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Nonequilibrium thermodynamics has shown its applicability in a
wide variety of different situations pertaining to fields such as
physics, chemistry, biology, and engineering. As successful as it is,
however, its current formulation considers only systems close to
equilibrium, those satisfying the so-called local equilibrium hy-
pothesis. Here we show that diffusion processes that occur far
away from equilibrium can be viewed as at local equilibrium in a
space that includes all the relevant variables in addition to the
spatial coordinate. In this way, nonequilibrium thermodynamics
can be used and the difficulties and ambiguities associated with
the lack of a thermodynamic description disappear. We analyze
explicitly the inertial effects in diffusion and outline how the main
ideas can be applied to other situations.

Concepts of everyday use like energy, heat, and temperature
have acquired a precise meaning after the development of

thermodynamics. Thermodynamics provides us with the basis for
understanding how heat and work are related and with the rules
that the macroscopic properties of systems at equilibrium follow
(1). Outside equilibrium, most of those rules do not apply and the
aforementioned quantities cannot be defined unambiguously.
There is, however, a natural extension of thermodynamics to
systems away from but close to equilibrium. It is based on the
local equilibrium hypothesis, which assumes that a system can be
viewed as formed of subsystems where the rules of equilibrium
thermodynamics apply. Because of the usual disparity between
macroscopic and microscopic scales, most systems fall into this
category. This is the case of, for instance, the heat transfer from
a flame, the flow through a pipe, or the electrical conduction in
a wire. Nonequilibrium thermodynamics then extracts the gen-
eral features, providing laws such as Fourier’s, Fick’s, and Ohm’s,
which do not depend on the detailed microscopic nature of the
system (2).

In contrast, there are other situations where the local
equilibrium hypothesis does not hold. Many examples are
present in the relaxation of glasses and polymers (3–5), in the
f low of granular media (6), and in the dynamics of colloids (7).
The main characteristic of such systems is the similarity
between microscopic and macroscopic scales, which usually
involve internal variables with ‘‘slow’’ relaxation times. The
so-called inertial effects in diffusion processes are perhaps the
simplest and most illustrative example. In this case, the
relaxation of the velocity distribution and changes in density
occur at the same time scale. Therefore, local equilibrium is
never reached. Here we show how nonequilibrium thermody-
namics, as already established in the 1960s (2, 8) can be applied
to this situation.

Nonequilibrium thermodynamics (2) assumes that the defini-
tion of entropy S can be extended to systems close to equilibrium.
Therefore, entropy changes are given by the Gibbs equation:

TdS 5 dE 1 pdV 2 mdN, [1]

where the thermodynamic extensive variables are the internal
energy E, the volume V, and the number of particles N of the
system. The intensive variables (temperature T, pressure p, and
chemical potential m) are functions of the extensive variables.
Local equilibrium means that the Gibbs equation holds for a
small region of the space and for changes in the variables that are

actually not infinitely slow. Therefore, the internal state of the
system has to relax to equilibrium faster than the variables
change. In this way, all variables retain their usual meanings and
the functional dependence between intensive and extensive
variables is the same as in equilibrium.

Following this approach, nonequilibrium thermodynamics has
been applied to study diffusion processes. The simplest case
takes place in one dimension at constant temperature, internal
energy, and volume. In this case, from Eq. 1 we obtain a Gibbs
equation that depends only on the density and the spatial
coordinate x:

Tds~x! 5 2m~n, x!dn~x!. [2]

Here s is the entropy per unit volume and n is the density. The
chemical potential has the same form as in equilibrium. For
instance, for an ideal system, one formed of noninteracting
particles, it is proportional to the logarithm of the density plus
terms that do not depend on the density (2). Notice that these
terms can include thermodynamic variables such as temperature
or internal energy, and also the spatial coordinate. In the case of
noninteracting Brownian particles, its explicit expression is

m 5
kBT
m

ln n 1 C~x!, [3]

where m is the mass of the particles, kB the Boltzmann constant,
and C(x) a function that takes into account possible spatial
inhomogeneities. The dynamics of n is restricted by the mass
conservation law and therefore follows

n
t

5 2
J
x

, [4]

with J being the flux of mass. An additional assumption of
nonequilibrium thermodynamics is that this f lux is given by

