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When Leibniz demonstrated the advantages of the binary system
for computations as early as 1703, he laid the foundation for
computing machines. However, is a binary system also suitable for
human cognition? One of two number systems traditionally used
on Mangareva, a small island in French Polynesia, had three binary
steps superposed onto a decimal structure. Here, we show how
this system functions, how it facilitated arithmetic, and why it is
unique. The Mangarevan invention of binary steps, centuries
before their formal description by Leibniz, attests to the advance-
ments possible in numeracy even in the absence of notation and
thereby highlights the role of culture for the evolution of and
diversity in numerical cognition.

mathematical cognition | binary numeration systems | cognitive tools |
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At the onset of the 18th century, the polymath Gottfried
Wilhelm Leibniz (1646–1716) described a binary (i.e., base

2) number system and its usefulness for calculations. He explained
the advantages as follows (Fig. 1): “For here, it is as if one said,
for example, that 111, or 7, is the sum of four, two, and one, and
that 1101, or 13, is the sum of eight, four, and one. This property
enables assayers to weigh all sorts of masses with few weights and
could serve in coinage to give several values with few coins” (1).
Besides these practical advantages, Leibniz continues, a binary
system would also spare the individual from learning by heart any
addition and multiplication tables—a benefit, however, that
came with downsides such as longer number representations.
The greatest impediment to switching from a decimal to a binary
system was that we are accustomed to counting by ten and may
feel no need to learn again what we have already learned by
heart (1).
The binary system, together with some of Leibniz’s original

ideas, laid the foundation for computing machines but, besides
this innovation, had virtually no effect on how humans them-
selves operate with numbers. This is not to say that binary sys-
tems were entirely odd to human thinking or absent from the
world’s languages. Although the majority of verbal number sys-
tems have base 10, followed by 20 and 5 (2)—arguably motivated
by body-based counting practices (3–6)—other bases are also
observed, albeit rarely (7, 8). Among these, base 2 is particularly
rare and most likely so for a practical reason. Systems of this type
tend to count 1, 2, 2 + 1, 2 + 2, 2 + 2 + 1, etc. For illustration,
take the case of Middle Watut, an Austronesian language spoken
by about 1,350 people in Morobe Province of Papua New
Guinea. Its counting sequence unfolds as follows (9):

1 = morots
2 = serok
3 = serok a morots [= 2 + 1]
4 = serok a serok [= 2 + 2]
5 = serok a serok a morots [= 2 + 2 + 1].

Systems like these make recursive use of base 2 and therefore
qualify as base 2 systems. They do not, however, use specific
numerals for the powers of the base and therefore suffer from
being unable to keep track of the constituents in higher number
words. Expressing a number like 77 in such a system is thus

virtually out of question. However, even a full-fledged binary
system with distinct symbols for the powers of the base translates
77 into a representation with seven signs (i.e., 1,001,1012) that is
considerably longer than its decimal counterpart with two signs.
Clearly, compactness of number representation suffers from

small base size, thus rendering a pure binary system infeasible for
many practical purposes. However, what if one combined binary
and decimal bases? Would the combined benefits of the two
bases offset their downsides? This question is not merely of ac-
ademic interest but is warranted by the actual existence of such
a system—invented centuries ago by the Polynesian inhabitants
of Mangareva. Answering this question also highlights the po-
tential for variability in numeration systems and thus emphasizes
the role of culture for the evolution of numerical cognition.

Cultural Background
Mangareva is the main island of the Gambier group in French
Polynesia, ∼1,650 km southeast of Tahiti and close to the Tropic
of Capricorn (Fig. 2). The islands are of volcanic origin, clustered
in a lagoon some 25 km across and surrounded by an extensive
barrier reef, which provides a supply of seafood and partial
protection against the currents (10, 11).
Human settlers reached the island group in three waves. The first

wave arrived between 500 and 800 of the common era (CE) from the
West, presumably via the Marquesas and/or Tuamotus, and moved
further to the eastward islands of Pitcairn, Henderson, and Easter
Island (Rapa Nui). The second wave arrived between 1150 and 1450
CE from the Southeast Marquesas. And the third wave arrived in
the 19th century in the wake of European colonialism (11–13).
In former times, fish and other seafood provided the principal

