Molecular basis for the substrate specificity of quorum signal synthases

Shi-Hui Donga,d, Nicole D. Franeb, Quin H. Christensena,†, E. Peter Greenberga, Rajesh Nagarajana,b, and Satish K. Naira,d,e,2

*Department of Biochemistry, University of Illinois at Urbana–Champaign, Urbana, IL 61801; †Department of Chemistry and Biochemistry, Boise State University, Boise, ID 83725; ‡Department of Microbiology, University of Washington, Seattle, WA 98195; §Institute for Genomic Biology, University of Illinois at Urbana–Champaign, Urbana, IL 61801; and Center for Biophysics and Computational Biology, University of Illinois at Urbana–Champaign, Urbana, IL 61801

Edited by Jerrold Meinwald, Cornell University, Ithaca, NY, and approved July 14, 2017 (received for review March 31, 2017)

In several Proteobacteria, LuxI-type enzymes catalyze the biosynthesis of acyl–homoserine lactones (AHL) signals using S-adenosyl-L-methionine and either cellular acyl carrier protein (ACP)-coupled fatty acids or CoA-aryl/acyl moieties as progenitors. Little is known about the molecular mechanism of signal biosynthesis, the basis for substrate specificity, or the rationale for donor specificity for any LuxI member. Here, we present several cocystal structures of BjaI, a CoA-dependent LuxI homolog that represent views of enzyme complexes that exist along the reaction coordinate of signal synthesis. Complementary biophysical, structure-function, and kinetic analysis define the features that facilitate the unusual acyl conjugation with S-adenosyl-L-methionine (SAM). We also identify the determinant that establishes specificity for the acyl donor and identify residues that are critical for acyl/aryl specificity. These results highlight how a prevalent scaffold has evolved to catalyze quorum signal synthesis and provide a framework for the design of small-molecule antagonists of quorum signaling.

quorum sensing | homoserine lactone | crystallography

Bacteria can engage in a form of cell-to-cell communication called quorum sensing via the synthesis and subsequent perception of chemical signals (1, 2). Quorum sensing allows for the coordination of gene expression in response to changes in population density and is used by many bacterial species to regulate behaviors such as motility, virulence, and antibiotic production (3). For example, quorum sensing modulates maturation of the protective biofilm that provides immune and antibiotic resistance in the opportunistic pathogen Pseudomonas aeruginosa (4, 5), regulates the biosynthesis of an exopolysaccharide virulence factor in the plant pathogen Pantoea stewartii (the causative agent for Stewart’s Wilt disease) (6), and is involved in the control of swimming and swarming motility in the zoonotic agent Yersinia enterocolitica (7). Disruption of quorum signaling by either natural or synthetic means is shown to be detrimental to bacterial pathogenicity, without causing lethality (8).

All known quorum-signaling networks use three critical components: a means for generating the signal (known as autoinducers), receptors that can detect the signal, and a regulator of genes, generally including those for the production of the signal itself (positive feedback loop) (9). Bacteria can intracellularly synthesize their cognate autoinducer, which is then released into the surrounding environment in a passive or active manner (10, 11). The environmental concentration of the inducer grows with an increase in population density, until above a “quorate” threshold at which the corresponding concentration of inducer induces a coordinated response in gene expression by activation of the signal receptor (12).

Commonly used signals among many species of Proteobacteria consist of cell-permeable fatty acyl–homoserine lactones (13). The acyl chain lengths of these molecules vary between 4 and 18 carbons and also differ in backbone saturation and/or oxidation state at the β-carbon, depending on the specific quorum-signaling system (2). Dediacted LuxI family member N-acyl–homoserine lactone (AHL) synthases produce these signaling molecules (14). At signal levels that exceed the threshold concentration for perception by the LuxR transcriptional response regulators, the LuxR–signal complex regulates the expression of the genes in the corresponding regulon (15). Both the LuxI AHL synthase and LuxR signal receptor show specificity for their cognate AHL signal, and different signals are generated and perceived by specific, independent proteins (13).