J 5 2L
m

x
, [5]

where L is the phenomenological coefficient. From this, we
obtain the usual diffusion equation

n
t

5


xSD
n
xD , [6]

with the diffusion coefficient D [ L(myn).
When inertial effects are present, changes in density occur

at a time scale comparable with the time the velocities of the
particles need to relax to equilibrium. The Gibbs equation as
stated in Eq. 2 is no longer valid because local equilibrium is
never reached. The entropy production depends also on the
particular form of the velocity distribution. Both the spatial
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coordinate, x, and velocity coordinate, v, are needed to
completely specify the state of the system. Therefore, we
consider that local quantities are functions of both coordi-
nates. If the system is coupled to other degrees of freedom that
relax faster than the velocity and density, a thermodynamic
description is still possible. For instance, this is the case of
Brownian particles, where the host f luid provides these ther-
modynamic degrees of freedom. Thus, we consider that dif-
fusion takes place in a two-dimensional space (x, v) instead of
in the original one-dimensional space (x). In this case, the
chemical potential for an ideal system (e.g., noninteracting
Brownian particles) is given by

m 5
kBT
m

ln n~x, v! 1 C~x, v!, [7]

where C(x, v) is a function that does not depend on the density
(2). The form of this function can be obtained by realizing that
at equilibrium the chemical potential is equal to an arbitrary
constant. We can set this constant so that

m 5
kBT
m

ln n 1
1
2

v2. [8]

Therefore, the Gibbs equation is now

Tds~x, v! 5 2SkBT
m

ln n~x, v! 1
1
2

v2Ddn~x, v!, [9]

The idea of applying the rules of thermodynamics in an internal
space was already proposed by Prigogine and Mazur (9) and has
been used in several situations (2, 10). In all of them, however,
there was no thermodynamic coupling of these internal degrees
of freedom with the spatial coordinate. This is precisely the
situation we are considering here.

In the (x, v)-space, the mass conservation law is

n
t

5 2
Jx

x
2

Jv

v
. [10]

Following the standard thermodynamic approach, the flux of
mass is given by

Jx 5 2Lxx

m

x
2 Lxv

m

v
, [11]

Jv 5 2Lvx

m

x
2 Lvv

m

v
, [12]

where Lij, with i, j 5 {x, v}, are the phenomenological coeffi-
cients. There are some restrictions on the values that Lij can take.
Because the system is at local equilibrium in the (x, v)-space,
Onsager relations imply that Lxv 5 2Lvx. In addition, the flux
of mass in real space, J̃x(x) [ *2`

` vn(x, v)dv, has to be recovered
from the flux in the (x, v)-space by contracting the velocity
coordinate: J̃x(x) 5 *2`

` Jx(x, v)dv. Therefore,

E
2`

`

vndv 5 2E
2`

` SLxx

kBT
m

1
n

n
x

1 Lxv

kBT
m

1
n

n
v

1 LxvvDdv.

[13]

Because n(x, v) can take any arbitrary form, the last equality
holds if and only if Lxx 5 0 and Lxv 5 2n. Thus, the only
undetermined coefficient is Lvv, which can depend explicitly on
n, x, and v.

Previous equations can be rewritten in a more familiar
form by identifying the phenomenological coefficients with
macroscopic quantities. In this way, with Lvv 5 nyt, the f luxes
read

Jx 5 Sv 1
D
t



vDn, [14]

Jv 5 2SD
t



x
1

v
t

1
D
t2



vDn, [15]

where D [ (kBTym)t and t are the diffusion coefficient and the
velocity relaxation time, respectively. The equation for the
density is given by

n
t

5 2


x
vn 1



vSv
t

1
D
t2



vDn. [16]

This kinetic equation is equivalent to the Fokker–Planck equa-
tion for a Brownian particle with inertia because, in an ideal
system, the density is proportional to the probability density, i.e.,
n(x, v) 5 mNP(x, v), where P(x, v) is the probability density for
a particle to be at x with velocity v, and N is the number of
particles of the system. The resulting Fokker–Planck equation
could have also been derived by following standard techniques
of stochastic processes (11) or kinetic theory (12), which are
among the microscopic statistical theories for studying nonequi-
librium phenomena.

