New Research In
Physical Sciences
Social Sciences
Featured Portals
Articles by Topic
Biological Sciences
Featured Portals
Articles by Topic
- Agricultural Sciences
- Anthropology
- Applied Biological Sciences
- Biochemistry
- Biophysics and Computational Biology
- Cell Biology
- Developmental Biology
- Ecology
- Environmental Sciences
- Evolution
- Genetics
- Immunology and Inflammation
- Medical Sciences
- Microbiology
- Neuroscience
- Pharmacology
- Physiology
- Plant Biology
- Population Biology
- Psychological and Cognitive Sciences
- Sustainability Science
- Systems Biology
Human and natural influences on the changing thermal structure of the atmosphere
Edited by John M. Wallace, University of Washington, Seattle, WA, and approved August 8, 2013 (received for review March 20, 2013)

Significance
Observational satellite data and the model-predicted response to human influence have a common latitude/altitude pattern of atmospheric temperature change. The key features of this pattern are global-scale tropospheric warming and stratospheric cooling over the 34-y satellite temperature record. We show that current climate models are highly unlikely to produce this distinctive signal pattern by internal variability alone, or in response to naturally forced changes in solar output and volcanic aerosol loadings. We detect a “human influence” signal in all cases, even if we test against natural variability estimates with much larger fluctuations in solar and volcanic influences than those observed since 1979. These results highlight the very unusual nature of observed changes in atmospheric temperature.
Abstract
Since the late 1970s, satellite-based instruments have monitored global changes in atmospheric temperature. These measurements reveal multidecadal tropospheric warming and stratospheric cooling, punctuated by short-term volcanic signals of reverse sign. Similar long- and short-term temperature signals occur in model simulations driven by human-caused changes in atmospheric composition and natural variations in volcanic aerosols. Most previous comparisons of modeled and observed atmospheric temperature changes have used results from individual models and individual observational records. In contrast, we rely on a large multimodel archive and multiple observational datasets. We show that a human-caused latitude/altitude pattern of atmospheric temperature change can be identified with high statistical confidence in satellite data. Results are robust to current uncertainties in models and observations. Virtually all previous research in this area has attempted to discriminate an anthropogenic signal from internal variability. Here, we present evidence that a human-caused signal can also be identified relative to the larger “total” natural variability arising from sources internal to the climate system, solar irradiance changes, and volcanic forcing. Consistent signal identification occurs because both internal and total natural variability (as simulated by state-of-the-art models) cannot produce sustained global-scale tropospheric warming and stratospheric cooling. Our results provide clear evidence for a discernible human influence on the thermal structure of the atmosphere.
Footnotes
- ↵1To whom correspondence should be addressed. E-mail: santer1{at}llnl.gov.
Author contributions: B.D.S., C.B., C.A.M., S.S., T.M.L.W., K.E.T., P.W.T., and F.J.W. designed research; B.D.S., J.F.P., C.B., C.A.M., P.J.G., G.A.S., and C.D. performed research; B.D.S., C.B., C.A.M., S.S., T.M.L.W., G.A.S., K.E.T., and P.W.T. analyzed data; B.D.S., C.B., S.S., T.M.L.W., G.A.S., N.P.G., and P.W.T. wrote the paper; and C.A.M. and F.J.W. provided key satellite datasets.
The authors declare no conflict of interest.
This article is a PNAS Direct Submission.
This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10.1073/pnas.1305332110/-/DCSupplemental.
Freely available online through the PNAS open access option.














