A structural and biochemical basis for PAPS-independent sulfuryl transfer by aryl sulfotransferase from uropathogenic Escherichia coli

Goran Malojčić, Robin L. Owen, John P. A. Grimshaw, Maurice S. Brozzo, Hiang Dreher-Teo, and Rudi Glockshuber

Institute of Molecular Biology and Biophysics, ETH Zurich, CH-8093 Zurich, Switzerland; and Swiss Light Source, Paul Scherrer Institut, CH-5232 Villigen, Switzerland

Edited by Perry A. Frey, University of Wisconsin, Madison, WI, and approved October 8, 2008 (received for review July 22, 2008)

Sulfotransferases are a versatile class of enzymes involved in numerous physiological processes. In mammals, adenosine 3'-phosphate-5'-phosphosulfate (PAPS) is the universal sulfuryl donor, and PAPS-dependent sulfurylation of small molecules, including hormones, sugars, and antibiotics, is a critical step in hepatic detoxification and extracellular signaling. In contrast, little is known about sulfotransferases in bacteria, which make use of sulfurylated molecules as mediators of cell–cell interactions and host–pathogen interactions. Bacterial arylsulfate sulfotransferases (also termed aryl sulfotransferases), in contrast to PAPS-dependent sulfotransferases, transfer sulfuryl groups exclusively among phenolic compounds in a PAPS-independent manner. Here, we report the crystal structure of the virulence factor arylsulfate sulfotransferase (ASST) from the prototypic, pyelonephritogenic Escherichia coli strain CFT073 at 2.0-Å resolution, and 2 catalytic intermediates, at 2.1-Å and 2.4-Å resolution, with substrates bound in the active site. ASST is one of the largest periplasmic enzymes and its 3D structure differs fundamentally from all other structurally characterized sulfotransferases. Each 68-kDa subunit of the ASST homodimer comprises a 6-bladed β-propeller domain and a C-terminal β-sandwich domain. The active sites of the dimer are situated at the center of the channel formed by each β-propeller and are defined by the side chains of His-252, His-356, Arg-374, and His-436. We show that ASST follows a ping-pong bi–bi reaction mechanism, in which the catalytic residue His-436 undergoes transient sulfurylation, a previously unreported covalent protein modification. The data provide a framework for understanding PAPS-independent sulfotransfer and a basis for drug design targeting this bacterial virulence factor.

beta propeller | crystal structure | pyelonephritis | uropathogenic Escherichia coli CFT073 periplasm

Sulfotransferases catalyze the transfer of a sulfuryl group from an activated donor to an acceptor and are essential for numerous physiological processes, such as sulfur metabolism, liver detoxification, signal transduction, hormone regulation, viral entry, and molecular recognition. A variety of small molecules, including hormones, sugars, and antibiotics, have been shown to undergo 3'-phosphate-5'-phosphosulfate (PAPS)-dependent sulfurylation (1, 2), and sulfotransferases are recognized as modulators of prokaryote–eukaryote interactions (3).

In mammals, sulfoconjugation and glucuronidation represent the dominant mechanisms for detoxification of endogenous and exogenous compounds bearing phenolic groups (4, 5). Therefore, hepatic sulfotransferases are of considerable toxicological and pharmacological interest. In addition to mammalian sulfotransferases, arylsulfate sulfotransferases of commensal intestinal bacteria have been proposed to play a role in the detoxification of phenolic compounds (6, 7). Although a number of eukaryotic sulfotransferases have been extensively studied, much less is known about bacterial sulfotransferases, with periplasmic arylsulfate sulfotransferases comprising a virtually uncharacterized class. In contrast to other sulfotransferases that exclusively use PAPS as a sulfuryl donor, bacterial arylsulfate sulfotransferases (ASSTs) catalyze sulfuryl transfer from a phenolic sulfate to a phenol (Fig. 1A and B) and cannot use PAPS as the donor (1).