The approach we have followed, however, explicitly illus-
trates how thermodynamic concepts can be transferred from
equilibrium, through local equilibrium, to far from equilibrium
situations. The condition of equilibrium is characterized by the
absence of dissipative f luxes (Jx 5 0 and Jv 5 0). Therefore,
from Eq. 14 we obtain that the velocity distribution is Gaussian
with variance proportional to the temperature. If deviations
from equilibrium are small (Jx Þ 0 and Jv 5 0), the local
equilibrium hypothesis holds. This is the domain of validity of
Fick’s law,

Jx 5 2D
n
x

, [17]

which is obtained directly from the equations for the fluxes. In
this case, the distribution of velocities is still Gaussian but now
centered at a non-zero average velocity and the variance of the
distribution is related to the temperature in the same way as in
equilibrium. Beyond local equilibrium (Jx Þ 0 and Jv Þ 0), the
velocity distribution can take any arbitrary form, from which
there is no clear way to assign a temperature. There is, however,
a well defined temperature T: that of local equilibrium in the
(x, v)-space.

In Fig. 1, we illustrate the concepts discussed previously. We
show the velocity profiles obtained from Eq. 16 for two repre-
sentative situations. For fast relaxation of the velocity coordi-
nate, the velocity distribution is Gaussian and centered slightly
away from zero, in accordance with local equilibrium concepts.
For slow relaxation, however, the velocity distribution loses its
symmetry (and its Gaussian form). In this case, the temperature
does not give directly the form of the distribution and one has to
resort to local equilibrium in the (x, v)-space to describe the
system.

It is important to emphasize that the temperature T is the one
that enters the total entropy changes and therefore the one
related to the second principle of thermodynamics. Other def-
initions of temperature are possible though. To illustrate this
point, let us compute the entropy production s. This quantity is
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obtained from local changes in entropy, which are given not only
by the production but also by the flow:

T
s
t

5 2m
n
t

5 T Ss 2
JSx

x
2

JSv

v D, [18]

where (JSx, JSv) is the entropy flux. In our case, the expression
for the entropy production is

s~x, v! 5
n~x, v!

Tt
Sv 1

kBT
m

 ln n~x, v!

v D2

. [19]

Now, given a Gaussian velocity distribution n(x, v) 5
n0(x)e2mv2/2kBT̃(x), we can easily understand the meaning of the
temperature T̃(x) defined through the variance of the distribu-
tion: it is the temperature at which the system would be at
equilibrium (s 5 0). The definition of an effective temperature
as that giving zero entropy production can be extended to
arbitrary velocity distributions. From Eq. 19, we obtain

1

T̃~x, v!
5 2

1
vmSkB

 ln n~x, v!

v D. [20]

The temperature defined in this way is formally analogous to the
equilibrium temperature because the right-hand side term of the
preceding equation can be rewritten as the derivative of an
entropy with respect to an energy:

1

T̃~x, v!
5

sc~x, v!

e~v!
, [21]

where sc(x, v) 5 2(kBym) ln n(x, v) and e(v) 5 1⁄2v2. The term
sc(x, v) and e(v) can be viewed as the configurational entropy
and the kinetic energy per unit of mass, respectively. In general,
other definitions of effective temperature are possible. For
instance, by considering e(v 2 v#(x)) instead of e(v) in Eq. 21, the
resulting temperature would be that of local equilibrium. In this
case, however, this temperature does not give zero entropy

production but just that of the macroscopic motion. This tem-
perature is then the one at which, once the macroscopic motion
is disregarded, the internal configuration of the system would be
at equilibrium.