sustenance and were held in high esteem compared with other
poor people’s food. Octopus was even considered a gift for the
king, as were turtles. The most valued vegetable food was
breadfruit, supplemented by other root crops, various types
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of bananas, and coconuts. Provided there was sufficient rain,
breadfruit was harvested four times a year, and most of it was
fermented for storage in pits. Some of the larger storage pits
were under the supervision of chiefs but were stocked in a com-
munal effort and served as provision for ceremonial occasions
(10, 14, 15). The population size was estimated at around 1,500
at European contact but may have amounted to several thousand
and perhaps even 6,000–8,000 in earlier times, with occasional
drops due to famines, wars, and ensuing emigration (10, 14).
The Mangarevan society was one of those Polynesian societies

with substantial social stratification, based on seniority of descent
and primogeniture. The chiefs secured a tight and dominant
tenure over the typically scarce crop lands and requested tributes
from their peasants, but also redistributed a considerable pro-
portion of it during public feasts (10, 14, 16). For centuries,
goods were also exchanged externally, as Mangareva kept close
contact with the islands of the Pitcairn group to the East and was
part of long-distance trading that included Hawai’i, the Mar-
quesas and Tuamotus, the Austral and Cook Islands, and the
island group around Tahiti (11, 13, 17) (Fig. 2). In this economic
and cultural context, both tributes and trading goods were reg-
ularly due in larger quantities. Whereas the latter primarily in-
volved material for tool fabrication and decoration, tributes
largely consisted of food items, notably including breadfruit,
turtles, fish, and octopus. Keeping track of these commodity
cycles must have been a challenging task, especially in the ab-
sence of notation or literacy more generally. However, most
Polynesian cultures had experts for oral tradition, whose task was
memorization of genealogies and other verbally represented and
transmitted information. In some cases, these specialists were
also responsible for keeping track of the redistribution of goods
during public presentations and feasts (18, 19). Information
is lacking on whether this generalized to Mangareva, but the
rongorongo—high-ranking experts for all tasks involving oral

memory and ceremonial reciting (10)—would surely have been
qualified to keep track of the provision, redistribution, and
trading of goods and of the likely substantial numbers involved.
French influence on Mangareva began with proselytizing by

Catholic padres in 1834 (10) and culminated in the annexation by
France. Ever since, the Gambier Islands have been part of the
overseas territory of French Polynesia. Regarding the counting
systems, the padres played an ambivalent role: they documented
them when they were still in use, at least to some extent, but, in
their efforts to introduce literacy, they also contributed to their
cessation. As a consequence, the more interesting specific
counting systems in particular had already ceased to be used at
the beginning of the last century (20).
The Mangarevan language, which belongs to the Nuclear

Polynesian languages and thus to the Oceanic branch of the
Austronesian language family (11, 12), was still spoken by about
1,600 people in 1987 (21). Although the ethnic population of the
Gambier Islands has remained rather stable, the population of
speakers had decreased to 600 by 2011. The language itself is
now classified as “in trouble” because intergenerational trans-
mission is in the process of breaking down although the child-
bearing generation itself is still able to use the language (21).
Both the decrease in language proficiency more generally and

the introduction of Arabic digits and French-based infrastructure
set an end to traditional Mangarevan counting. Empirical studies
on how exactly these systems were structured, how and when
they were used, and which implications they entailed are thus no
longer possible. Instead, investigations have to rely on concep-
tual analyses, set into context by ethnographic information and
comparative data.