The genes encoding bacterial periplasmic ASSTs are often found clustered with the genes coding for the proteins DsbL and DsbH of the DsbA/DsbB-independent disulfide bond formation pathway. These DsbA/DsbB homologs form a specific dithiol oxidase system generating the single disulfide bond in each subunit of the ASST homodimer (see below) (8). Most commensal Escherichia coli strains do not contain a gene encoding ASST, but the prototypic uropathogenic E. coli strain CFT073 (9) as well as other uropathogenic E. coli strains (10) do contain the genes encoding ASST, DsbL, and DsbH as a tricistronic operon on the genome (Fig. 1C).

We here report complementary structural and biochemical studies on ASST, shedding light on the unusual, PAPS-independent sulfotransfer reaction catalyzed by this enzyme. The X-ray structure of ASST shows that the subunits of the homodimeric enzyme consist of a 6-bladed β-propeller domain fused to an N-terminal β-sandwich domain. In addition, we have also determined the structure of 2 sulfo-ASST intermediates formed upon incubation of ASST with different sulfuryl donors that provide snapshots of the sulfuryl transfer reaction. Together with biochemical data, these intermediates demonstrate catalysis of sulfuryl transfer to proceed via a ping-pong reaction mechanism involving transient sulfurylation of His-436, a previously unknown covalent protein modification. The residues His-252, His-356, Arg-374, and His-436 are shown to be essential to function, and together, form the active site in the central substrate binding pocket formed by the β-propeller domain. The structural and functional studies presented here provide a unique framework for understanding PAPS-independent sulfuryl transfer.

Results

Crystalization and Overview of the Crystal Structure of ASST. Arylsulfate sulfotransferase from E. coli CFT073 is a homodimeric protein (Fig. S1), and at 63,763 Da (571 residues) per monomer it...
is one of the largest proteins in the bacterial periplasm. Monomers of ASST are secreted into the periplasm with an N-terminal signal sequence of 27 aa, as confirmed by Edman sequencing of the mature protein. ASST was overproduced by coexpression with DsbL and DsbI, purified as described (8), and obtained as a mixture of unmodified ASST and a sulfuryl-adduct (±81 ± 2 kDa). This mass difference (corresponding to +SO₃; i.e., 80.1 Da) provided the first clue that ASST becomes transiently sulfurylated during its catalytic cycle (see below). ASST was crystallized by the sitting drop vapor diffusion method from 1.8 M Li₂SO₄ in 100 mM cacodylic acid/NaOH pH 6.5. Hexagonal ASST crystals, belonging to the space group P₃₁₂₁ with 1 dimer of unmodified ASST in the asymmetric unit, were obtained, and X-ray diffraction data were collected to a resolution of 2.0 Å (Table S1).

Each ASST monomer consists of 2 readily distinguishable domains: a small N-terminal domain (residues 1–116) forming a 7-stranded β-sandwich and a large C-terminal domain (residues 117–571) (Fig. 2 and Fig. S2). The C-terminal domain adopts a 6-bladed β-propeller fold formed by the packing of 6 four-stranded β-sheets in a circular array. The small (∼410 Å²) contact area between the 2 domains in the monomer involves residues from loop regions and β-strands in the N-terminal domain and the second and third blade of the propeller. The contact area between the 2 ASST monomers (∼6,200 Å²) comprises residues from the N-terminal domain, the third and fourth blade of the propeller, and the loop regions within them.

As with most other β-propeller structures, the channel formed by the blades of the propeller is conical in shape (11). In the case of ASST, the channel narrows in diameter from ∼21–10 Å in the region of the active site, is solvent accessible, containing 11 ordered water molecules, and is suitable for substrate sequestration. The loop containing residues Val-32–Leu-327 flanks the narrower channel entrance. Its poorly defined electron density suggests a high degree of flexibility, facilitating free passage of substrates into the channel.

ASST contains 3 cysteine residues; 2 of these residues (Cys-418 and Cys-424) are located in a loop in the outer part of the sixth propeller blade and are linked by a disulfide bond of very unusual geometry (Fig. S3). The distance between the Cα atoms of the 2 cysteines is only 3.8 Å, which is extremely short in comparison to the mean of 5.63 Å for all protein disulfides (12). The dihedral angles of this disulfide classify it as being of a −RHS staple geometry and, together with the high dihedral strain energy of this bond [estimated at ∼30 kJ/mole (12)], these parameters help to explain the requirement for the ASST-specific dithiol oxidase DsbL for ASST activity (8).

