New Research In
Physical Sciences
Social Sciences
Featured Portals
Articles by Topic
Biological Sciences
Featured Portals
Articles by Topic
- Agricultural Sciences
- Anthropology
- Applied Biological Sciences
- Biochemistry
- Biophysics and Computational Biology
- Cell Biology
- Developmental Biology
- Ecology
- Environmental Sciences
- Evolution
- Genetics
- Immunology and Inflammation
- Medical Sciences
- Microbiology
- Neuroscience
- Pharmacology
- Physiology
- Plant Biology
- Population Biology
- Psychological and Cognitive Sciences
- Sustainability Science
- Systems Biology
Lead pollution recorded in Greenland ice indicates European emissions tracked plagues, wars, and imperial expansion during antiquity
Edited by B. L. Turner, Arizona State University, Tempe, AZ, and approved April 11, 2018 (received for review December 15, 2017)

This article requires a subscription to view the full text. If you have a subscription you may use the login form below to view the article. Access to this article can also be purchased.
Significance
An 1100 BCE to 800 CE record of estimated lead emissions based on continuous, subannually resolved, and precisely dated measurements of lead pollution in deep Greenland ice and atmospheric modeling shows that European emissions closely varied with historical events, including imperial expansion, wars, and major plagues. Emissions rose coeval with Phoenician expansion and accelerated during expanded Carthaginian and Roman lead–silver mining primarily in the Iberian Peninsula. Emissions fluctuated synchronously with wars and political instability, particularly during the Roman Republic, reaching a sustained maximum during the Roman Empire before plunging in the second century coincident with the Antonine plague, and remaining low for >500 years. Bullion in silver coinage declined in parallel, reflecting the importance of lead–silver mining in ancient economies.
Abstract
Lead pollution in Arctic ice reflects midlatitude emissions from ancient lead–silver mining and smelting. The few reported measurements have been extrapolated to infer the performance of ancient economies, including comparisons of economic productivity and growth during the Roman Republican and Imperial periods. These studies were based on sparse sampling and inaccurate dating, limiting understanding of trends and specific linkages. Here we show, using a precisely dated record of estimated lead emissions between 1100 BCE and 800 CE derived from subannually resolved measurements in Greenland ice and detailed atmospheric transport modeling, that annual European lead emissions closely varied with historical events, including imperial expansion, wars, and major plagues. Emissions rose coeval with Phoenician expansion, accelerated during expanded Carthaginian and Roman mining primarily in the Iberian Peninsula, and reached a maximum under the Roman Empire. Emissions fluctuated synchronously with wars and political instability particularly during the Roman Republic, and plunged coincident with two major plagues in the second and third centuries, remaining low for >500 years. Bullion in silver coinage declined in parallel, reflecting the importance of lead–silver mining in ancient economies. Our results indicate sustained economic growth during the first two centuries of the Roman Empire, terminated by the second-century Antonine plague.
Footnotes
- ↵1To whom correspondence should be addressed. Email: Joe.McConnell{at}dri.edu.
Author contributions: J.R.M., A.I.W., A.S., and A.M.P. designed research; J.R.M., A.I.W., M.M.A., N.J.C., S.E., and E.M.T. performed research; J.R.M., A.I.W., A.S., M.M.A., N.J.C., S.E., A.M.P., and J.P.S. analyzed data; and J.R.M., A.I.W., and A.S. wrote the paper.
The authors declare no conflict of interest.
This article is a PNAS Direct Submission.
This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10.1073/pnas.1721818115/-/DCSupplemental.
Published under the PNAS license.
Log in using your username and password
Purchase access
Subscribers, for more details, please visit our Subscriptions FAQ.
Please click here to log into the PNAS submission website.
Citation Manager Formats
More Articles of This Classification
Social Sciences
Economic Sciences
Physical Sciences
Environmental Sciences
Related Content
Cited by...
- No citing articles found.