Mangarevan Counting in Context
If their cultural ecology does not require them to do so, human
societies do not necessarily develop elaborate numeration systems,
and some nonliterate societies in particular lack numeration sys-
tems altogether (22–25). Oceanic-speaking societies, however, and
especially those in Polynesia and Micronesia are renowned for
their ancestral interest in numbers—attested to both by cultural
practices that involved large quantities of items such as tributes,
competitive gardening, or feasting and by extensive numeration
systems. These numeration systems were all derived from one
common Proto-Oceanic system and were in place in the absence
of literacy or industrialization and well before European contact.
Explicit statements on, or even detailed descriptions of, the

relevance of counting are available for several of these cultures,

Fig. 1. Two of Leibniz’s examples for binary notation and calculation (1).
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Fig. 2. Mangareva and some of its trading relations.
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including the Micronesian atoll of Woleai, the Polynesian outlier
Rennell, and two Nuclear Polynesian groups, Tahiti and Hawai’i,
which are closely related to Mangareva. These reports ac-
knowledge, for instance, people’s “addiction to high numbers”
(26) and their “emphasis on carefully counted quantity” as well
as descriptions of public generosity and an ostentatious display of
religious zeal (18). For Woleai, both the redistribution of more
than 12,000 coconuts and its meticulous observation during
a funeral have been documented (27), and Tahitians are repor-
ted to have played counting games for recreational purposes
(28). In all of these instances, the context of counting is char-
acterized in a way that leaves no room for doubt: counting was
indeed important, and particularly so before Western influence
(18), amounting to an interest even in abstract mathematics (29).
As it was used particularly in contexts in which generosity and
prestige were at stake, such as tribute giving and redistribution or
competitive generosity, most counting and calculating was per-
formed publicly (18, 27, 28, 30).
All Polynesian languages contained general counting systems,

evolved from a common ancestor, which were regular and dec-
imal, with terms for large powers of ten (8, 31, 32). Most Poly-
nesian languages also contained, in pre-European times, distinct
counting systems that were restricted to specific objects and
based on diverging counting units, typically involving one or
more of the factors 2, 4, 10, and 20. In other words, these objects
were counted not singly, but for instance in pairs, in pairs of
pairs, or even in scores. Differences across languages basically
concern the number and value of power terms, the value of the
specific counting units, and the objects specifically counted, but
all of them were purely verbal (33, 34).
Like their Polynesian relatives, speakers of Mangarevan used

a highly regular, decimal system with large power numerals (8,
31), supplemented by one or more object-specific or mixed sys-
tems (30, 33–36). The system that was used for general counting
contained monolexemic numerals for the numbers 1 through 9
and for the powers of 10 up to at least 10,000,000 (maeaea). The
mixed systems were confined to counting a small group of highly
valued objects, namely turtles, fish, coconuts, octopuses, and
breadfruit* (10, 20). In a nutshell, they contained the same mon-
olexemic numerals for the numbers 1 through 9 as the general
system, and distinct monolexemic numerals for 10, 20, 40, and 80
(Table 1). The numeral for 80 (varu) was counted with the basic
numerals from 1 through 9 to generate multiples up to 720.
Any composite number word N was construed by adding terms

on different power levels as follows:

N= ½n  P80�+ ½P40�+ ½P20�+ ½P10�+ ½n  P1�

with n ∈ {1, . . ., 9} and P = power numeral (according to Table 1);
subscript numbers indicate the power level, and square brackets
indicate that terms are optional.
Importantly, the number word N did not necessarily indicate the

number of single items, but the number of counting units (tauga)
in which these items were counted. The size of tauga depended on
the object counted. It was 1 for turtles, 2 for fish, 4 for coconuts
and one particular type of breadfruits, and 8 for octopuses and
another type of breadfruits (10, 37). For instance, a number word
like that for 12 attained in counting fish referred to 12 tauga with 2
fish each (thus 24 fish) whereas, in counting coconuts, it would
refer to 12 tauga with 4 coconuts each (thus 48 coconuts).
As detailed above, the objects that were counted specifically

were also culturally salient, and some of them such as turtles or
octopuses were even considered an appropriate gift for the king.

In contrast to the general system used for the majority of mostly
ordinary items, the specific systems therefore also served the
purpose of emphasizing the special status of these objects. Here,
however, we will focus on their cognitive purpose of facilitating
mental arithmetic.