To date, three different AHL synthase classes have been identified, including the LuxI (12), LuxM/AinS (16, 17), and HdhS families (18). The identification of HdhS from Pseudomonas fluorescens as an AHL synthase is tenuous and based on in vitro experiments using recombinant protein (19). Of these different classes, the LuxI synthase from Vibrio fischeri was the first to be identified, and the LuxI family is among the most widespread and the most widely studied. LuxI synthases catalyze the transfer of an acyl group bound to acyl carrier protein (ACP) from fatty acid biosynthesis to S-adenosyl-L-methionine (SAM) (20, 21). Kinetic studies of RhlI, a LuxI-type AHL synthase from P. aeruginosa, are consistent with a sequential ordered mechanism with SAM binding before the acyl–ACP (22). The acyl transfer reaction yields an acyl–SAM intermediate, which then undergoes lactonization to form the N-acyl–homoserine lactone.

Analysis of signals produced by the soil bacterium Bradyrhizobium japonicum identified the branched fatty acyl-derived isovalerate–homoserine lactone as a signal produced by the LuxI homolog BjaI and perceived by the BjaR receptor (23). Importantly, BjaI is demonstrated to exclusively use isovaleryl–CoA as a substrate, and no activity could be detected using isovaleryl–ACP. Sequence analysis of BjaI with other CoA-dependent synthases, RpaI (which generates p-coumaryl–homoserine lactone) (24) and BraI (generates p-cinnamoyl–homoserine lactone) (25), shows that these enzymes are closely related to each other (∼50% sequence identity) and only distantly related to ACP-dependent LuxI enzymes (∼30% sequence identity) (26).

Since the first identification of the V. fischeri LuxI nearly two decades ago, AHL synthases have been subject to extensive genetic, biochemical, and biotechnological investigations (17, 27). However, detailed mechanistic characterization has been limited

Significance

These first structures of a homoserine-lactone quorum-signal synthase bound to various substrates and analogs help to provide a molecular rationale for understanding acyl chain specificity. Based on the structural data, we show how different clades of signal synthases can accommodate their cognate acyl–CoA ligands. Lastly, the elucidation of the reaction mechanism for the signal synthase may provide a rationale for the design of therapeutically small-molecule antagonists.
due to a lack of structure-function studies of any LuxI member with cognate substrates. Unliganded structures of the acyl-ACP-dependent LuxI enzymes, P. aeruginosa LasI [producing 3-oxo-C12 homoserine lactone (HSL)] (28) and Pantoea stewartii EsI (producing 3-oxo-C8 HSL) (29), identify the overall fold of these enzymes. Recent cocrystal structures of Burkholderia glumae ToI (producing C8 HSL) identified a small molecule-ligand-binding pocket (30), but the physiological relevance of the pocket is unclear.

Here, we present detailed biochemical and kinetic studies of BjAI from B. japonicum, along with several high-resolution crystal structures of complexes with substrate analogs, products, and a covalent isovaleryl-SAH intermediate that does not undergo lactone formation. Steady state kinetic analysis of structure-guided site-specific variants provides insights into the role of active-site residues in catalysis. These combined data provide a molecular framework for nearly two decades worth of prior results of a reaction mechanism that is unique among other enzymes that use SAM.

Results
Kinetic Characterization of Recombinant BjAI. Prior mass spectrometric analysis of metabolites from cultured supernatants of B. japonicum demonstrated activation of quorum signaling with isovaleryl-CoA (23), consistent with gene regulation induced through the formation of an isovaleryl-homoserine lactone (Fig. L4). Purified, recombinant BjAI can catalyze the formation of the AHL signal using isovaleryl-CoA and S-adenosylmethionine as substrates (Fig. 1B). To determine the kinetic parameters for wild-type and site-specific variants of BjAI using isovaleryl-CoA as a substrate, we used a colorimetric assay developed by Tipton and colleagues (Fig. 1C) (22). The enzyme carried out acylation of SAM with catalytic efficiency (k_cat/K_m) of 2.14 × 10^3 M^-1 s^-1, which is a consequence of the slow turnover number (k_cat). The catalytic efficiency is within an order of magnitude to that observed for ACP-dependent AHL synthases, such as RhI (22) and BmalI (26), with the appropriate ACP-linked substrate, and is consistent with a lack of selection for catalytic efficiency due to the small concentration of produced signal that is required (25). Kinetic parameters for BjAI and each of the active-site variants can be found in Table 1.

