Skip to main content
  • Submit
  • About
    • Editorial Board
    • PNAS Staff
    • FAQ
    • Rights and Permissions
    • Site Map
  • Contact
  • Journal Club
  • Subscribe
    • Subscription Rates
    • Subscriptions FAQ
    • Open Access
    • Recommend PNAS to Your Librarian
  • Log in
  • Log out
  • My Cart

Main menu

  • Home
  • Articles
    • Current
    • Latest Articles
    • Special Features
    • Colloquia
    • Collected Articles
    • PNAS Classics
    • Archive
  • Front Matter
  • News
    • For the Press
    • Highlights from Latest Articles
    • PNAS in the News
  • Podcasts
  • Authors
    • Information for Authors
    • Purpose and Scope
    • Editorial and Journal Policies
    • Submission Procedures
    • For Reviewers
    • Author FAQ
  • Submit
  • About
    • Editorial Board
    • PNAS Staff
    • FAQ
    • Rights and Permissions
    • Site Map
  • Contact
  • Journal Club
  • Subscribe
    • Subscription Rates
    • Subscriptions FAQ
    • Open Access
    • Recommend PNAS to Your Librarian

User menu

  • Log in
  • Log out
  • My Cart

Search

  • Advanced search
Home
Home

Advanced Search

  • Home
  • Articles
    • Current
    • Latest Articles
    • Special Features
    • Colloquia
    • Collected Articles
    • PNAS Classics
    • Archive
  • Front Matter
  • News
    • For the Press
    • Highlights from Latest Articles
    • PNAS in the News
  • Podcasts
  • Authors
    • Information for Authors
    • Purpose and Scope
    • Editorial and Journal Policies
    • Submission Procedures
    • For Reviewers
    • Author FAQ

New Research In

Physical Sciences

Featured Portals

  • Physics
  • Chemistry
  • Sustainability Science

Articles by Topic

  • Applied Mathematics
  • Applied Physical Sciences
  • Astronomy
  • Computer Sciences
  • Earth, Atmospheric, and Planetary Sciences
  • Engineering
  • Environmental Sciences
  • Mathematics
  • Statistics

Social Sciences

Featured Portals

  • Anthropology
  • Sustainability Science

Articles by Topic

  • Economic Sciences
  • Environmental Sciences
  • Political Sciences
  • Psychological and Cognitive Sciences
  • Social Sciences

Biological Sciences

Featured Portals

  • Sustainability Science

Articles by Topic

  • Agricultural Sciences
  • Anthropology
  • Applied Biological Sciences
  • Biochemistry
  • Biophysics and Computational Biology
  • Cell Biology
  • Developmental Biology
  • Ecology
  • Environmental Sciences
  • Evolution
  • Genetics
  • Immunology and Inflammation
  • Medical Sciences
  • Microbiology
  • Neuroscience
  • Pharmacology
  • Physiology
  • Plant Biology
  • Population Biology
  • Psychological and Cognitive Sciences
  • Sustainability Science
  • Systems Biology

The origin of Neandertals

J. J. Hublin
PNAS published ahead of print September 15, 2009 https://doi.org/10.1073/pnas.0904119106
J. J. Hublin
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  1. Edited by Richard G. Klein, Stanford University, Stanford, CA, and approved August 6, 2009 (received for review April 14, 2009)

  • Article
  • Info & Metrics
  • PDF
Loading

Abstract

Western Eurasia yielded a rich Middle (MP) and Late Pleistocene (LP) fossil record documenting the evolution of the Neandertals that can be analyzed in light of recently acquired paleogenetical data, an abundance of archeological evidence, and a well-known environmental context. Their origin likely relates to an episode of recolonization of Western Eurasia by hominins of African origin carrying the Acheulean technology into Europe around 600 ka. An enhancement of both glacial and interglacial phases may have played a crucial role in this event, as well as in the subsequent evolutionary history of the Western Eurasian populations. In addition to climatic adaptations and an increase in encephalization, genetic drift seems to have played a major role in their evolution. To date, a clear speciation event is not documented, and the most likely scenario for the fixation of Neandertal characteristics seems to be an accretion of features along the second half of the MP. Although a separation time for the African and Eurasian populations is difficult to determine, it certainly predates OIS 11 as phenotypic Neandertal features are documented as far back as and possibly before this time. It is proposed to use the term “Homo rhodesiensis” to designate the large-brained hominins ancestral to H. sapiens in Africa and at the root of the Neandertals in Europe, and to use the term “Homo neanderthalensis” to designate all of the specimens carrying derived metrical or non-metrical features used in the definition of the LP Neandertals.

  • Acheulean
  • climate
  • Homo heidelbergensis
  • Homo sapiens
  • Pleistocene

Footnotes

  • 1To whom correspondence should be addressed. Email: hublin{at}eva.mpg.de
  • Author contributions: J.-J.H. wrote the paper.

  • The author declares no conflict of interest.

  • This article is a PNAS Direct Submission.

