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Agent-based simulation models have a promising future in the
social sciences, from political science to anthropology, economics,
and sociology. To realize their full scientific potential, however,
these models must address a set of key problems, such as the
number of interacting agents and their geometry, network topol-
ogy, time calibration, phenomenological calibration, structural
stability, power laws, and other substantive and methodological
issues. This paper discusses and highlights these problems and
outlines some solutions.

Agent-based models are in their infancy in the social sciences
(1–3), especially when compared with earlier modeling

methods based on classical mathematical analysis (formal de-
ductive models) and statistical or econometric tools (inductive
models). Despite their infancy, however, several agent-based
simulation projects are beginning to address important research
problems across diverse domains of the social sciences, often
proposing insightful solutions (refs. 4–8; ref. 8 reprinted in ref.
9). Given their untapped potential, it now seems likely that these
new methods will soon start yielding a set of significant contri-
butions in numerous areas of social science as ‘‘a third way of
doing science’’ (5).

To realize their promising scientific potential, however, it
should be possible to demonstrate that findings obtained from
agent-based model simulations are invariant with respect to
changes in a critical set of assumptions, parameters, or dimen-
sions in a particular simulation or set of simulation runs.
Otherwise, inferences based on these methods can be invalid, or
range from weak to unwarranted; they may even be outright
erroneous and misleading. These are nontrivial issues that
should be raised at an early stage of investigation; they concern
the invariance and universality of results obtained through
agent-based model simulations. Several specific aspects and
examples of this general problem are identified below, with a
view toward highlighting potential pitfalls and suggesting possi-
ble solutions. This catalog of potential problems and possible
solutions is meant to be heuristic, not definitive or exhaustive; no
doubt other aspects will be encountered and hopefully resolved
as experience is gained in the use of these new methods. Some
isolated awareness of some of these issues already exists (e.g., ref.
5), but the emphasis here is on the class of problems and
solutions.

System Size
Agent-based model simulations differ by the number of agents
or sites (compare refs. 10 and 11), although system size is rarely
changed within a given model run. How does variation in the
number of interacting units (grid size) affect the main results of
an agent-based simulation? Empirically, we know that size is
time-dependent for numerous social systems (e.g., urban centers,
protesters at a demonstration, international systems) and that
group or system size matters for systems and processes involving
collective action (12, 13), war and peace patterns (for example,
refs. 14 and 15), and similarly significant social phenomena.

Sensitivity analyses of the main results with respect to system
or group size are necessary to ensure that simulated results
(synthetic outcomes) are not purely local for a given system size
or are not idiosyncratically determined. In many instances,
nonlinear effects of system size S on resulting behavior f are
expected on theoretical and empirical grounds (�2ƒ��S2 � 0), so
a better understanding of agent-model size is clearly necessary.

Agent Geometry
With few exceptions (16, 17), the standard geometry of agents in
most agent-based model simulations is square, which is an odd
social shape except for city blocks in downtown urban areas or
similarly structured social systems. How does this feature affect
main results in an agent-based model simulation with adjacent
agents? For example, empirically we know that the average
number of borders of real territorial political units is closer to six
than it is to four (18). It seems difficult to believe that a property
as basic as the number of interaction opportunities, which is
determined by agent geometry, would have no effect on resulting
behavior (19, 20).

A feasible and worthwhile solution to this problem is to design
agent geometry in such a way as to come closer to the referent
geometry, but without loss of parsimony. In the case of territorial
political units, hexagons should provide a closer empirical fit
than squares, and at the same time maintain parsimony (16). Not
surprisingly, hexagons are also commonly used in military bat-
tlefield simulations and war games (21). Whether or not agent
geometry will make a difference in the results of agent-based
model simulations remains an open question, as long as this
plausible conjecture remains untested. If hexagonal geometry
does make a difference, then this specific type of invariance may
raise further issues, given the real-world distribution of political
boundaries.

Network Topology
Besides site or agent geometry, most agent-based simulations
select the basic network interaction topology (e.g., a von Neu-
mann�orthogonal or Morgan�diagonal rule) in arbitrary ways,
or perhaps in terms of computational criteria, not substantive
aspects of the problem under investigation. How does the
interaction structure among agents affect the results? Should
Morgan or von Neumann rules apply? This is not always a trivial
problem.

Again, it seems likely that network topology should have some
(and as yet unknown) effect on resulting processes and emergent
behavior. For example, in the case of international systems, this
problem is avoided altogether by a network topology consisting
of hexagons, with six adjacent interactions per site or political
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agent and no need to chose between Morgan or von Neumann
rules. In other cases a solution would be to alter the network
topology rule and explore the effects.