Determination of Substrate Scope. We chemically synthesized a panel of branched acyl-CoA substrates and tested each of these as substrates for the production of the corresponding AHL (Fig. 2A and SI Appendix, Figs. S1–S12). BjAI was relatively tolerant for the acyl donor and could accommodate longer substrates, including the C6-branched methylvaleryl-CoA and the C7-branched methylhexanoyl-CoA, as well as the shorter C4-branched isobutyryl-CoA (Fig. 2B). This latter substrate is shortened by one methylene relative to isovaleryl-CoA and was not as efficiently used by BjAI as the longer substrates up to methylhexanoyl-CoA. In contrast, branched chains that were longer than C8 (i.e., neodecanoyl-CoA) were not substrates for the enzyme. These data suggest that the acyl-binding pocket for BjAI can use a range of branched substrates of length consisting of up to, but not exceeding, C7. To further delineate acyl chain length tolerance, we determined the kinetic parameters of BjAI against a panel of eight different acyl-CoAs (SI Appendix, Table S1). Catalytic efficiency was notably compromised as the linear acyl chain length increased or decreased, and no synthase activity could be detected using acyl chains of length C8 or longer. Notably, for BjAI substrates, chain length was more critical than the presence of branching, as butyryl-CoA was used ~3.5 times better than isobutyryl-CoA. These data all indicate the BjAI can catalyze the production of AHLS using acyl-CoA substrates within the range of four to six carbons, albeit with much lower catalytic efficiency than with isovaleryl-CoA.

Cocrystal Structures of BjAI Identify the Ligand-Binding Sites. To delineate the binding pockets for both substrates SAM and isovaleryl-CoA, we determined the crystal structures of BjAI in complex with various combinations of ligands (see SI Appendix, Table S4, for relevant statistics). The core structure of BjAI represents a distal subclade of the GNAT superfamily, despite a lack of any notable sequence similarities between the AHL synthases and GNAT enzymes (32). The overall topology consists of a central core of seven β-strands, flanked by α-helices, and defines the protein fold as a phosphopantetheine-binding domain (Fig. 3A). A structure-based search using the DALI server (33) identifies the closest structural homologs as the ACP-dependent AHL synthases LasI (PDB Code: 1RO5; rmsd of 2.2 Å over 182 aligned Cα atoms) (28), ToI (PDB Code: 3P2F; rmsd of 2.0 over 167 aligned Cα atoms) (30), and EsI (PDB Code: 1KZF; rmsd of 2.3 over 169 aligned Cα atoms) (29). While AHL synthases share structural

![Fig. 1. The AHL synthase reaction mechanism.](image-url)

A Overall reaction scheme showing the BjAI-catalyzed production of isovaleryl-AHL from isovaleryl-CoA and S-adenosylmethionine via a presumptive isovaleryl-SAM intermediate. **B** Formation of isovaleryl-AHL analyzed by HPLC analysis (green trace). The elution profiles for the isolated standards are shown in the panels above. **C** Michaelis-Menten curve obtained by measuring CoA production over varying concentrations of isovaleryl-CoA (IV-CoA), at a fixed concentration of 300 μM S-adenosylmethionine. The slight decrease in initial rate may be due to substrate inhibition, which has previously been observed for ACP-dependent AHL synthases (31).

