
To ensure that the pooled screening process accurately mea-
sured the activity of the shRNAs, we individually retested 350
shRNAs, chosen to sample the full range of array measurements
obtained in a pooled screen in OVCAR-8 cells, by performing
competition assays (Fig. 1C and Fig. S3). Specifically, we cloned
these shRNAs into a modified pLKO.1 viral vector that coex-
presses GFP and used these vectors to introduce shRNAs into
∼50% of an OVCAR-8 cell population. We then monitored the
proportion of GFP-expressing cells over time to measure the
effects of each shRNA on proliferation. The percent depletion of
the shRNAs in the individual pairwise competition tests was
correlated to the log(fold depletion) of these shRNA in the
pooled screen (R2 = 0.58; Fig. 1C and Table S2). We note that
shRNAs that show the largest degree of depletion in the pooled
screen exhibited more variability as would be expected at the
limit of signal detection. These two correlated assessments were
made at different time points, further confirming that they pro-
vide robust measures of the intrinsic proliferation effects of the
individual shRNAs.

Correlation of Genetic Dependency with Properties of Cell Lines. We
then sought to understand how the vulnerabilities of cancer cell
lines relate to various properties, such as mutations in a specific
gene, disruption of a specific pathway, or inclusion in a specific
lineage. Because human cancer cell lines are genetically and
epigenetically diverse, the analysis of a large number of cell lines
ensures that the relationships between cell properties and the
dependence of those cells on specific genes are not particular to
one context. We tested whether this large dataset permits reli-
able inferences about the genetic vulnerability of cancers pos-
sessing specific properties. For each cell line classification, we
used a class-discrimination feature selection method called the
“weight of evidence” (WoE) statistic (4, 5) to rank shRNAs by
their ability to distinguish the specified classes.

Dependencies of Cell Lines with Oncogenic Mutations. We first ex-
amined vulnerabilities of cell lines with KRAS or BRAF muta-
tions. We defined “essential” genes by three complementary
methods, including (i) WoE rank of the top shRNA targeting

each gene, (ii ) WoE rank of the top two shRNAs targeting each
gene, or (iii ) a composite score of WoE ranks for all shRNAs for
each gene using the Kolmogorov–Smirnov (KS) statistic (3). The
KRAS and BRAF genes themselves were ranked highly by all
three methods (Fig. 2 A and D). The top scoring KRAS- and
BRAF-specific shRNAs significantly discriminated between the
mutant and wild-type classes (P = 1.89 × 10−5 and 1.89 × 10−4,
respectively, WoE; Fig. 2 B and E).

Interestingly, because 7/10 BRAF-mutant cell lines were de-
rived from nonmelanoma lineages (including 5 from colon can-
cer), these observations suggest that cancer cell lines that harbor
mutant BRAF exhibit a similar dependence on BRAF. Although
initial reports suggest that clinical responses to BRAF inhibition
in BRAF-mutant colon tumors are much less robust than those
observed in BRAF-mutant melanomas (6), our observations in-
dicate that BRAF is essential in colon cancer cell lines that ex-
press mutant BRAF (Fig. S4 A and B).

We next examined vulnerabilities in cell lines harboring
PIK3CA mutations. PIK3CA itself strongly scored as a top dif-
ferentially essential gene between PIK3CA mutant and PIK3CA
wild-type cell lines in 2/3 gene-level analyses (Fig. 2 G and H).
MTOR ranked highly in 2/3 analyses (23rd and 30th of 11,194;
Fig. S4C); the top scoring MTOR-specific shRNA strongly dis-
criminated the PIK3CA mutant and wild-type classes (P = 6.03 ×
10−4, WoE; Fig. S4D), indicating that cell lines that harbor
PIK3CA mutations are also dependent on mTOR. These ob-
servations confirm prior work showing that mTOR plays an
important role in PI3K signaling (7).