Arithmetic with the Mangarevan System
We will illustrate how one could calculate with a mixed system
like that in Mangarevan for three elementary types of operation:
addition (with subtraction ensuing by analogy), multiplication,
and division (which ensues from multiplication by analogy). This
selection is justifiable for at least two reasons. First, addition and
multiplication are already inherent in number word construction.
A word like “two hundred and seven” employs the multiplica-
tion principle for assessing the number of hundreds, and the
addition principle for combining hundreds and single units.
And second, even in a preliterate society like Mangareva, the
frequent exchange of goods by way of tributes and redistribution
within (10, 14, 16) and beyond island boundaries (11, 13, 17)
generates a need for the aforementioned operations at least to
some extent.
The prime precondition for any type of advanced arithmetic is

the mastery of a counting sequence. Once this sequence is in
place, abbreviation strategies lead almost automatically to cer-
tain types of basic arithmetic. For instance, adding two numbers
by fact retrieval from memory abbreviates the process of taking
one addend and counting upwards the size of the second addend.
Likewise, multiplication abbreviates adding one factor to itself as
often as the second factor indicates. As attested to by research in
developmental psychology (38, 39), detecting or developing such
abbreviation strategies is a matter of practice and emerging ex-
pertise, both of which were spurred on by the importance of
numbers and the emphasis on carefully counted quantity in
Polynesia. The heaviest constraint on mental arithmetic is exer-
ted by the capacity of the working memory, estimated at 7 ± 2
elements. Working memory is required not only for processing
itself, but also for keeping in mind the numbers to be processed
and contingent intermediate results. The crucial question is
therefore how computation with the mixed system affects the
cognitive load involved in number representation and processing.

Addition. For addition, three cases need to be distinguished: (i)
addition in the decimal ranges for the basic numerals and for the
multiples of varu (V), (ii) addition in the binary range for the
multiples of 10 up to V, and (iii) addition of those numbers that
are composed of both decimal and binary constituents.

i) Adding basic numerals in the decimal ranges presupposes
knowledge of the 55 addition facts given in Table 2A, and
the same is true for the multipliers in the multiples of V. If
you wish to add, for instance, 5 and 4, nothing about the
respective number words tells you that this addition yields
9. You have to arrive at this fact by counting 4 beyond 5—or
by ultimately memorizing its result.

ii) The addition facts in the binary range are given in Table 2B,
but, other than in the decimal ranges, hardly any of these
facts really need to be memorized. Here, the number words

Table 1. Numerals in the Mangarevan mixed system (adapted
from ref. 10)

Basic numbers Powers
Symbolized
here asn Numeral n Numeral P Numeral

1 ta’i 6 ono 1 [tauga]
2 rua 7 ’itu 10 takau K
3 toru 8 varu 20 paua P
4 ’a 9 iva 40 tataua T
5 rima 80 varu V

*Descriptions of these systems vary, and our previous publications containing reference to
the Mangarevan system (34, 35) were based on the description by the French padre
Vincent-Ferrier Janeau (20). Meanwhile, however, we have reasons to believe that the
description provided by Sir Peter Buck, also known as Te Rangi Hiroa (10)—an anthropol-
ogist, doctor, and politician of Polynesian descent—is the more meticulous and authori-
tative account (36).
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referring to a certain power level do not occur in different
quantities (and thus lack multipliers)—they are either pres-
ent or not present. In TK, for instance, T and K are present,
whereas P is not. This is what Leibniz referred to as the
simple summing-up of constituents (1). Adding a power term
to itself yields the next power term in the sequence (e.g., K +
K = P), whereas adding different power terms to each other
yields a concatenation of these terms (e.g., P + K = PK).
Virtually the only fact one needs to know is the sequence
in which power terms follow each other: K + K = P, P + P =
T, and T + T = V. Every other equation can be solved by the
simple joining, sorting, and regrouping of terms, akin to add-
ing Roman numerals (40); for an example, see Fig. 3. Addi-
tion in the binary range therefore indeed turns out to be
easier than addition in a decimal context—as was envisaged
by Leibniz (1).

