Membrane-shaping host reticulon proteins play crucial roles in viral RNA replication compartment formation and function

Arturo Díaza, Xiaofeng Wangb,1, and Paul Ahlquista,b,2

aInstitute for Molecular Virology and bHoward Hughes Medical Institute, University of Wisconsin, Madison, WI 53706

Contributed by Paul Ahlquist, July 29, 2010 (sent for review May 14, 2010)

Positive-strand RNA viruses replicate their genomes on membranes with virus-induced rearrangements such as single- or double-membrane vesicles, but the mechanisms of such rearrangements, including the role of host proteins, are poorly understood. Brome mosaic virus (BMV) RNA synthesis occurs in \textasciitilde70 nm, negatively curved endoplasmic reticulum (ER) membrane invaginations induced by multifunctional BMV protein 1a. We show that BMV RNA replication is inhibited \textasciitilde80\%–90\% by deleting the reticulon homology proteins (RHPs), a family of membrane-shaping proteins that normally induce and stabilize positively curved peripheral ER membrane tubules. In RHP-depleted cells, 1a localized normally to perinuclear ER membranes and recruited the BMV 2apol polymerase. However, 1a failed to induce ER replication compartments or to recruit viral RNA templates. Partial RHP depletion allowed formation of functional replication vesicles but reduced their diameter by 30\%–50\%. RHPs coimmunoprecipitated with 1a and 1a expression redirected \textasciitilde50\% of RHPs from peripheral ER tubules to the interior of BMV-induced RNA replication compartments on perinuclear ER. Moreover, RHP-GFP fusions retained 1a interaction but shifted 1a-induced membrane rearrangements from normal vesicles to double membranes, a phenotype also induced by excess 1a-interacting 2apol. Thus, RHPs interact with 1a, are incorporated into RNA replication compartments, and are required for multiple 1a functions in replication compartment formation and function. The results suggest possible RHP roles in the bodies and necks of replication vesicles.

A universal feature of (+)RNA viruses is that they replicate their RNA on intracellular membranes, usually in association with vesiculation or other membrane rearrangements (1–3). As a highly conserved feature of (+)RNA virus life cycles, such membrane involvement is a potentially valuable target for broad-spectrum antiviral treatments.

Brome mosaic virus (BMV) is a member of the alphavirus-like superfamily of human, animal, and plant viruses. BMV encodes two RNA replication proteins. BMV 1a contains an N-proximal domain with m3G methyltransferase and covalent m3GMP-binding activities required for viral RNA capping (4–6), and a C-terminal NTPase/RNA helicase-like domain (7). BMV 2apol has a central RNA-dependent RNA polymerase-like domain and an N-terminal domain that interacts with the 1a helicase domain (8, 9). In both the yeast Saccharomyces cerevisiae and its natural plant hosts, BMV RNA is selectively encapsidated into progeny virions (10), and BMV RNA replication depends on 1a, 2apol and specific cis-acting RNA signals (11), localizes to ER membranes (12, 13), generates a dramatic excess of positive- to negative-strand RNA (14), and efficiently directs subgenomic mRNA synthesis (14).

BMV 1a localizes to perinuclear ER membranes and induces 60- to 75-nm vesicular invaginations or spherules. BMV 1a’s high multiplicity in spherules (15), strong membrane association (16), and self-interaction (17) imply that 1a may induce spherule invagination away from the cytoplasm (negative membrane curvature) by forming a capsid-like shell on the spherical interior (15). In the presence of low levels of 2apol and a viral RNA template, spherules serve as compartments or mini-organelles for RNA replication (15). Many other (+)RNA viruses, including flaviviruses (18), nodaviruses (3) and alphaviruses (19), also replicate in association with \textasciitilde50- to 80-nm-diameter spherules. However, for BMV, increasing 2apol levels shift the spherule membrane rearrangements to large multilayer stacks of appressed double-membrane layers that, like spherules, are recruited to the sites of 1a and 2apol accumulation, protect RNA templates from nucleases, and support RNA replication (20).

The mechanisms by which (+)RNA viruses induce and maintain such membrane rearranged RNA replication compartments and the role of host factors in this process are not resolved. Here, we reveal and dissect the critical roles of the reticulon homology domain proteins (RHPs) in BMV RNA replication compartment formation and function. The RHPs are a family of membrane-shaping proteins conserved from yeast to humans and plants (21, 22). RHPs share similar \textasciitilde200-aa domains with two long hydrophobic segments that insert in the cytoplasmic face of membranes to induce positive membrane curvature (protrusion toward the cytoplasm). RHPs primarily partition to and stabilize positively curved peripheral ER membrane tubules while avoiding the low-curvature ER domains of the nuclear envelope and peripheral ER sheets (23–28). Genome-wide deletion analysis in yeast, which encodes three RHPs (Rtn1p, Rtn2p, and Yop1p), previously revealed only a 2-fold reduction in BMV replication on deleting Rtn1p and just a \textasciitilde10–20\% reduction on deleting Rtn2p or Yop1p, respectively (29).