To assess how the number of cell lines analyzed affected these
analyses, we repeated our WoE scoring of a set of shRNAs using
data from smaller numbers of cell lines subsampled from the
entire dataset. For the top scoring KRAS, BRAF, and PIK3CA
shRNAs that were able to distinguish cell lines with mutant or
wild-type alleles of these same respective genes, we found that
the analysis of a smaller number of cell lines (<5) decreased the
likelihood of discriminating between these two classes, whereas
the comparison of groups composed of >10 cell lines greatly
increased our ability to distinguish the two classes (Fig. 2 C, F,
and I). We concluded that the analysis of a large number of cell
lines overcomes the inherent heterogeneity of cell lines and
reveals robust relationships between essentiality and particular
cell features that persist across different genetic and epigenetic
backgrounds. With this foundation, we undertook a preliminary
exploration of what can be learned about genetic vulnerabilities
of cancer cells with specific properties.

Lineage-Specific Genetic Dependencies. We hypothesized that a
subset of genes showing enhanced dependencies in specific lin-
eages would also be aberrantly activated in tumors due to am-
plification or overexpression. Recent studies have identified
oncogenic transcription factors that are amplified, overexpressed,
and essential in subsets of tumors from cancers of specific line-
ages, including NKX2-1 in lung adenocarcinoma (8), MITF in
melanoma (9), and SOX2 in squamous cell carcinomas (10). To
identify lineage-specific dependencies, we ranked shRNAs by
their ability to discriminate cell lines of one lineage from cell
lines from all other lineages (Fig. 3A). We selected the top 150
genes (1.3% of those screened) based on ranking of the top-
ranked shRNAs, the top 300 genes (2.7%) by the second-best
ranking shRNAs, and the top 300 genes (2.7%) as assessed by the
KS statistic (ref. 3; Table S3). Three categories of essential genes
were considered for further analysis: (i) genes scoring by all three
methods from individual lineage analyses; (ii ) genes scoring by
any method that also were amplified in primary tumors (essential
and amplified; Table S3); and (iii ) genes scoring by any method
that also were differentially up-regulated in cell lines derived
from that lineage (essential and overexpressed; Tables S3 and
S4). An overview of these results from analyses performed across
six cancer lineages is displayed in Table S5.

In colon cancer cell lines, we found KRAS, CTNNB1, and BRAF
among 23 essential genes that scored by all three methods and

Fig. 1. Genome-scale RNAi screening identifies essential genes in 102 can-
cer cell lines. (A) Chart showing the number of cell lines from different lin-
eages screened. (B) Unsupervised hierarchical clustering of the shRNA
hybridization data obtained from quadruplicate screens of 102 cancer cell
lines (various colors) and the shRNA plasmid DNA reference pool (15 repli-
cates). A representative portion of the dendrogram is depicted at higher
magnification. (C) The relative abundance 7 d after infection of OVCAR-8
cells infected with 350 individual shRNAs encoded in a GFP+ plasmid (y axis)
correlates with the relative abundance (log2 fold change) of each shRNA
measured in the pooled shRNA screen by microarray hybridization (x axis).
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found KRAS and IGF1R (11) among 35 essential and amplified
genes. In pancreatic cancer cell lines, we identified KRAS among
23 essential genes that scored in all three analyses (Table S5). In
NSCLC, we found NKX2-1 as the only essential gene that is both
amplified and overexpressed and found CDK6 among 7 essential
and amplified genes (8). These observations provide evidence that
such integrative lineage analyses identify both known oncogenes
and other relevant lineage-restricted dependencies.

In addition, we identified a number of particularly interesting,
previously undescribed candidate lineage-specific dependencies.
For example, we found MAP2K4, an activator of JNK and p38
(12), among 10 genes that showed selective essentiality and ex-
pression in NSCLC. We found MYB (13) and AXIN2 (14) among
9 genes that were essential and differentially expressed in colon
cancer, and we identified SOX9 (15) among 18 genes in pan-
creatic cancer that emerged as lineage-specific dependencies
nominated by all three gene-scoring methods.