Table 1. Steady state kinetic parameters for wild-type and variant BjAI

<table>
<thead>
<tr>
<th>BjAI</th>
<th>k_cat (s^-1) x 10^-3</th>
<th>K_m (M) x 10^-5</th>
<th>k_cat/K_m (M^-1s^-1) x 10^2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wild type</td>
<td>45.00 ± 2.67</td>
<td>2.10 ± 0.40</td>
<td>21.43 ± 4.33</td>
</tr>
<tr>
<td>Trp34→Ala</td>
<td>1.83 ± 0.10</td>
<td>1.80 ± 0.30</td>
<td>1.02 ± 0.18</td>
</tr>
<tr>
<td>Asp46→Ala</td>
<td>2.17 ± 0.33</td>
<td>11.00 ± 2.20</td>
<td>0.20 ± 0.05</td>
</tr>
<tr>
<td>Met78→Ala</td>
<td>2.17 ± 0.03</td>
<td>1.80 ± 0.30</td>
<td>1.12 ± 0.20</td>
</tr>
<tr>
<td>Trp101→Ala</td>
<td>1.67 ± 0.02</td>
<td>1.90 ± 0.10</td>
<td>0.88 ± 0.05</td>
</tr>
<tr>
<td>Trp101→Phe</td>
<td>1.17 ± 0.17</td>
<td>6.00 ± 2.80</td>
<td>0.20 ± 0.10</td>
</tr>
<tr>
<td>Arg103→Ala</td>
<td>1.33 ± 0.02</td>
<td>2.00 ± 0.30</td>
<td>0.67 ± 0.08</td>
</tr>
<tr>
<td>Tyr104→Ala</td>
<td>1.33 ± 0.08</td>
<td>2.10 ± 0.50</td>
<td>0.63 ± 0.15</td>
</tr>
<tr>
<td>Met139→Ala</td>
<td>4.17 ± 0.33</td>
<td>3.40 ± 1.30</td>
<td>1.23 ± 0.48</td>
</tr>
<tr>
<td>Trp142→Ala</td>
<td>2.33 ± 0.17</td>
<td>10.10 ± 1.60</td>
<td>0.23 ± 0.05</td>
</tr>
<tr>
<td>Trp142→Phe</td>
<td>11.50 ± 5.67</td>
<td>26.00 ± 17.00</td>
<td>0.44 ± 0.37</td>
</tr>
<tr>
<td>Trp143→Ala</td>
<td>3.17 ± 0.33</td>
<td>5.40 ± 0.70</td>
<td>0.59 ± 0.10</td>
</tr>
<tr>
<td>Trp143→Phe</td>
<td>1.50 ± 0.17</td>
<td>8.00 ± 1.20</td>
<td>0.19 ± 0.02</td>
</tr>
<tr>
<td>Phe147→Ala</td>
<td>6.67 ± 0.33</td>
<td>3.90 ± 0.60</td>
<td>1.71 ± 0.28</td>
</tr>
</tbody>
</table>
homology of bona fide N-acetyltransferases, the latter enzymes are easily distinguished by their smaller size of roughly 150 residues (34). There are notable differences in the N-terminal regions between BjaI and the three other AHL synthases that have been characterized, and this may be reflective of differences in substrate binding between these enzymes (SI Appendix, Fig. S13) (35).

The cocrystal structures of BjaI with SAH or MTA define the binding pocket of SAM as a pocket located between helices α1 and α2 and supported by a loop located between strands β6 and β7 (Fig. 3B). A comparison of the SAH- and MTA-bound structures of BjaI with that of SAM + isopentyl-CoA reveals a common binding orientation with only a small movement near the sulfur atom, which is necessary to accommodate the methyl group in SAM (Figs. 3 C–E). The adenine ring is stacked in a hydrophobic pocket and is flanked by residues Thr36 and Leu37 on one side and Met78, Val82, and Phe83 on the other side. The N6 of the adenine is within hydrogen-bonding distance to Asp46, and the O2’ of the ribose is in proximity to Thr36, but the geometry of the interaction is less optimal for hydrogen bonding. The 3-amino–3-carboxypropyl moiety is stabilized through numerous contacts with the polypeptide, including interactions between the α-amine and the backbone carbonyl oxygen of Ile138, while the α-carboxylate is held in place through interactions with the side chain α1 and backbone amide of Arg103 and side chain of Ser102, respectively. BjaI residues Phe83 and Ile183 direct the orientation of the 3-amino–3-carboxylpropyl ring is stabilized through a stacking interaction with the side chain of Trp34. Many of these residues are conserved across various AHL synthases. The Asp46→Ala variant has a significant effect on both

Fig. 2. Substrate scope of BjaI. (A) Structures of various branched acyl-CoA produced by semisynthesis. (B) End-point liquid-chromatography–mass spectrometric analysis showing the production of acyl-homoserine lactone (in blue) from the corresponding acyl-CoA (in red) using BjaI. Experiments were conducted in triplicate, and error bars represent the SD between measurements.

Fig. 3. Cocrystal structures of BjaI. (A) Ribbon diagram of BjaI in complex with methyl thioadenosine (MTA, in pink) and isovaleryl-CoA (IV-CoA, in green). Secondary structure elements are demarcated, and helix α1, which is mobile in the absence of nucleotide, is colored in deep red. (B) Active-site pocket showing the two cavities that accommodated substrates SAM (in pink) and acyl-CoA (isopentyl-CoA, in green). Trp34 (in yellow) is located adjacent to both cavities. (C–F) Simulated annealing difference Fourier maps (Fo-Fe) of BjaI complexes contoured to 2.5σ (blue) showing the bound ligands and important active-site residues. Protein residues are shown in gray, MTA/SAM is shown in pink, and the acyl-CoA is shown in green.

k_{cat} and K_m, resulting in a near 100-fold decrease in catalytic efficiency (0.20×10^3 M$^{-1}$s$^{-1}$), while the Met78→Ala variant shows a 20-fold decrease in catalytic efficiency (1.21×10^4 M$^{-1}$s$^{-1}$), relative to the wild-type enzyme (Table 1 and SI Appendix, Fig. S14).