Architecture of the Active Site in the Substrate-Free ASST. Subsequent to the building of the ASST model several sulfate groups were found. The majority of these sulfate groups are situated in close proximity to a positively charged amino acid side chain at the protein surface, acting as counter ions and believed to originate from the crystallization conditions. The sulfate group adjacent to His-436 is, however, bound in a very specific and complex manner, situated in the central channel of the β-propeller, and is involved in an extensive hydrogen bond network with the nitrogen atoms of 5 neighboring side chains (His-252, His-356, Asn-358, Arg-374, and His-436) and the backbone nitrogen of Thr-501 (Fig. 3A and Fig. S4A). Two further tyrosine residues, Tyr-208 and Tyr-559, are in close proximity to this sulfate (Fig. 3A). This complex network of hydrogen bonds coupled with a comparison of the location of the
active site in other enzymes exhibiting a β-propeller fold (11) suggest the central channel of ASST’s β-propeller fold contains the active site.

To clarify the catalytic role of residues surrounding the proposed active site we carried out mass spectrometry of sulfo-ASST, characterized the catalytic properties of ASST point variants, and determined the crystal structure of 2 catalytic intermediates.

Crystal Structures of Catalytic Intermediates of ASST and Substrate Binding. To trap sulfurylated intermediates of ASST, crystals of substrate-free ASST were soaked with the sulfuryl donor substrates β-nitrophenylsulfate (PNS) and 4-methylumbelliferyl sulfate (MUS) before being flash-cooled in liquid nitrogen. The crystal structure of the PNS and MUS adducts, solved to 2.1- and 2.4-Å resolution, respectively, revealed His-436 to be covalently sulfurylated on the N2 atom in both cases, whereas the desulfurylated products remained bound in the active site cleft (Fig. 3 B and C). The sulfuryl moiety of sulfohistidine is stabilized by extensive hydrogen bonding to the side chains of His-252, Asn-358, Arg-374, and His-356 and backbone nitrogen of Thr-501 (Fig. S4 B), whereas the hydroxyl groups of the desulfurylated donors form a hydrogen bond with the sulfo-His-436 and a hydrophobic contact with the residue Phe-171. The only disordered segment in the ASST structure without detectable electron density is comprised by residues Val-321–Leu-327, which are relatively close to the active site and may contribute to the recognition of natural ASST substrates.

Active Site Residues and the Mechanism of PAPS-Independent Sulfo-transfer by ASST. The residues forming the active site of ASST are consistent with a mechanism in which first a His and then a Tyr side chain in the active site are sulfurylated, as proposed previously for the homologous enzyme from Eubacterium A-44 (7). To identify which residues in ASST are essential for catalysis, we characterized the catalytic properties of several ASST variants and analyzed residue conservation among its homologs.

We individually replaced the active site residues and compared the sulfo-transferase activity of these variants to that of the wild-type variants (Table S2). Replacement of Arg-374, His-252, or His-356 by Leu dramatically decreased ASST activity to 0.1, 4.0, and 0.06%, respectively, suggesting that these residues are critically important for catalysis (the activity measurements of the His436Leu variant were precluded because this variant could not be expressed). In contrast, the activity of the point variants Tyr208Phe and Tyr559Phe and of the double variant Tyr208Phe/Tyr559Phe was comparable to that of the wild-type variant, indicating that these tyrosines do not participate in catalysis. Similarly, replacement of Tyr-96, a previously proposed catalytic ASST residue (13), had no effect on activity (Table S2). These data do not support the previously proposed model of sulfonyl transfer from a sulfo-His to a Tyr residue in ASST before sulfonylation of the acceptor substrate, instead favoring a mechanism in which a sulfurylated active-site histidine directly delivers the sulfonyl group to the aromatic hydroxyl group of an acceptor substrate. This reaction is a simple inverse of ASST sulfonylation by a donor (Fig. S4). The active-site residues His-252, His-356, and Arg-374 provide a means for coordination of the sulfonyl moiety during the catalytic cycle (Fig. S4) (14, 15). The essential role of the histidines in the active site of ASST was further supported by inactivation of ASST through treatment with diethylpyrocarbonate (DEPC), a reagent that specifically modifies histidine side chains (16). In contrast, reagents such as iodoacetamide and PMSF, targeting thiol and nucleophilic hydroxyl groups, respectively, had no influence on ASST activity (Fig. S5).