To extend these observations, we selected the ovarian lineage
for deeper analysis. Of the 582 genes (5.2%) nominated as
candidates for enhanced dependency in ovarian cancer cells, we
identified 22 essential genes that scored in all three analytical
methods (Fig. 3B and Table S5) and found 5 essential and

overexpressed genes (Tables S4 and S5). TCGA identified 1,825
genes residing on recurrently amplified regions in ovarian
tumors, and we identified 50 amplified genes as also essential
(Fig. 3B and Table S5). The set of amplified and essential genes
included the known oncogene CCNE1 (16) and candidates in-
cluding the FRS2adaptor protein (17), the PRKCE protein ki-
nase (18), RPTOR (19), and the PAX8 paired box transcription
factor. Similarly to NKX2-1 in NSCLC, MITF in melanoma, and
MYB in colon cancer, PAX8 was not only essential and amplified
but also overexpressed in a lineage-specific manner.

Characterization of PAX8 Dependency in Ovarian Cancer. PAX8 was
the only gene that was (i) identified as an essential gene in all
three scoring methods, (ii ) amplified in primary high-grade se-
rous ovarian tumors, and (iii ) differentially expressed in ovarian
cancer cell lines (Table S5). Cell line subsampling analysis
revealed that the large number of ovarian cell lines screened
enabled the identification of this previously undescribed de-
pendency (Fig. 3C).

PAX8 is a lineage-restricted transcription factor that plays an
essential role in organogenesis of the Müllerian system (20), the
thyroid, and the kidney (21). PAX8 was previously found to be

Fig. 2. Dependencies of cell lines with mutations in KRAS, BRAF, or PIK3CA. (A, D, and G) Distribution of shRNA ranks (x axis) by the WoE scores (y axis) for
the class comparisons of KRAS mutant (mut) vs. KRAS wild-type (wt) cell lines (A), BRAF mutant vs. BRAF wt (D), and PIK3CA mutant vs. PIK3CA wt (G). shRNAs
targeting KRAS, BRAF, and PIK3CA are highlighted in red, and their ranks are listed. Insets report the gene ranks of KRAS, BRAF, and PIK3CA for differential
essentiality in the subset of cell lines with activating mutations in those respective genes. (B, E, and H) KRAS (B), BRAF (E), or PIK3CA (H) mutation status
(mutant lines in green, wt lines in gray) correlates strongly with depletion of shRNAs targeting these genes. (Lower) Heatmaps report KRAS- (B), BRAF- (E),
and PIK3CA-shRNA (H) fold depletion in each cell line. (C, F, and I) Subsets of the 102 cell lines were analyzed to assess convergence of the gene dependency
results for the KRAS (C), BRAF (F), and PIK3CA (I) mutant vs. wt class comparison analyses as a function of the number of cell lines tested. Distributions of the
scores of the top KRAS, BRAF, and PIK3CA hit shRNAs (given as the percentile of their depletion rankings, with a smaller percentage corresponding to more
depleted, y axis) in the respective cell line class comparisons (using WoE) are shown for each of 100 trials, subsampling the indicated numbers of cell lines in
each class (mutant and wt). The red bar indicates the median value for each group of subsamplings, boxes represent the 25th to 75th percentile of the data,
and whiskers extend to the most extreme values of the group that are not considered outliers.
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overexpressed in ovarian cancers (22) and implicated in follicular
thyroid cancer development (23). We observed that PAX8 was
the most differentially expressed gene when we compared ovarian
cell lines to all of the other cancer cell lines (Fig. 4A). Further-
more, we found that PAX8 was amplified in 16% of primary
ovarian tumors [log2(copy number ratio) > 0.3; n = 345] in a
peak (2q13) that also contains PSD4and LOC654433(Fig. 4B).

We further examined the relationships among PAX8 amplifi-
cation, PAX8 expression, and dependence on PAX8 in ovarian
cancer cells. The PAX8-specific shRNA that scored 7th out of
54,020 shRNAs and the 2nd-ranking PAX8 shRNA both sup-
pressed PAX8 (Fig. S4E). The sensitivity of cell lines to in-
hibition by the highest ranked PAX8-specific shRNA correlated
with the level of PAX8 expression, based on comparison of cell
lines with high vs. low PAX8 levels (P = 2.14 × 10−8, t test; Fig.
4C). Cell lines expressing high levels of PAX8 included the vast
majority (21/25) of ovarian cancer cell lines as well as a renal and
an endometrial cancer line. These observations suggested that
the expression of PAX8 is selectively required for the pro-
liferation/survival of cell lines expressing PAX8.