iii) Adding composite numbers (i.e., numbers that are composed
of decimal and binary constituents) is achieved by a simple
combination of decimal facts and binary transformations. For
purposes of illustration, consider 273 + 219, which translates
into the mixed system as toru varu paua takau toru (= 3V P K
3) + rua varu tataua takau iva (= 2V T K 9):

decimal binary decimal

[3 V] P K 3 273

+ [2 V] T K 9 + 219

= [5 V] T P KK K2

= [5 V] T PP K 2

= [5 V] TT K 2

= [5+1 V] K 2

= [6 V] K 2 = 492

In the binary range, 2 takau (K) are transformed into 1 paua
(P), 2 paua into 1 tataua (T), and 2 tataua into 1 varu (V).
This latter power term adds to the 3 + 2 varu already in place
to produce 6 varu, according to the addition table for decimal
numbers as described above. Adding, on the units level, the
numbers 3 and 9 likewise yields 12 (= takau rua or K2). In
other words, although the number words themselves may be
mixed, the operations applied to their constituents follow the
systematic patterns of either the decimal or the binary part.

This analysis reveals that, even if we include the most irregular
cases, addition with the mixed system remains fairly simple
and straightforward.

Multiplication. Multiplication may be solved easily by recursive
addition, performed as often as the multiplier requests. For in-
stance, 3 · 6 can be solved as 6 + 6 + 6.
However, even more “multiplication-like” types of computa-

tions would still get by in the binary range of the mixed system
with transformations rather than proper calculations, as will
be illustrated for multiplying power terms by basic numbers.
Multiplying a binary term (multiplicand m) by 2 simply shifts m
one power level up, for example, 2 · K = P or 2 · P = T. Even for
a composite term like PK, multiplication by 2 merely shifts each
constituent one power level up, thus yielding TP. Multiplication
by 4 shifts m two power levels up, and multiplication by 8 shifts
m three power levels up, at least in principle. Here, however,
a decimal range is entered, thus producing multiples of V, with
8 · K = V, 8 · P = 2V, 8 · T = 4V, etc. For the remainder of
multiplications with other factors, such shifts are recursively
applied and/or followed by an addition of m, according to the
pattern displayed in Table 3.
Adopting these strategies, multiplication by 3, for instance,

involves a shift of m one level up, followed by addition of the
same m (e.g., 3 · K = 2K + K = PK). Analogously, multiplication
by 5 involves two shifts, followed by addition of m, and so on.

Division. Although division is analogous to multiplication, it is
probably worth mentioning that the binary steps also facilitated
division. To afford simple division in the absence of notation,
two additional yet plausible assumptions are proposed, both of
which are supported by their cultural salience (33, 34, 41).

P

T

K

V

10

20

40

80

PT KT
K

V T

PT K T K+

joined and sorted

regrouped, with T+T=V, 
K+K=P, and P+P=T

70 + 50

Fig. 3. Calculating 70 + 50 (= TPK + TK) by joining, sorting, and regrouping
of terms.

Table 2. Addition table for (A) the basic numbers from 1 through 10, and (B) the multiples of 10 up to 80

(A) (B)