However, we show that 1a interacts with RHPs and relocates them from peripheral ER tubules to the interior of the spherical BMV RNA replication compartments. Moreover, consistent with the RHPs’ redundant roles in the cell (25), simultaneously deleting Rtn1p and Yop1p or all three RHPs severely inhibited BMV RNA replication, abolished 1a-induced spherule formation and altered the number and morphology of 1a-induced double-membrane layers, whereas GFP-tagged versions of the RHPs prevented spherule formation. These and other results show that the RHPs play important roles in the formation and function of BMV-induced replication compartments.

Results

Deleting RHP Genes Inhibits BMV RNA Replication. BMV 1a by itself or with low levels of 2apol, expressed from the ADH1 promoter, induces spherular ER invaginations, whereas 1a plus high 2apol

Author contributions: A.D., X.W., and P.A. designed research; A.D. performed research; A.D. contributed new reagents/analytic tools; A.D., X.W., and P.A. analyzed data; and A.D. and P.A. wrote the paper.

The authors declare no conflict of interest.

1Present address: Texas A\&M University System, Weslaco, TX 78596.

2To whom correspondence should be addressed. E-mail: ahlquist@wisc.edu.

This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10.1073/pnas.1011105107/-/DCSupplemental.

www.pnas.org/cgi/doi/10.1073/pnas.1011105107
levels, driven by the GAL1 promoter, induce stacked layers of double-membrane ER (15, 20). To assess the role of RHPs in BMV RNA replication, we measured positive- and negative-strand subgenomic RNA4 accumulation in wt, single- (rtn1Δ, rtn2Δ, or yop1Δ), and double-knockout (rtn2Δyop1Δ or rtn1Δyop1Δ) yeast expressing 1a, RNA3, and ADH1 2a^{rop} or GAL1 2a^{rop}. Wt yeast cells supported high levels of positive-strand RNA3 and subgenomic RNA4 in both spherules and layers (Fig. 1, lane 1), rtn2Δ, yop1Δ, and rtn2Δyop1Δ yeast also supported RNA4 synthesis to wt levels (Fig. 1, lanes 3–5). rttn1Δ yeast supported RNA4 synthesis to 53% and 58% of wt levels in spherules and layers, respectively (Fig. 1, lane 2). Moreover, in rtn1Δyop1Δ yeast, RNA4 synthesis was inhibited by 92% and 67% in spherules and layers, respectively (Fig. 1, lane 6). A similar trend was observed for negative-strand RNA synthesis (Fig. S1A). Although rtn1Δyop1Δ yeast grew at ≈2/3 the wt rate, general transcription and translation were not affected (e.g., Fig. 1, see 18S RNA; Fig. S1 see Pkg1 levels). Consistent with their overlapping functions, the separate and additive effects of the RHP gene deletions on BMV mirror their relative expression levels of Rtn1p > Yop1p > Rtn2p (30).

The above yeast deletion mutants were made in S. cerevisiae strain YPH500, used in most past studies of BMV RNA replication (12, 15, 20, 31). Despite extensive efforts, we could not generate YPH500 rtn1Δrtn2Δ or rtn1Δrtn2Δ+Δyop1Δ strains, suggesting that these deletions inhibit cell growth in the YPH500 background. However, for widely used strain BY4741, which also has been used to study many aspects of BMV replication (29, 32), an rtn1Δrtn2Δyop1Δ triple knockout strain has been generated (25). This mutant has no growth defect, and ER morphology changes caused by RHP deletion do not block vesicular trafficking out of the ER (25). In rtn1Δrtn2Δyop1Δ yeast, positive-strand RNA4 accumulation decreased by 80% and 90% in spherules and layers compared with their levels in wt BY4741 yeast (Fig. 1, lanes 7 and 8). Hereafter, results described for single- and double-knockouts were based on YPH500 derivatives, whereas rtn1Δrtn2Δyop1ΔΔ yeast were on the BY4741 background.

Moreover, 1a and 2a^{rop} levels were not altered in the absence of RHPs, ruling out the possibility that the decrease in RNA replication might be due to a destabilizing effect on the viral replicase proteins (Fig. S1 B and C). Additionally, 1a and 2a^{rop} localized normally to the perinuclear ER in most strains (Fig. S2). However, in rtn1Δrtn2Δyop11a yeast-expressing layers, only a portion of 1a was associated with the perinuclear ER, whereas the majority of 1a colocalized with Sec63 in aberrant regions of ER that extended away from the nucleus (Fig. S2C).