To confirm these findings, we introduced two distinct shRNAs
targeting PAX8 into 17 cell lines. We found that suppression of
PAX8 resulted in a >50% reduction in the viability in six of eight
ovarian cancer cell lines (Fig. 4D), but failed to affect the pro-
liferation of immortalized human ovarian surface epithelial cells
(IOSE-T80; ref. 24) and eight other cell lines that did not express
PAX8 (Fig. 4E). The six sensitive ovarian cell lines included
three cell lines with amplification of 2q13 in which the PAX8
locus resides (Fig. S4F) and three additional cell lines that ex-
press higher levels of PAX8 protein compared with IOSE-T80

cells (Fig. 4D). Suppression of PAX8 induced apoptosis in these
ovarian cancer cell lines (Fig. 4F). In contrast, the two cell lines
(COV504 and OV-90) least sensitive to PAX8 suppression did
not harbor the 2q13 amplification and expressed relatively low
levels of PAX8 (Fig. 4D). These observations suggest that PAX8
represents a lineage-specific essential gene in a significant subset
of ovarian cancer.

Discussion
The integrated analysis of functional dependencies and alter-
ations in cancer genomes presented herein identified potential
targets in ovarian, lung, colon, glioblastoma, pancreatic, and
esophageal cancers. Among these candidate genes, we identified
known oncogenes and lineage-specific dependencies as well as
previously undescribed candidates, including the PAX8 tran-
scription factor in ovarian cancer. Although shRNA screens
performed in small numbers of cell lines have identified essential
genes in specific contexts, the interrogation of genes across
a large number of human cancer cell lines through Project
Achilles provides a substantially more robust assessment of gene
dependence and overcomes confounding effects due to the in-
herent heterogeneity of human cancer cell lines. These datasets
will enable a wide range of analyses to connect particular cancer
genotypes to dependencies.

As an initial approach, we elected to explore dependencies
harbored by a majority of ovarian cancers. We pinpointed 5
genes displaying enhanced essentiality in ovarian cancer and
differential overexpression in ovarian cell lines and 50 genes
displaying enhanced essentiality in ovarian cancer and amplifi-
cation in ovarian tumors. Further studies will be necessary to

Fig. 3. Lineage-specific dependencies. (A) Heatmap of differentially antiproliferative shRNAs in cell lines from individual cancer lineages in comparison with all
others. The top 20 shRNAs that distinguish each lineage from the others are displayed. (B) Ovarian-specific dependencies. Three complementary methods of gene
scoring [ranking by (i) best or (ii) second best scoring shRNA or (iii) composite of all shRNAs for the gene using a KS statistic identified 582 (5.2%) genes that were
selectively required for ovarian cancer cell proliferation. Fifty of these were among the 1,825 recurrently amplified genes in primary high-grade serous ovarian
tumors (1). Among the 200 genes that were differentially overexpressed in ovarian cancer cell lines, 114 genes were included in the shRNA pool, and 5 genes showed
enhanced essentiality in ovarian cancer lines. Twenty-two of these genes that were scored by all three gene-scoring methods were considered as high-confidence
essential genes. (C) Distributions of the scores of PAX8 shRNA (given as the percentile of their rankings, y axis) after 100 trials of the ovarian vs. nonovarian WoE
comparison, for equal class sizes of 1–25 (x axis; colors indicate PAX8 shRNAs 1–5). The red bar indicates the median value for each group of subsamplings, boxes
represent the 25th to 75th percentile of the data, and whiskers extend to the most extreme values of the group that are not considered outliers.

Cheung et al. PNAS | July 26, 2011 | vol. 108 | no. 30 | 12375

G
EN

ET
IC

S

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1109363108/-/DCSupplemental/pnas.201109363SI.pdf?targetid=nameddest=SF4


www.pnas.org/cgi/doi/10.1073/pnas.1109363108


classification of cell lines based on a single characteristic is un-
likely to segregate cell lines into homogenous groups, our obser-
vations indicate that by including many cell line representatives
of each class of interest, it is still possible to discover underlying
relationships between genotype or lineage and essential genes.
Integration of these data with information from the analyses of
structural alterations in cancer genomes will further facilitate
the systematic identification of genes critical to oncogenesis.