[10] [20] [30] [40] [50] [60] [70] [80]+ 1 2 3 4 5 6 7 8 9 K

+ K P PK T TK TP TPK V1 2 3 4 5 6 7 8 9 K K1

K P PK T TK TP TPK V VK2 3 4 5 6 7 8 9 K K1 K2

P PK T TK TP TPK V VK VP3 4 5 6 7 8 9 K K1 K2 K3

PK T TK TP TPK V VK VP VPK4 5 6 7 8 9 K K1 K2 K3 K4

T TK TP TPK V VK VP VPK VT5 6 7 8 9 K K1 K2 K3 K4 K5

TK TP TPK V VK VP VPK VT VTK6 7 8 9 K K1 K2 K3 K4 K5 K6

TP TPK V VK VP VPK VT VTK VTP7 8 9 K K1 K2 K3 K4 K5 K6 K7

TPK V VK VP VPK VT VTK VTP VTPK8 9 K K1 K2 K3 K4 K5 K6 K7 K8

V VK VP VPK VT VTK VTP VTPK 2V9 K K1 K2 K3 K4 K5 K6 K7 K8 K9

K K1 K2 K3 K4 K5 K6 K7 K8 K9 2K

Note: Basic numerals up to 9 are represented by digits, larger numerals by letters (monolexemic words are represented by monosymbolic letters, with K =
takau, P = paua, T = tataua, and V = varu). Basic facts to be known for arithmetic are framed by bold lines (for half of the table only as addition is commutative;
the remainder is shaded); the unmarked results are obtained by simple joining and/or transformation, as detailed in Addition.
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The first assumption is that the power term varu (V = 80 basic
units) was the preferred or principal counting unit of the mixed
system. Eight, followed by four, is prominent as a mythological
number across Polynesia and occurs frequently in contexts that
are indicative of remarkable powers or superior rank (41). In
Mangareva, for instance, the supreme god Tangaroa was conceived
of as having eight sons, and the culture hero Maui-matavaru, who
fished up an island and snared the sun, was conceived of as being
the youngest of a family of eight and/or as having eight heads (10).
When the mixed system was used in the redistribution of goods,
prestige depended on large quantities for which varu would thus
have been an appropriate—and culturally valued—size.
The second assumption is that the preferred divisor was likely

an even number, if not a power of 2 (specifically 2, 4, or 8). All of
these numbers, which also reemerge as a possible size of the
basic counting unit tauga, are even numbers and thus suited the
concern with symmetry that has been described as a recurrent
theme across Polynesian societies† (41–44).
This assumption also helps to solve a practical problem in-

herent in division. Whereas the outcomes of addition and mul-
tiplication always remain within the set of natural numbers
(albeit perhaps exceeding the limits of the number system), di-
vision frequently produces fractions, some of which have infinite
decimal places. Apart from the general question of whether
algorithms for division may be discovered or developed in the
absence of a notational system, their application in “real life”
also necessitates a decision on how to treat the remainders of all
of those equations that do not produce integers. We therefore
propose that—if division was practiced in Mangareva—people
likely either aimed at equations that produced no fractions at all
or were willing to disregard the ensuing remainder.
Given the mixed-base structure that generates it, the principal

unit varu can be divided without rest by 2, 4, 8, and 16 along
a binary series and by 5, 10, 20, and 40 along a more decimal
series (although divisions by 5 and 16 may have been less im-
portant). However, the size of varu is not only easy to divide by
preferred numbers—these divisions also predominantly yield
monolexemic terms:

varu (V) divided by
2 yields 40 = tataua (T)
4 yields 20 = paua (P)
8 yields 10 = takau (K)
10 yields 8 = varu
20 yields 4 = ’a
40 yields 2 = rua

Even the division of an uneven amount of V (say 7V) units
by a preferred divisor (say 4) is less complicated than it might
sound:

7V : 4= ð4V+ 3VÞ : 4
= 1V+ ð3V : 4Þ;  with  3V : 4= 3P=TP
= 1V  T  P

In other words, although we cannot prove that division was
performed in Mangareva, it would have been possible and, in fact,
rather straightforward—if one accepts the two assumptions laid
out above. These procedures may not have amounted to un-
restricted division in an abstract sense, but they would have been
division nonetheless.

Conclusion
Summarizing our results, it seems clear that superposing a deci-
mal system with binary steps is indeed advantageous, as de-
scribed by Leibniz (1) because it allows arduous calculations and
retrieval of addition facts to be replaced by simple trans-
formations in the binary range. Crucially, these advantages are
not vitiated by the downside of longer number representations
also anticipated by Leibniz. The decimal basis of the system
guarantees that number representations remain relatively com-
pact. The mixed system thus neutralizes the tradeoff associated
with base size (45) by combining the benefits of a small base
(fewer or no addition facts) with the benefits of a larger base
(compact representation). Actually, both of these implications
adjust to the constraints on working memory and thereby benefit
mental arithmetic: the more compact representation relieves
cognitive load in retaining information, and the reduction in
addition facts relieves cognitive load in processing.‡ The main
cost inflicted by this mixing is an increase in irregularity, which
requires additional lexemes and rules and thus affects the ease
with which a system is learned and mastered.
Apparently, its users favored the benefits of the mixed system