Deleting RHPs Reduces Spherule Numbers and Diameter. To determine whether spherule formation or structure was affected by RHP deletion, we measured the abundance and diameter of spherules in the subset of cells that were sectioned through their nuclei among a total of 200 cells for each strain. In wt and rtn2Δ yeast, the average spherule diameter was 58–74 nm, whereas in yop1Δ, rtn1Δ, and rtn2Δyop1Δ yeast, spherules averaged 48, 35, and 27 nm in diameter, respectively (Fig. 2 A–C and Fig. S3). For rtn2Δyop1Δ yeast in particular, the >2-fold decrease in spherule diameter was paralleled by a >2-fold increase in spherule frequency (Fig. 2C), possibly reflecting the unchanged level of spherule-lining 1a protein (Fig. S1). Finally, in rtn1Δyop1Δ and rtn1Δrtn2Δyop1Δ yeast, spherules were not detected among thousands of cells examined (Fig. 2C).

In yeast cells, the half-life of RNA3 increases from 5 to 7 min in the absence of 1a to >3 h in the presence of 1a, which is reflected in a marked increase in RNA3 accumulation (33). This 1a-induced, stabilized state is consistent with RNA3 relocation to the interior of the 1a-induced spherules (15). In wt, single-deletion, and rtn2Δyop1Δ yeast, 1a increased RNA3 accumulation 8- to 11-fold over that in cells lacking 1a (Fig. S4). However, in rtn1Δyop1Δ yeast, RNA3 accumulation did not increase in the presence of 1a (Fig. S4). Thus, Rtn1p and Yop1p in particular modulate the formation and size of 1a-induced membrane spherules.

Deleting RHPs Alters Number and Morphology of Double-Membrane Layers. Electron micrographs of wt yeast expressing 1a plus GAL1 2a^{rop} showed a series of 2–5 appressed layers of double-membrane ER surrounding the nucleus (Fig. S4). Likewise, multiple double-membrane layers were found in rtn1Δ (Fig. 3B), rtn2Δ, yop1Δ, and rtn2Δyop1Δ yeast (Fig. S3), rtn1Δyop1Δ and rtn1Δrtn2Δyop1Δ yeast, in which RNA replication was inhibited by 70–90% (Fig. 1), predominantly had only a single double-membrane layer surrounding the nucleus (Fig. 3 C and D). Moreover, simultaneously deleting the three RHPs disrupted the normal close pairing of adjacent double-membrane layers, leading to dramatic bulges in the normally regular, narrow interlayer space (Fig. 3D), reminis-
Morphology and number of double-membrane layers is altered in pol-
of yeast, as shown by 1a immunoblotting (Fig. 4A). Because the ER membrane-shaping RHPs were required for spherule formation and instead formed a layer-like structure under conditions where 1a also localizes (15, 20).

To more precisely localize RHPs in relation to BMV-induced replication compartments, we performed immunogold EM with an antibody recognizing FLAG-tagged RHPs and a secondary antibody conjugated to gold particles. The need to reduce osmium treatment to preserve antigenicity reduced direct membrane staining but, as in prior studies (15, 20), spherules remained readily recognizable by the electron lucence of their bounding membranes and high electron density of their interior contents relative to general cytoplasm (Fig. 5 A and B). Of >100 gold particles examined in the absence of BMV components, only ≈7% were on or near the perinuclear ER (Fig. 5E). In cells expressing 1a, ≈55% of RHP-targeted gold particles were inside the ≈70 nm spherules (Fig. 5 B and E) or well within the ≈20 nm distance spanned by the primary and secondary antibodies (37).

In cells expressing 1a plus GAL1 2apol, ≈57% of gold particles were on the double-membrane ER layers or in the cytoplasmically connected spaces between layers (Fig. 5 D and E). Notably, as integral membrane proteins inserted in the ER membrane cytoplasmic face (25), RHPs cannot be in the ER lumen. Thus, RHPs localize to the interior of spherules and double-membrane layers, where 1a also localizes (15, 20).

Fusing GFP to RHPs Shifts Spherules to Double-Membrane Layers. The small 8-aa FLAG tag used in previous experiments did not interfere with the normal localization of RHPs (Fig. 4A) and had no adverse effect on the formation and morphology of BMV-induced spherules and double-membrane layers (Fig. 5). However, we found that RHP-GFP fusions prevented spherule formation and instead formed a layer-like structure under conditions that normally produce spherules (Fig. S7B). The GFP-tagged RHPs relocalized from peripheral to perinuclear ER in the presence of 1a or 1a plus GAL1 2apol (Fig. S7 C and D) and co-IP
nuclear ER into the cytoplasm. Thus, one important role for RHPs may be stabilizing spherule necks (Fig. 6A). Because no membrane breakage is involved, every degree of negative curvature induced by 1a must be compensated by corresponding positive curvature at the neck. Consistent with such a role, RHPs polymerize into short arcs and need to occupy only \(\approx 10\% \) of a membrane surface to form tubules (35). Without RHPs to stabilize neck formation, 1a may not be able to progress beyond initial membrane deformation to make a full vesicle.