Structures of BjaI with either isovaleryl-CoA or the inert isopentyl-CoA identify the phosphopantetheine and acyl chain-binding pockets, as well as the determinants for phosphoadenosine binding found in the CoA-specific AHL synthases (Figs. 3 E and F). A prominent feature in BjaI is a β-bulge between two invariant residues, Ser102 and Arg103 in strand β4, which forms the base of a pocket enclosed by strands β4, β5, and β7 and helices α4 and α6. This pocket defines the phosphopantetheine and acyl chain-binding sites, consistent with prior modeling studies on EsaI (29) and structures of Tofl bound to a small molecule (30). The oxygen atom of the thioester is within interaction distance from the backbone amides of Arg103 and Tyr104, which presumably stabilizes the oxyanion that is formed during the attack of the SAM α-amine onto the thioester carbon. Both Arg103→Ala and Tyr104→Ala variants displayed over 33-fold slower turnover (k_{cat}) than that of the wild-type BjaI (1.33×10^{-3} s$^{-1}$ vs. 45.00 $\times 10^{-3}$ s$^{-1}$) (Table 1 and SI Appendix, Fig. S14).

Numerous residues interact with the pantothenic acid, including the backbone amide of Asp112 and the side chain of Arg116 with the phosphate and interactions of the two keto oxygen atoms and the backbone amide of Val106 and the side chain of Arg32. The CoA-binding tunnel is lined with numerous hydrophobic residues, including Ile27, Phe28, Trp34, Trp34, Tyr104, Val106, and Trp143. In the cocrystal structures with MTA or SAH, without any bound CoA, the phosphopantetheine tunnel is partially blocked by the side chain of Arg32. A similar grouping of hydrophobic residues lines the putative phosphopantetheine-binding pockets of LasI, EsaI, and Tofl.

Notably, binding of the acyl-CoA is largely supported through π-stacking interactions between the adenine ring and Trp42 located at the beginning of helix α5. The residue, in turn, stacks with the following residue, Trp43, resulting in the formation of an “indole platform” that provides a foundation for binding to the adenine ring.
of CoA (Figs. 3 E and F). The Trp142→Ala, Trp142→Phe, Trp143→Ala, and Trp143→Phe variants all demonstrated significant negative effect on both k_{cat} and K_m, resulting in over 93-, 48-, 36-, and 112-fold drops in the catalytic efficiency, respectively (Table 1 and SI Appendix, Fig. S14). Two residues, Arg108 and Arg111, located in the loop between strand 4 and helix 4 that is positioned at the opposite periphery from the “indole platform,” orientate the pantothenic acid into the enzyme active site. Three of these four residues are conserved across all of the characterized CoA-dependent AHL synthases, with the exception of Arg108, which is a Pro in all other homologs. It is not surprising that these residues are not shared with the ACP-dependent enzymes, which would interact with a protein-linked substrate.

Framework for Understanding Acyl Chain Specificity. The branched 3-methylbutanoic acid moiety in cocystal structures with isovaleryl-CoA or the inert analog isopentyl-CoA (Fig. 3) establishes the location of the acyl chain-binding site in BjaI. The branched acyl chain is enсlosed in a hydrophobic pocket surrounded by enzyme residues Tyr104, Met139, and Trp143. The top of this pocket is closed off by Trp101 and Phe147, providing a rationale for why BjaI cannot use acyl chains that are longer than C7. The Trp142→Ala, Trp142→Phe, Met139→Ala, Trp143→Ala, Trp143→Phe, and Phe147→Ala mutations result in 24, 107, 17, 36, 112, and 12-fold decreases in k_{cat}, respectively (Table 1 and SI Appendix, Fig. S14). The volume of the binding pocket [136 Å3 as calculated using the CASTp server (36)] is sufficiently wide to accommodate isovalerate, and preference for the branched chain may be due to favorable van der Waals contacts with the residues in this pocket.