Sequence alignment of ASST homologs (Fig. S6) revealed all active-site residues (His-252, His-356, Arg-374, and His-436) to be invariant. In addition, the only invariant segment of >3 consecutive residues in all homologs corresponded to the pentapeptide sequence Tyr-434–Ala-438, centered at His-436. Furthermore, the residues around His-436 in the 3D structure of ASST undergo purifying selection [e.g., across-species mutations of the corresponding codons are less likely to be residue-changing than silent (17), in agreement with a critical role in catalysis.

Biochemical Properties of ASST. As previously mentioned, the initial indication of transient covalent sulfonylation of ASST during its catalytic cycle was obtained from electrospray ionization mass spectra (ESI MS). The spectra of freshly purified ASST exhibited a peak at 63,764.5 ± 2 Da (the mass expected for the monomer) and a second peak of similar intensity at 63,845.5 ± 2 Da for the sulfonylated enzyme (Fig. 4). Accordingly, incubation of ASST with an excess of the sulfonyl acceptor phenol resulted in the complete disappearance of the peak corresponding to the sulfoenzyme, whereas incubation of desulfurylated ASST with the sulfonyl donor PNS returned the peak corresponding to sulfo-ASST for ~75% of the ASST molecules (Fig. 4). It was not possible to obtain mass spectra of uniformly sulfonylated ASST subsequent to treatment with PNS, suggesting that the sulfo-ASST reaction intermediate is prone to hydrolysis. This observation may also explain the initial occurrence of “sulfo-depleted” crystals even though the starting material for crystallization contained sulfo-ASST.

Additional confirmation for the formation of sulfonylated His-
436 was obtained by tryptic digestion of ASST pretreated with PNS, followed by mass spectrometry of tryptic ASST peptides, which was performed under basic conditions to minimize hydrolysis of sulf-histidine. Only the tryptic peptide Leu-405–Lys-443, bearing His-436, appeared as a double peak with a characteristic mass difference of 80 Da, confirming that the sulfurylated residue lies within this ASST fragment (Fig. S7). Furthermore, His-436 is the only histidine residue within this tryptic ASST peptide. Together with the crystal structures of the catalytic intermediates of ASST, these observations clearly demonstrate that His-436 is the residue that undergoes transient covalent sulfurylation during the catalytic cycle.

Sulfo-ASST in fresh preparations after expression in E. coli (see SI Methods for details) might indicate the presence of an unknown aromatic sulfuryl donor in the periplasm in vivo. However, we were unable to efficiently extract ASST from the periplasm by standard periplasmic extraction protocols, presumably because of the large size of the ASST homodimer (data not shown) and thus had to purify ASST from total cell extracts. We could not, therefore, eliminate the possibility that a nonphysiological, cytoplasmic sulfuryl donor was responsible for the fraction of sulfurylated enzyme in our ASST preparations. We could, however, confirm that the cytoplasmic sulfuryl donor PAPS is not an ASST substrate (data not shown) (1, 18–24).

Ping-pong kinetics are common among transferases that are transiently modified by the chemical group to be transferred and contains the active site of the enzyme. Each ASST monomer contains 1 unpaired cysteine (Cys-322) located within the short loop preceding the fourth propeller blade. Treatment of native ASST with Ellman’s reagent (29) yielded a mixed disulfide with thionitrobenzoic acid (TNB), which exhibited a similar catalytic activity to the native enzyme, as did ASST after treatment with the thiol-specific alkylating agent iodoacetamide, suggesting that Cys-322 is not involved in catalysis. This residue is also not conserved in ASST homologs (Fig. S6), showing ASST to be a protein in the oxidative environment of the bacterial periplasm, containing an unpaired cysteine residue with no catalytic function.