In general, because T̃(x, v) is a function not only of x but also
of v, given a point in space, there is no temperature at which
the system would be at equilibrium, i.e., T̃(x, v) Þ T̃(x). If an
effective temperature at a point x were defined, it would
depend on the way the additional coordinate is eliminated.
Thus, ambiguities in far-from-equilibrium quantities arise
when considering a lower-dimensional space than the one in
which the process is actually occurring. This is to some extent
similar to what happens with effective temperatures defined
through f luctuation–dissipation theorems. In such a case, the
effective temperature can depend on the scale of observation
(13). It is interesting to point out that all of these effective
temperatures, despite their possible analogies with the equi-
librium temperature, do not have to follow the usual thermo-
dynamic rules because the system is not actually at equilibrium
at the temperature T̃.

The idea of increasing the dimensionality of the space were
diffusion takes place, so to include as many dimensions as
nonequilibrated degrees of freedom the system has, can also be
applied to other situations. In a general case, the additional
degrees of freedom do not necessarily correspond to the velocity.
For instance, let us consider a degree of freedom Q(x) that at
local equilibrium enters the Gibbs equation in the following way:

Tds~x! 5 2mdn~x! 2 BdQ~x!, [22]

where B [ B(n, Q, T) 5 T(syQ)n,T. In this case, one usually
assumes that given T, n(x), and Q(x), the function B is com-
pletely determined through the equilibrium properties of the
system. Far away from equilibrium, we would have to consider
explicitly an additional coordinate u, which is related to the
degree of freedom by Q(x) 5 *un(x, u)du. The corresponding
Gibbs equation

Tds~x, u! 5 2mdn~x, u! [23]

would have to take into account the dependence on the coor-
dinate u through the chemical potential m. Once the Gibbs
equation has been obtained, the way to proceed would be
analogous to the one we followed for the inertial effects. For
instance, some systems with both translational and orientational
degrees of freedom can be described by the chemical potential

m 5
kBT
m

ln
n~x, u!

f~u!
1 U cos u, [24]

where u is now an angular coordinate, U cos u is the orientational
energy, and f(u) is a function accounting for the degeneracy of
the orientational states [for rotation in three and two dimen-
sions, f(u) 5 sin u and f(u) 5 1, respectively] (2). This type of
systems include, among others, liquid crystals and suspensions of
rod-like particles (5), field-responsive suspensions (14), and
polarized systems (2). At local equilibrium, some instances of B
and Q are then electric field and polarization, and magnetic field
and magnetization. Beyond local equilibrium, by writing the
(x, u) counterpart of Eqs. 10, 11, and 12, one can obtain a kinetic
equation that describes the behavior of the system. This equation
includes as particular cases the Fokker–Plank equations ob-
tained for those systems by means of microscopic theories (5, 15).

In this paper, we have been assuming ideality and locality. The
condition of ideality is that the system consists of noninteracting
particles. In this case, the chemical potential is proportional to
the logarithm of the density plus terms that do not depend on this

Fig. 1. Velocity profiles obtained from Eq. 16 when a density gradient is
applied. The solution has been obtained through a standard numerical algo-
rithm following a first order upwind discretization scheme (16). The system is
in a rectangular domain in the (x, v)-space, from x 5 0 to x 5 1, and from v 5

2 10 to v 5 10. The lower and upper dashed curves in the figure represent
the boundary conditions applied at x 5 0 and x 5 1, respectively: n(1, v) 5

10n(0, v) 5 (2p)20.5 exp( 2 v2y2). Filled circles correspond to velocity profiles
at x 5 0.5 for fast relaxation of the velocity coordinate (t 5 0.1), whereas open
circles correspond to slow relaxation (t 5 10). In both cases, Dyt ; kBTym 5

1. All values are given in arbitrary units.
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quantity. Nonideality can be directly taken into account by
considering the right dependence of the thermodynamic quan-
tities on the density and, in general, will give rise to nonlinear
partial differential equations. A more difficult aspect to deal
with is the presence of nonlocal effects. In such a case the
interactions between the different parts of the system will need
of integro-differential equations to be incorporated in the
description.

The main result of our analysis shows that, in far-from-
equilibrium diffusion processes, local equilibrium can be re-

covered when all of the relevant degrees of freedom are
considered at the same level as the spatial coordinate. In the
resulting extended space, thermodynamic quantities, such as
temperature and the chemical potential, admit a well defined
interpretation. The scheme we have developed may then
provide the basis for a consistent formulation of thermody-
namics far from equilibrium.
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