A comparison of the BjaI cocystal structures with those of ligand-free LasI (specific for 3-oxo-C12 HSL), EslI (specific for 3-oxo-C6 HSL), and the small-molecule-bound structure of TofI (specific for C8 HSL) offers insights into the basis for acyl chain preferences (SI Appendix, Fig. S15). A view parallel to the axis of the pantothenic acid and 3-methylbutanoate in the BjaI cocystal structure shows that many of the residues that line the sides of the acyl chain-binding cavity are either largely conserved or substituted with similar residues in all of the AHL synthase structures. These include Tyr104 (Phe in LasI, EslI and TofI, Met139 (Thr in LasI, and TofI, and Val in EslI), and Trp143 (Met in EslI and TofI, Val in LasI)). However, the residues at the top of the pocket are highly divergent, resulting in pockets that vary considerably in volume. For example, the aforementioned Trp101/Phe147 that encapsulates the pocket in BjaI to restrict binding of acyl chains longer than C8 is substituted in each of the other enzymes that use longer chain substrates. Notably, Ala137 in BjaI is an aliphatic residue among Phe variants all demonstrated significant negative effect on both k_{cat} and K_m, resulting in over 93-, 48-, 36-, and 112-fold drops in the catalytic efficiency, respectively (Table 1 and SI Appendix, Fig. S14). An equivalent Trp is conserved across all CoA- and ACP-dependent AHL synthases where it is located either in helix α2 or loop that follows. This region of AHL synthases is highly mobile, and the mobile regions near the binding site become ordered upon SAM binding, which confers the orientation of the region harboring Trp34 to establish the pockets for acyl-CoA/ACP.

Enzyme-Bound Isovalerate–SAH Intermediate. Prior transient-state kinetic data, as well as substrate scope studies, established that formation of the homoserine lactone product occurs through an acyl–SAM intermediate (37). Additionally, initial velocity studies with the ACP-dependent RhII showed that SAH was a pseudo-substrate that could not undergo acylation, but induced the hydrolysis of the butyryl–ACP substrate (37). The difference in activity was attributed to alterations in binding mode, resulting in a suboptimal orientation of SAH in the enzyme active site. However, as our structural data demonstrate that SAM, SAH, and MTA all bind in essentially identical conformations, we sought to explore more whether the BjaI pathway is capable of generating an acyl–SAH intermediate. This intermediate lacks a leaving group at the sulfide and, consequently, cannot undergo lactonization. Surprisingly, a time-course analysis of reaction products using isovaleryl-CoA and SAH reveals the buildup of an intermediate with a mass consistent with that of isovaleryl–SAH (Fig. 4A).

By carrying out crystallization of BjaI with isovaleryl-CoA and SAH, we were able to determine a 1.8Å-resolution cocystal structure with clear and obvious electron density corresponding to isovaleryl-SAH conjugate at the active site (Fig. 4B). In the structure, the SAH moiety of the adduct is situated nearly identically with the location of the SAM/MTA, but the isovalerate keto group is shifted 2 Å away to form an amide linkage with the α-amine of SAH. The position of the acyl chain does not shift considerably, consistent with the selectivity of the acyl chain-binding pocket of AHL synthases. The isovaleryl-SAH conjugate is oriented linearly across the two pockets, and, consequently, the carbonyl oxygen shifts still retain interactions with the backbone amides of Arg103 and Tyr104. Notably, a superposition of the isovaleryl–SAH-bound structure with that of SAH alone reveals significant differences in the orientation of the 3-amino-3-carboxypropyl (Fig. 4C). In the isovaleryl–SAH complex the α-carbonate oxygen is now positioned to be nearly in line with the sulfate and adjacent methylene carbon and positioned roughly 4.4 Å away from this methylene carbon. In structures with just SAH or SAM, the angle between the α-amine, α-carbon, and α-carboxylate carbon of the ligand is nearly 5° smaller than that for the equivalent atoms in the acyl–SAH complex. The reorganization induced by SAH/SAM acylation may facilitate subsequent lactonization.