Discussion

The combined biochemical, crystallographic, and computational data presented here reveal that the periplasmic arylsulfate sulfo-transferase from E. coli CFT073 is a homodimeric enzyme with a β-propeller fold that transfers sulfuryl groups specifically from phenolic sulfuryl donors to phenolic acceptors and, in contrast to the vast majority of characterized sulfotransferases, does not use PAPS as the sulfuryl group donor. Notably, none of the ~50 structurally characterized sulfotransferases bear any resemblance to the β-propeller structure presented here (30), highlighting the difference in substrate specificity, cellular locations, and physiological roles between periplasmic ASSTs and other sulfotransferases.

In common with other enzymes exhibiting a similar catalytic activity to the native enzyme, as did ASST after treatment with the thiol-specific alkylating agent iodoacetamide, suggesting that Cys-322 is not involved in catalysis. This residue is also not conserved in ASST homologs (Fig. S6), showing ASST to be a protein in the oxidative environment of the bacterial periplasm, containing an unpaired cysteine residue with no catalytic function.
Taken together, our crystallographic and biochemical results show the mechanism of ASST to proceed via a ping-pong reaction mechanism and to involve transient formation of a sulfohistidine residue (Fig. 6). Furthermore, competitive substrate inhibition observed at high acceptor concentrations indicates that donor and acceptor bind at the same site; another typical feature of enzymes with ping-pong kinetics (28), and can easily be rationalized by ASST’s substrate specificity, including phenolic compounds both as donors and acceptors. Additional support for the ping-pong catalytic mechanism is provided by the product inhibition patterns reported for analogous enzymes (6, 23, 25) as well as stereochemical studies of ASST-catalyzed sulfuryl transfer, which was found to occur with the retention of absolute stereochemical configuration of a chiral sulfuryl moiety (31). A direct transfer from the donor to the acceptor without formation of the sulfoenzyme would result in the inversion of absolute stereochemical configuration. The transient formation of sulfohistidine, a previously unknown covalent protein modification, avoids this inversion. Histidine sulfurylation is analogous to the formation of phosphohistidine as a covalent enzyme–substrate intermediate in histidine kinases (33, 34). This analogy highlights the striking structural and mechanistic resemblance of sulfotransfer, involved in extracellular signaling (35), and phosphotransfer, involved in intracellular signal transduction in bacteria (36, 37). It should be emphasized, however, that our results were obtained by using the phenolic substrates PNS and MUS, which bear electron withdrawing substituents. Therefore, it cannot be completely excluded that ASST’s mechanism differs with its physiological substrates.

Disulfide bonds in proteins are traditionally classified as catalytic if they are formed and broken in each catalytic cycle or as structural if they stabilize the protein. A recent study proposed allosteric disulfide bonds as a third class of disulfide bonds that regulate catalytic activity and binding properties upon forming or breaking (12). These disulfide bonds are characterized by high dihedral strain, an unusually short distance between the Cα atoms of the 2 cysteines, and a –RHStaple geometry of the disulfide bond. The residues Cys-418 and Cys-424 of ASST are joined by such a disulfide bond (Fig. S3) with an extremely short Cα separation (3.8 Å) and with the dihedral angles corresponding to those of the –RHStaple class. The high steric strain energy of this bond (estimated to be 30 kJ/mol) could explain the requirement for the strong dithiol oxidase DsbL for its formation (8).

ASST’s structure, unusual substrate specificity, periplasmic location, and genomic clustering with a specific dithiol oxidase system are suggestive of a number of physiological roles of ASST. Regulation of prokaryote–eukaryote interactions is known to involve sulfurylation of small molecules (35), and sulfotransferases play a significant role in modulating normal and pathogenic biological processes (26, 38, 39). ASST from the periplasm of uropathogenic E. coli strains is up-regulated in the uropathogenic habitat (10) and may therefore be involved in host–pathogen interactions. To our knowledge, the in vivo sulfuryl group donor for ASST has not yet been identified. It is also conceivable that there is no single, specific sulfuryl donor or acceptor, and that the physiological role of ASST may instead be to distribute the sulfuryl group within a defined set of biological recipients.