Time Calibration
Agent-based simulations typically run for ‘‘many iterations,’’ just
as previous simulation models. How many hours, days, months,
or years equal one iteration in simulated ‘‘time’’? Unless the
iteration duration is known in terms of some physical calendar
time, there is no way to comprehend the time scale of the
emergent phenomena. This problem does not arise in some
classical models; for example, in extensive form games, punc-
tuated by well-defined decision episodes, or in arms race
models, punctuated by budgetary cycles or cycles of weapons
appropriation.

A solution to this problem is to use emergent features in the
simulation process to calibrate the time scale. For example, in an
agent-based simulation where wars occur as a result of agent
interactions, it is possible to calibrate the iteration units in the
time domain based on the known empirical frequency of wars of
various types and magnitudes (Table 3.1 in ref. 22). Similarly, the
time domain of a simulation can be calibrated based on empirical
statistics of polity duration and related phenomena (23, 24). The
underlying principle is the same in both cases: use empirical
observations to estimate the proportionality factor � for simu-
lated time, such that �simulation � ��referent.

Phenomenological Calibration
Besides time, the size or magnitude of various phenomena in
agent-based simulation results is also often uncalibrated. For
example, the territorial size of units in a landscape, or the
intensity of warfare, are generally obtained as dimensionless
quantities without any known relation to empirically observable
(physical) quantities such as hectares or fatalities, respectively.
Moreover, the relationship between a dynamic set of state
variables X(�) and the time-domain � cannot be arbitrary (a
magnitude 7.5 earthquake cannot occur in 3 s; just as an
empire cannot form in 2 days). Intensity and tempo-
ral dimensions are correlated in the real world (space-time
allometry).

Here again, the known record from empirical observation
should be used to calibrate simulated dimensions, similar to the
temporal domain. A reliable, albeit decentralized, database of
empirical magnitudes for conflicts of various types (22), terri-
torial units (23), and other important magnitudes is now avail-
able and should be used for calibrating simulated phenomena.

Structural Stability
Agent-based simulations typically produce patterns of emergent
phenomena expressed in terms of state trajectories, phase
portraits, distributions of behavior, and similar aggregate rep-
resentations of ‘‘long-term’’ evolution. Are such long-term re-
sults stationary in the sense of showing convergence toward a
steady state? Can structural stability be demonstrated, or must
it be simply assumed?

Let �z�(�) denote some aggregate (average) evolutionary
trajectory in a simulation run or set of simulation runs. Then,
‘‘the temporal behavior of �z�(�) offers only a rough check on
whether the asymptotic regime has been reached. To be careful,
one would check the temporal evolution of the distribution
functions’’ (26). These time-dependent diagnostics are rare in
the social sciences, but nevertheless essential to address issues of
structural stability or invariance in the time domain (14, 15, 27).

Power Laws
Finally, numerous empirical social processes are known to
organize themselves as power laws, or patterns of the form ƒ(x) �
x�b, where b is a dimensional exponent characteristic of the
underlying process (unpublished data). Pareto’s law of income
distribution, Zipf’s rank-size rule, and Richardson’s law of war
magnitudes are examples of power laws. To what extent are
power laws present in the emergent behavior of agent-based
simulations? Are such synthetic power laws, when they do
emerge, comparable to empirically observed power laws?

Empirically validated power laws can be used to calibrate key
dimensions in agent-based simulation models. Moreover, the
exact value of the synthetic parameter value b can shed new light
on underlying processes, such as self-organized criticality (27).

Conclusions
The preceding inventory of potential pitfalls and possible solu-
tions is minimal, and mostly based on past experience with
earlier pre-agent-based modeling and simulation methods. For
example, this repertoire omits other potential issues that may be
similarly highlighted (e.g., sensitivity of results to decision rules,
types of random distributions, selection criteria for initial con-
ditions, and so on). No doubt other potential problems will be
discovered and hopefully corrected as experience with agent-
based models develops.

The issues raised in this brief paper seem particularly timely
because agent-based simulation methods are relatively new and
many standards are still unsettled. Users are discussing and
selecting ‘‘best practices,’’ but already new substantive applica-
tions are being closely scrutinized by others who use traditional
methods and are understandably suspicious of the new agent-
based projects as ‘‘a third way of doing science’’ (5). Some of
these pitfalls should be identified and addressed early on, lest
they cause greater problems later, especially in terms of threat-
ening the long-term contribution that agent-based simulations
can make in the social sciences.
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