Structure-Based Classification of AHL Synthases. To further characterize the diversity of and relationships among AHL synthases, we generated a sequence similarity network using the toolkit provided by the Enzyme Function Initiative (38). Using a default cutoff E value (significance threshold) of 10^{-2} and the primary sequence of BjaI as a seed sequence, a total of 934 sequences were culled from UniProt (represented as circles/nodes in Fig. 5). Each edge connection between two different nodes represents a similarity between the two corresponding protein sequences set to a cutoff value. A sequence alignment cutoff of at least 45% yielded 18 different groups, which clustered almost entirely based on organizational class (Fig. 5A). Cluster 1 consists of three subclusters and contains several of the biochemically characterized CoA-dependent AHL synthases, including BjaI (cluster 1a), RpaI, and Bral (both in cluster 1b). A more stringent network with a sequence alignment cutoff of at least 50% yields the network shown in Fig. 5B. This network includes all presumed CoA-dependent AHL
that is necessary for CoA-binding, and se-
of β-lactones. $K_s = k_{cat}/K_m = 9.97 \times 10^{-2}$ M$^{-1}$ s$^{-1}$ for octanoyl-ACP ($k_{cat} = 2.07 \times 10^{-3}$ s$^{-1}$; $K_m = 10.02 \times 10^{-6}$ M; $k_{cat}/K_m = 2.07 \times 10^{-4}$ M$^{-1}$ s$^{-1}$) suggests that the acyl-CoA is the preferred substrate for MesI (Fig. 5D). The difference in efficiency for the acyl-CoA substrate relative to the acyl-ACP is roughly comparable in range to that observed for the ACP-depen-
dent AHL synthase RhlI using a CoA-linked substrate (39). These data suggest that a canonical “indole platform” is not a strict requirement for acyl-CoA utilization.

Discussion

Multiple sequence alignments of LuxI-type enzyme with different acyl chain specificities had identified several conserved residues located in four blocks, which are presumed to function in recognition of SAM and/or ACP (27, 35). The function of each of these residues, which constitute the “signature” sequences for AHL synthases, can be reconciled in the context of the structures and associated data presented here. The first block contains the strictly conserved Arg22, Phe28, and Trp34 located in helix $\alpha2$ and the following loop. This region is highly mobile in the absence of SAM, and binding of this ligand fixes the location of these residues, including Trp34 that defines the base of the acyl chain-binding pocket. The second and third signature blocks consist of residues Asp46, Arg69, and Arg103, and these residues are all located in the proximity of the adenine ring of the bound SAM, although only Asp66 and Arg103 are within contact distance of the base. A fifth conserved residue, Glu100, is located near a region clustered with several basic residues, including Met139 and Trp143. Notably, Thr142 of LasI and Thr140 in EsaI occupy a lo-
calization in helix $\alpha2$ and the following loop. This region is highly mobile in the absence of SAM, and binding of this ligand fixes the location of these residues, including Trp34. The latter mechanism (in pink) and active-site residues (in gray). Note the change in the orientation of the carboxylate, which would facilitate lactone formation. (D and E) Proposed mechanisms for the breakdown of the acyl-SAH intermediate to form the lactone product via a (D) concerted S_2-like mechanism or (E) distributive $E2$-type mechanism. The former mechanism occurs through a more favorable orbital overlap.

synthases, which cluster based on predicted substrate preference (SI Appendix, Fig. S18-S21). To test the hypothesis that nodes in clusters 1c (SI Appendix, Fig. S20) and 2 (SI Appendix, Fig. S21) represent bona fide CoA-dependent AHL synthases, we carried out biochemical characterization of representative members from each cluster. Notably, sequences in each of these clusters lack the canonical “indole platform” that is necessary for CoA-binding, and sequences on cluster 1c have a Phe/Trp replacement, while the second and third signature blocks consist of residues Asp46, Arg69, and Arg103, and these residues are all located in the proximity of the adenine ring of the bound SAM, although only Asp66 and Arg103 are within contact distance of the base. A fifth conserved residue, Glu100, is located near a region clustered with several basic residues, including Met139 and Trp143. Notably, Thr142 of LasI and Thr140 in EsaI occupy a location that is normally a small aliphatic residue in most other AHL synthases, and mutational analysis of EsaI suggests that the Thr accounts for the altered preference for substrates with oxidation at the β-carbon. The BjaI coxylase structures support the role for a Thr at this position for recognition of 3-oxo substrates.

The biosynthetic activity of the ACP-dependent AHL synthases requires a substrate bound to a protein cofactor, and a putative binding site for the ACP has been proposed based on modeling studies (28). As most protein interactions with ACPs are mediated through electrostatics, this putative binding site was identified using the latest near a region clustered with several basic residues, including Arg154, Arg161, Lys167, and Arg172, most of which are conserved across other ACP-dependent synthases (SI Appendix, Fig. S13).