A second possible physiological role of ASST may be inferred from its genomic context. The gene that codes ASST is found clustered with genes coding for DsbL and DsbI. Because bacterial operons usually control gene clusters that code for functionally related proteins (37), it is probable that DsbL, DsbI, and ASST are functionally interrelated. Whereas DsbL and DsbI are thiol-disulfide oxidoreductases, ASST transfers sulfuryl groups between phenolic compounds. DsbL has been shown to be a specific oxidase for disulfide bond formation in ASST, and DsbL catalyzes the oxidation of the dithiol oxidase DsbL by ubiquinol-Q8 (8). Notably, ubiquinol-Q1, the soluble analog of ubiquinol-Q8, is also an acceptor substrate of ASST in vitro (data not shown). Therefore,

Previous mechanistic studies of ASST suggested the catalysis to proceed by transient tyrosine sulfurylation (1, 13, 31). The residue Tyr-96 was proposed to undergo sulfurylation in ASST from Enterobacter amnigenus, which is 84% identical in sequence to the ASST of E. coli CFT073 (13, 31). The crystal structure presented here shows Tyr-96 to be located within the N-terminal β-sandwich domain far from the center of the β-propeller (Fig. 2), which, together with the identical catalytic activity of the Tyr96Phe variant to wild-type ASST, suggests that Tyr-96 is not involved in catalysis (Table S2).

Whereas PAPS-dependent sulfotransferases catalyze direct sulfotransfer by binding both the sulfuryl donor PAPS and the acceptor simultaneously without becoming covalently modified (1, 32), ASST reacts first with a donor substrate and releases the first product (desulfurylated donor) before reacting with an acceptor substrate. Catalysis by ASST is therefore a 2-step process requiring transient covalent modification of the enzyme. Mass spectrometry and crystallography show that, in the first step of catalysis, ASST reacts with a sulfuryl donor and becomes covalently sulfurylated at the Nω2 atom of His-436 (Fig. 3). Subsequently, the sulfuryl group is transferred to an acceptor and the free enzyme is regenerated (Fig. 6). A cage of nitrogen atoms, from the side chains of His-252, His-356, Asn-358, and Arg-374 and the backbone nitrogen of Thr-501, define the active site, facilitating sulfotransfer most likely by coordinating the sulfuryl moiety during the reaction (Fig. S4).

The 2 structures of ASST catalytic intermediates, with donor substrates PNS or MUS, exhibit His-436 covalently sulfurylated at Nω2, revealing sulfohistidine to form an analogous extensive hydrogen bond network with the same active site residues (Fig. 3 and Fig. S4). Despite being distant in the primary structure, these active site residues are all invariant between ASST homologs (Fig. S6).

All currently available mechanistic studies on ASST homologs propose that the catalysis occurs by a covalent modification of a tyrosine residue in the active site of the enzyme, and some suggest that a tyrosine and a histidine in a catalytic pair in the active site (1, 20, 24, 31). Indeed, 2 tyrosines are within 10 Å of the sulfuryl group of sulfo-His-436. However, ASST variants lacking these tyrosines exhibit similar catalytic properties compared with the wild type, implying that tyrosine sulfurylation does not occur during catalysis (Table S2).

Fig. 6. Proposed reaction mechanism of arylsulfate sulfotransferase for the substrates PNS and phenol. During the first step of catalysis, the free electron pair of Nω2 from His-436 nucleophilically attacks the sulfur atom of PNS, yielding a covalent sulfohistidine intermediate and p-nitrophenolate. After dissociation of p-nitrophenolate and binding of phenol, the phenolate oxygen nucleophilically attacks the sulfur in the intermediate, and the sulfuryl group is transferred onto the acceptor phenol.

Malojčić et al.
ASST may sulfate membrane-bound quinones in vivo. Quinone sulfuration has been described and identified as a dominant step following quinone reduction to hydroquinone in the mammalian liver (40, 41). Furthermore, it has been observed that sulfuration of quinol rendered quinone a better oxidant (40). These observations raise the possibility that ASST contributes to quinone metabolism in uropathogenic bacteria.

