand partners (12) suggests that the observed arrangement of Trp side chains may be especially effective in desolvating the peptide backbone, or the indole rings themselves, rather than contributing a large π-stacking energy.

Another emerging design strategy is to choose sequences or motifs derived from protein structures to fit a target fold (e.g., refs. 4–6, 9, and 28). Although this approach has proven successful, the stabilities of the resulting molecules are not always as high as one might want, and it is difficult to predict whether or how they might be improved. In contrast, the unusual and very specific role of tryptophan in stabilizing β-hairpins could not have been anticipated by analysis of known protein structures. Accordingly, we believe that the experimental determination of folding rules in peptides (11, 12) can add insights to current protein design methods and ultimately to studies of natural proteins.

We thank P. Harbury and the Stanford Department of Biochemistry for access to the ultracentrifuge.