Fig. 4. Observation of the acyl-SAH intermediate. (A) HPLC analysis of the reaction time course demonstrating the production of a covalent isovaleryl-SAH inter-
mediate (elution time of 15 min) from SAH (elution time near 5 min). The identity of all products was confirmed by mass spectrometry. (B) Simulated annealing differ-
ence Fourier maps (Fo-Fc) of BjaI complexes contoured to 2.5σ (blue) showing the bound isovaleryl-SAH intermediate (in pink) and active-site residues (in gray).

Fig. 5. Structure-based classification of AHL synthases. (A and B) Sequence similarity network illus-
trating the relationship among different AHL synthases. (A) Alignment cutoff of at least 45% yielded 18 different clusters, which clustered almost entirely based on organosomal class, while (B) a more stringent cutoff of at least 50% yields the network that is clustered based on predicted substrate preference. The CoA-dependent AHL synthases can be further subdivided into four clades based on the CoA-linked acyl donor. (C) Divergence in sequence among the different CoA-dependent clade sequences near the “indole platform.” (D) Michaelis-Menten curve obtained by measuring octanoyl-CoA production by MesI over varying concentrations of either octanoyl-CoA (black curve) or octanoyl-ACP (red curve), at a fixed concentration of 1 mM S-adenosylmethionine.

Dong et al.
Mutational analysis confirms a role for several of these residues in catalysis, presumably via engagement of the ACP (28). The equivalent residues in BjaJ are not cationic, but are located directly adjacent to the phosphoaspartate, providing further support for the modeling and mutational studies.

The structure of BjaJ in complex with isovaleryl-SAH reveals a realignment of the 3-amino–3-carboxylpropyl moiety likely occurs following acylation, resulting in a near-5° increase in the bond angle at the α-carbon. This realignment is due to the loss of favorable electrostatic interactions between the negatively charged carboxylate and the positively charged amino group of SAM upon formation of the acyl-SAM, which does not contain a charged amine. Consequently, acylation activates the substrate for ligation by positioning the attacking carboxylate oxygen toward the methylene carbon adjacent to the sulfur to facilitate ring closure. Lactone formation can occur through an Sn2-type direct nucleophilic attack of the carboxyl oxygen onto the carbonyl, or through an E2-type β-elimination of the MTA, followed by an attack of the carbonyl oxygen onto the vinyl moiety. As postulated by Tipton and colleagues (37), the Baldwin rules for ring closure for an Sn2 mechanism would occur through a favored 5exo–tether closure, while the E2-type mechanism would invoke an unfavorable 5endo–trig reaction (Fig. 4D).

The BjJ acyl–SAH cospectral structure illustrates how acylation of SAM/SAM could precipitate ring formation through the proper positioning of nucleophile, electrophile, and leaving group.

The identification of small molecules that can divert quorum signaling has spurred a renewal in quorum-sensing pharmacology (40). Compounds that mimic the acyl chain of cognate substrates are poor competitive inhibitors of AHL synthases, as are acyl-SAM mimics. Our studies here suggest that formation of a competent acyl chain-binding pocket only fully occurs following the realignments of Trp34 induced by the binding of SAM, and acylated mimics would likely not bind in a productive fashion. This point is further reinforced by the observation that the cyclic ketone of J8-C8 (30), which is presumed to mimic the lactone of AHLs, is bound by ToF at a site that is different from the ACP pocket identified in this work. Our studies suggest that mechanism-based inhibitors of AHL synthases that cannot undergo lactone formation may prove to be a suitable class of small-molecule inhibitors for the pharmacological intervention of quorum signaling.

Materials and Methods

Detailed methods for protein expression, purification, chemical synthesis, biochemical, and crystallographic studies can be found in SI Appendix.

ACKNOWLEDGMENTS. We thank Keith Brister and colleagues for facilitating data collection at the Life Sciences Collaborative Access Team (Argonne National Laboratories, IL). We also thank Dr. Vinayak Agarwal (University of California, San Diego) for providing overexpression constructs for CoA, CoA, and Co and Dr. Jia Min (University of Illinois) for helpful discussions about isovaleryl-AHL synthase. N.H.C. and E.P.G. are supported by NIH Grant GM59026. R.N. is supported by NIH grant GM117323. All NMR data were collected at the facility in the Mining Microbial Genomes theme of the Carl R. Woese Institute for Genomic Biology.