over the regularity of the general decimal system, as they de-
veloped the mixed system out of the purely decimal system in
wide use across Polynesia (8, 33). Most likely, this development
occurred after initial settlement of the island, as the system is
distinct to Mangareva, but before the long-distance trading
ceased in 1450 CE, which had connected Mangareva with the
rest of Eastern Polynesia (11, 17, 32). This time frame suggests
two inferences with implications for theorizing on cognitive
evolution. First, although number systems do evolve as part of
the linguistic system to which they belong, changes in these
systems need not be constrained to random processes—their
users may also take an active part in actually adapting them to
shifting cognitive needs. The invention of binary steps in an
otherwise decimal system, and coexistent with a perfectly regular
decimal system, is just too ingenious to have occurred by chance.
And second, cultural evolution need not result in homogeneous
complexity. Although specific cultural–ecological conditions
certainly do favor concurrent changes in correlated aspects (for
examples, see refs. 46 and 47), the presence of any such condi-
tion may be neither necessary nor sufficient. The concern with
large numbers and exact counting attested to in Polynesia neither
correlated with advanced technology nor did it presuppose lit-
eracy, which for a long time were considered as cornerstones of
the development of numerical cognition.
More recently, cross-cultural research on number systems has

provided important insights into the evolution of and constraints
on numerical cognition, but has focused to this end on the
simpler instances (22–25, 48). Although these insights are im-
portant and fruitful, they should not obscure our view on what
could be learned about numerical cognition when turning toward
the more sophisticated instances. Only if we take the full range of
cultural variability into account will we be able to uncover the full
potential for diversity in numeration systems and to assess their role

Table 3. Patterns of transformations during multiplication in
the binary range

Task Decomposition Shifts Example

2·m = shift 1 2K = P
3·m = 2·m + m = shift 1 + m 3K = P + K
4·m = shift 2 4K = T
5·m = 4·m + m = shift 2 + m 5K = T + K
6·m = 4·m + 2·m = shift 2 + shift 1 6K = T + P
7·m = 4·m + 2·m + m = shift 2 + shift 1 + m 7K = T + P + K
8·m = shift 3 8K = V

†It can be observed in M�aori architecture and decoration, for instance, in the custom of
putting even numbers of rafters on either side of a roof so as to avoid bad luck (42, 43),
and M�aori fowlers were said to have avoided obtaining odd numbers by simply waiting
for more prey (44). On Hawai’i, four was of extreme significance in a spiritual context,
and both four and eight were formulistic numbers (26, 41). The concern with symmetry is
also reflected in the specific counting systems across Polynesia, almost all of which used
even numbers such as 2, 4, 10, or 20 as counting units (33, 34).

‡Besides its binary steps, the mixed system had another advantage, namely that the
counting units are larger than 1 (mostly 2, 4, and 8). This increase in size mainly served
to extract that very factor from the quantities to be counted or calculated (30, 33–35).
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as powerful and complex cognitive–linguistic tools. These tools may
vary on several dimensions: with regard to the contexts of applica-
bility (18, 27, 49), with regard to their modality (i.e., whether
implemented as number words, notational systems, or body-based
expressions), or with regard to their properties, such as extent, base
size, or regularity (6). Taking this variability into account will allow
us to investigate how properties of these tools interact with the
cognitive representation and processing of numerical information
and how they may contribute to advancing numeracy.
One such instance has been analyzed in detail here: an ad-

vantageous change in number system, envisaged by Leibniz at the
onset of the 18th century and yet also invented centuries earlier,
literally on the other side of the world, in the absence of any

number notation system and well before the requirements of
advanced technology. Even more noteworthy, Mangarevans had
found a way to compensate for the downsides of a purely binary
system by mixing decimal and binary steps in a well-balanced
manner, thus demonstrating numerical mastery on an advanced
level. For this unique invention and the lessons it may teach
us, Mangarevan deserves a prominent position in theorizing
on numerical cognition.
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