In summary, the crystal structure of periplasmic ASST from E. coli strain CFT073 and those of its catalytic intermediates provide significant insight into the molecular mechanism of PAPS-independent sulfotransferase. This is a 2-step catalysis resulting in the formation of a transient high-energy sulfohistidine intermediate at the center of a β-propeller fold novel to sulfotransferases. The described crystallographic and biochemical experiments provide a basis for understanding PAPS-independent sulfotransferase and a basis for future work on the metabolism of phenolic compounds in uropathogenic bacteria and their physiological roles in pathogen-host interactions.

Methods

Molecular Cloning, Protein Expression and Purification, and Crystallization. Cloning and expression of ASST was performed as described (8). ASST variants were constructed as described in SI Methods. See Table S3 for oligonucleotide primers used for site-directed mutagenesis of ASST.

Steady State Kinetics. Initial rates of the ASST-catalyzed reaction were measured with MUS as donor substrate (concentration range 0.28–200 μM) and phenol as acceptor substrate (concentration range, 5 μM–10 mM) in the mixed buffer system prepared as described (20 mM final concentration of buffering species) (28), at pH values 7, 8, 8.5, 9, and 10 at 25 °C by monitoring fluorescence of the reaction product 4-methylumbelliferone (MU) at 453 nm (excitation at 350 nm). For the data series at each pH, the instrument was calibrated with solutions of different MUS concentrations enabling direct quantification of MUS concentration changes. It was also verified that no species other than MU exhibited fluorescence at 453 nm or absorbed light at 350 nm. The concentration of ASST (monomer) was within the range of 10–30 nM. The ASST concentration was determined via its extinction coefficient at 280 nm (ε280 = 93,350 M⁻¹ cm⁻¹). Initial rates in the range of pH 8–10 were globally fitted with ORIGIN (Microcal) to the equation ν = a[A][B]/(K[SB] + 1 + [B][KSA] + [A][B]), describing the initial velocity pattern for ping-pong kinetics (28), where [A] and [B] are the initial concentrations of MUS and phenol, respectively; K[SB] is the Michaelis constant (Km) for MUS and phenol, respectively; K[SA] is the inhibition constant of phenol; V is the maximum velocity; and ν is the measured initial velocity. At pH 6.0 and 7.0, where the rate of sulfuration inhibition by phenol was negligible, the equation used was ν = a[A][B]/(K[SB] + [A][B]).

Protein Crystallization, Data Collection, and Structure Determination. Details on crystallization of ASST, crystallographic data collection, processing, structure solution, and refinement are described in detail in SI Methods. Crystallographic data and refinement statistics are listed in Table S1. The structure of ASST was determined by using the single-wavelength anomalous dispersion technique with the sulfur anomalous signal from selenomethionine. The initial maps and models of the catalytic intermediates of ASST were obtained by refinement of substrate-free ASST against data collected from crystals soaked with donor substrates, as described in detail in SI Methods.

ACKNOWLEDGMENTS. We thank R. Aebi, A. Carapito, and B. Domon for help with the identification of sulfurylated peptide in ASST by MS. B. Blattne for kinetic crystallization screening. D. Sargent for help with initial diffraction experiments; C. Schulze-Briese for advice and assistance with experiments at the protein crystallography beam lines of the Swiss Light Source; the members of the Functional Genomics Center Zurich for protein analytical services; and the editor and 2 anonymous reviewers whose comments helped significantly strengthen the manuscript. G. M. acknowledges the instructors of the 2006 “X-ray Methods in Structural Biology” course at Cold Spring Harbor Laboratory for outstanding teaching and help with structure solution. E. Weber-Ban and N. Ban for helpful discussions, and the Huber-Kudlich Stiftung for a travel grant. This work was supported by the Swiss Light Source (Paul Scherrer Institut, Villigen, Switzerland), Schweizerische Nationalfonds, and ETH Zurich in the framework of the Swiss Structural Biology National Center of Competence in Research program.