New Research In
Physical Sciences
Social Sciences
Featured Portals
Articles by Topic
Biological Sciences
Featured Portals
Articles by Topic
- Agricultural Sciences
- Anthropology
- Applied Biological Sciences
- Biochemistry
- Biophysics and Computational Biology
- Cell Biology
- Developmental Biology
- Ecology
- Environmental Sciences
- Evolution
- Genetics
- Immunology and Inflammation
- Medical Sciences
- Microbiology
- Neuroscience
- Pharmacology
- Physiology
- Plant Biology
- Population Biology
- Psychological and Cognitive Sciences
- Sustainability Science
- Systems Biology
West African monsoon dynamics inferred from abrupt fluctuations of Lake Mega-Chad
Edited by Thomas Dunne, University of California, Santa Barbara, CA, and approved May 11, 2015 (received for review September 12, 2014)

Significance
North Africa was wetter 15,000–5,000 years ago than today, with wetlands and lakes formed in the Sahara due to an enhanced monsoon. We reconstruct the lake-level history of Lake Mega-Chad, when it was the largest African lake, and demonstrate that this humid period ended abruptly 5,000 years ago, indicating that the African monsoon exhibits a nonlinear response to insolation forcing. The northern basin of Lake Mega-Chad, currently the world’s greatest dust source, became dry around 1,000 years ago. Prior to that time dust output from the northern basin would have been limited, and suggestions that this dust plays an important role in fertilizing Atlantic and Amazonian ecosystems are either overstated or only true for the last thousand years.
Abstract
From the deglacial period to the mid-Holocene, North Africa was characterized by much wetter conditions than today. The broad timing of this period, termed the African Humid Period, is well known. However, the rapidity of the onset and termination of the African Humid Period are contested, with strong evidence for both abrupt and gradual change. We use optically stimulated luminescence dating of dunes, shorelines, and fluviolacustrine deposits to reconstruct the fluctuations of Lake Mega-Chad, which was the largest pluvial lake in Africa. Humid conditions first occur at ∼15 ka, and by 11.5 ka, Lake Mega-Chad had reached a highstand, which persisted until 5.0 ka. Lake levels fell rapidly at ∼5 ka, indicating abrupt aridification across the entire Lake Mega-Chad Basin. This record provides strong terrestrial evidence that the African Humid Period ended abruptly, supporting the hypothesis that the African monsoon responds to insolation forcing in a markedly nonlinear manner. In addition, Lake Mega-Chad exerts strong control on global biogeochemical cycles because the northern (Bodélé) basin is currently the world’s greatest single dust source and possibly an important source of limiting nutrients for both the Amazon Basin and equatorial Atlantic. However, we demonstrate that the final desiccation of the Bodélé Basin occurred around 1 ka. Consequently, the present-day mode and scale of dust production from the Bodélé Basin cannot have occurred before 1 ka, suggesting that its role in fertilizing marine and terrestrial ecosystems is either overstated or geologically recent.
Footnotes
- ↵1To whom correspondence should be addressed. Email: simon.armitage{at}rhul.ac.uk.
Author contributions: S.J.A., C.S.B., and N.A.D. designed research, performed research, analyzed data, and wrote the paper.
The authors declare no conflict of interest.
This article is a PNAS Direct Submission.
This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10.1073/pnas.1417655112/-/DCSupplemental.
Citation Manager Formats
More Articles of This Classification
Physical Sciences
Related Content
- No related articles found.
Cited by...
- No citing articles found.