The approach described here can be extended to enable sys-
tematic interrogation of codependences beyond those analyzed
here, including synthetic lethal relationships with activated
oncogenes or inactivated tumor suppressor genes (27). Analyses
of dependencies of cell lines with particular characteristics have
the potential to discover novel targets, for example, by in-
tegrating the output of these types of screens with information
emerging from the cataloging of mutations and other alterations
in cancer genomes.

More generally, as large-scale efforts to characterize cancer
genomes accelerate, these observations illustrate a path to
functionally characterize the genes found to be altered in tumors
and to identify the subset of such genes critical to cancer initi-
ation and maintenance. To this end, we have made this dataset
available (www.broadinstitute.org/igp) and will update the Pro-
ject Achilles database as more data are obtained. Beyond the
specific findings reported herein, we anticipate that this dataset
will prove useful to identify correlations between genetic features
and essential genes in human cancer cell lines.

Materials and Methods
Pooled shRNA Screening. Lentiviral pLKO.1- shRNA constructs were obtained
from the RNAi Consortium, and the human 54K pool of 54,020 shRNA
plasmids was assembled by combining 16 normalized subpools of ∼3400
shRNA plasmids. The list of 54,020 shRNAs can be found at http://www.
broadinstitute.org/igp. Genome-scale pooled shRNA screens to identify
genes essential for proliferation in 102 cancer cell lines were performed (3)
using a lentivirally delivered pool of 54,020 shRNAs targeting 11,194 genes.
The culture conditions for all cancer cell lines are listed in Table S1. Each cell
line was infected in quadruplicate and propagated for at least 16 population
doublings. The abundance of shRNA constructs relative to the initial DNA
plasmid pool was measured by microarray hybridization (3) and analyzed by

using a uniform pipeline. Detailed descriptions of each procedure can be
found in SI Methods.

Data Processing, Class Comparison, and Gene Ranking. Raw .CEL files from
custom Affymetrix barcode arrays were processed with a modified version of
dCHIP software (3). The GenePattern modules shRNAscores and Normal-
izeCellLines were used to calculate the log fold change in shRNA abundances
for each cell line at the conclusion of the screening relative to the initial
plasmid DNA reference pool and to normalize these depletion values by
using peak median absolute deviation normalization, a variation of Z score
with median absolute deviation (3). Class definition files (.cls) were made by
using the GenePattern module SubsetGctandCls; definitions included cell
line lineage (e.g., ovarian cancer, NSCLC, etc.) or genetic alterations (28, 29).
To compute the statistical evidence that a given shRNA contributes to the
observed essentiality phenotype between two classes of interest, we used
a WoE approach (4, 5). The GENE-E program (http://www.broadinstitute.org/
cancer/software/GENE-E; ref. 3) was used to collapse shRNAscores to gene
rankings by three complementary methods. These methods included (i)
ranking genes by their highest shRNA depletion score, (ii) ranking genes
based on the P value rank (correcting for different set sizes of shRNA tar-
geting different genes) of their second best ranked shRNA, and (iii) ranking
genes using a KS statistic in an approach similar to gene set enrichment
analysis (RNAi gene enrichment ranking; ref. 3). Detailed descriptions of
each procedure can be found in SI Methods. All data files, accessory files,
and GenePattern modules can be found through the Integrative Genomics
Portal (http://www.broadinstitute.org/igp).

Competition Assay. OVCAR-8 (5 × 104) cells were seeded into each well of
a 96-well plate and spin-infected with 2 or 4 μL of lentiviruses (in duplicate)
at 930 × g for 2 h at 30 °C in the presence of 4 μg/mL polybrene to transduce
∼50% of the cells. Cells were then trypsinized and replated into 24-well
plates. The percent of GFP+ cells at 3 and 7 d after infection was measured
using BD LSR II flow cytometry system equipped with a high-throughput
sampler (BD Biosciences). The fraction of GFP+ cells 7 d after infection rel-
ative to 3 d after infection was calculated. Data represent mean ± SD of
duplicate infections.
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