Next
Back to top
Article Alerts
Email Article

Thank you for your interest in spreading the word on PNAS.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
The origin of Neandertals
(Your Name) has sent you a message from PNAS
(Your Name) thought you would like to see the PNAS web site.
Citation Tools
The origin of Neandertals
J. J. Hublin
Proceedings of the National Academy of Sciences Sep 2009, pnas.0904119106; DOI: 10.1073/pnas.0904119106

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Request Permissions
Share
The origin of Neandertals
J. J. Hublin
Proceedings of the National Academy of Sciences Sep 2009, pnas.0904119106; DOI: 10.1073/pnas.0904119106
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Mendeley logo Mendeley

More Articles of This Classification

Biological Sciences

  • Highly disordered histone H1−DNA model complexes and their condensates
  • Thermodynamic favorability and pathway yield as evolutionary tradeoffs in biosynthetic pathway choice
  • SUMO protease SENP1 deSUMOylates and stabilizes c-Myc
Show more

Evolution

  • Genomic responses to selection for tame/aggressive behaviors in the silver fox (Vulpes vulpes)
  • Whole-genome comparison of endogenous retrovirus segregation across wild and domestic host species populations
  • Selection and gene flow shape genomic islands that control floral guides
Show more

Social Sciences

  • Movement kinematics drive chain selection toward intention detection
  • Generalized least squares can overcome the critical threshold in respondent-driven sampling
  • Neural basis of location-specific pupil luminance modulation
Show more

Anthropology

  • Movement kinematics drive chain selection toward intention detection
  • Generalized least squares can overcome the critical threshold in respondent-driven sampling
  • Neural basis of location-specific pupil luminance modulation
Show more

Related Content

  • Scopus
  • PubMed
  • Google Scholar

Cited by...

  • Wooden tools and fire technology in the early Neanderthal site of Poggetti Vecchi (Italy)
  • Early history of Neanderthals and Denisovans
  • New Middle Pleistocene hominin cranium from Gruta da Aroeira (Portugal)
  • Human evolution: a tale from ancient genomes
  • Reconstructing genetic history of Siberian and Northeastern European populations
  • Morphology and function of Neandertal and modern human ear ossicles
  • Mosaic evolution and the pattern of transitions in the hominin lineage
  • Neandertals revised
  • Unconstrained cranial evolution in Neandertals and modern humans compared to common chimpanzees
  • Postcranial morphology of the middle Pleistocene humans from Sima de los Huesos, Spain
  • Early Levallois technology and the Lower to Middle Paleolithic transition in the Southern Caucasus
  • Neandertal roots: Cranial and chronological evidence from Sima de los Huesos
  • How to build a Neandertal
  • A Paleogenomic Perspective on Evolution and Gene Function: New Insights from Ancient DNA
  • No known hominin species matches the expected dental morphology of the last common ancestor of Neanderthals and modern humans
  • Higher Levels of Neanderthal Ancestry in East Asians than in Europeans
  • Lipoxygenase pathways in Homo neanderthalensis: functional comparison with Homo sapiens isoforms
  • A High-Coverage Genome Sequence from an Archaic Denisovan Individual
  • Generation times in wild chimpanzees and gorillas suggest earlier divergence times in great ape and human evolution
  • Hominin cognitive evolution: identifying patterns and processes in the fossil and archaeological record
  • Strong reproductive isolation between humans and Neanderthals inferred from observed patterns of introgression
  • Terrestrial apes and phylogenetic trees
  • A Draft Sequence of the Neandertal Genome
  • Neanderthal genomics and the evolution of modern humans
  • Scopus (223)
  • Google Scholar

Similar Articles

You May Also be Interested in

Better understanding how the truffles reproduce has major implications for farmers, chefs, and foodies enamored with the expensive, pungent fungus. Image courtesy of Shutterstock/Vitalina Rybakova.
Inner Workings: The mysterious parentage of the coveted black truffle
Better understanding how the truffles reproduce has major implications for farmers, chefs, and foodies enamored with the expensive, pungent fungus.
Image courtesy of Shutterstock/Vitalina Rybakova.
PNAS QnAs with NAS foreign associate and metabolic engineer Sang Yup Lee
PNAS QnAs
PNAS QnAs with NAS foreign associate and metabolic engineer Sang Yup Lee
Researchers report a species of early bird with a combination of bird-like and dinosaur-like bone morphologies, and the structure of the bird’s shoulder girdle highlights the role of developmental plasticity in the early evolution of birds, according to the authors.
Dinosaur-like forms in early bird shoulders
Researchers report a species of early bird with a combination of bird-like and dinosaur-like bone morphologies, and the structure of the bird’s shoulder girdle highlights the role of developmental plasticity in the early evolution of birds, according to the authors.
Honey bee. Image courtesy of Vivian Abagiu (The University of Texas at Austin, Austin, TX).
Effect of glyphosate on honey bee gut
A study suggests that the herbicide glyphosate disrupts bee gut microbiota, increasing bees’ susceptibility to pathogens, and that glyphosate’s effects may contribute to the largely unexplained increase in honey bee colony mortality.
Image courtesy of Vivian Abagiu (The University of Texas at Austin, Austin, TX).
HIV. Image courtesty of Pixabay/typographyimages.
Ancient retrovirus and intravenous drug use
A study finds that a fragment of an ancient retrovirus, integrated in human ancestors before the emergence of Neanderthals, is found more frequently in people who contracted HIV and hepatitis C through intravenous drug use, compared with control populations.
Image courtesty of Pixabay/typographyimages.
Proceedings of the National Academy of Sciences: 115 (41)
Current Issue

Submit

Sign up for Article Alerts

Jump to section

  • Article
  • Info & Metrics
  • PDF
Site Logo
Powered by HighWire
  • Submit Manuscript
  • Twitter
  • Facebook
  • RSS Feeds
  • Email Alerts

Articles

  • Current Issue
  • Latest Articles
  • Archive

PNAS Portals

  • Classics
  • Front Matter
  • Teaching Resources
  • Anthropology
  • Chemistry
  • Physics
  • Sustainability Science

Information

  • Authors
  • Reviewers
  • Press
  • Site Map

Feedback    Privacy/Legal

Copyright © 2018 National Academy of Sciences.