RHP expression levels and density on membranes vary the rate of bending and, thus, the diameter of ER tubules (35). Similar considerations may explain why partial RHP depletion in \(\Delta rtn1\), \(\Delta yop1\), and \(\Delta rtn2\Delta yop1\) yeast reduced spherule diameter 2-fold (Fig. 2). Our 1a-RHP co-IP and immunogold results (Figs. 4 and 5) suggest that RHPs also may be incorporated with 1a into the main vesicle body (Fig. 6A). There, local positive curvature induced by membrane insertion of wedge-shaped RHPs should partially cancel negative curvature induced by adjacent 1a proteins, causing the membrane to bend toward closure more slowly and increasing spherule diameter relative to a pure 1a shell (Fig. 6B).

Notably, the smaller spherules supported substantial levels of RNA replication (Fig. 1). Thus, as long as large or small 1a-induced spherules formed, viral RNA templates were stabilized (Fig. S4) and replicated (Fig. 1), suggesting that a major RNA replication defect in \(\Delta rtn1\Delta yop1\Delta \) and \(\Delta rtn2\Delta yop1\Delta \) yeast was the failure to form replication compartments.

Discussion

To replicate their genomic RNAs, (+)RNA viruses induce membrane rearrangements that create membrane-linked RNA replication compartments, but how such rearrangements are accomplished remains largely unknown. Our results show that the membrane-shaping host RHPs localize to the sites of BMV RNA synthesis through an interaction with viral replication factor 1a, play crucial roles in BMV RNA synthesis, and are essential for forming the membrane-bounded replication compartments in which RNA synthesis occurs.

RHP Roles in Replication Vesicle Formation and Function. Previous work demonstrated that 1a membrane association and 1a–2a interaction precedes, and is independent of, membrane rearrangement (7, 31). Here, our data show that RHP deletion did not reduce 1a localization to ER membranes (Fig. S2) or 1a interaction with BMV 2a (Fig. S2D). However, deleting all three RHP genes (\(\Delta rtn1\Delta rtn2\Delta yop1\Delta \)) inhibited RNA replication 10-fold (Fig. 1) and abolished 1a-induced spherule formation (Fig. 2C) and viral RNA template protection (Fig. S4). This failure to protect viral RNAs may be due to not forming spherules. Prior results indicate that these vesicle interiors are the protected site in which 1a sequesters viral RNAs (7, 15) and, upon 1a mutation, increases and decreases in spherule formation and RNA template protection are closely correlated (31).

BMV 1a strikingly localized more than one-half of RHPs to the perinuclear ER and incorporated them inside the replication vesicles (Figs. 4 and 5). A challenge in understanding how RHPs contribute to spherule formation is that although 1a-induced spherules are invaginated away from the cytoplasm, RHPs pull ER membranes to protrude into the cytoplasm. Thus, superficially, it appears that RPH and 1a action should be antagonistic, not cooperative. However, RHPs also are involved in forming nuclear pores (38), which are topologically equivalent to spherule necks: both are positively curved channels from the perinuclear ER into the cytoplasm. Thus, one important role for RHPs may be stabilizing spherule necks (Fig. 6A). Because no membrane breakage is involved, every degree of negative curvature induced by 1a must be compensated by corresponding positive curvature at the neck. Consistent with such a role, RHPs polymerize into short arcs and need to occupy only \(\approx 10\% \) of a membrane surface to form tubules (35). Without RHPs to stabilize neck formation, 1a may not be able to progress beyond initial membrane deformation to make a full vesicle.

RHP expression levels and density on membranes vary the rate of bending and, thus, the diameter of ER tubules (35). Similar considerations may explain why partial RHP depletion in \(\Delta rtn1\), \(\Delta yop1\), and \(\Delta rtn2\Delta yop1\) yeast reduced spherule diameter 2-fold (Fig. 2). Our 1a-RHP co-IP and immunogold results (Figs. 4 and 5) suggest that RHPs also may be incorporated with 1a into the main vesicle body (Fig. 6A). There, local positive curvature induced by membrane insertion of wedge-shaped RHPs should partially cancel negative curvature induced by adjacent 1a proteins, causing the membrane to bend toward closure more slowly and increasing spherule diameter relative to a pure 1a shell (Fig. 6B).

Notably, the smaller spherules supported substantial levels of RNA replication (Fig. 1). Thus, as long as large or small 1a-induced spherules formed, viral RNA templates were stabilized (Fig. S4) and replicated (Fig. 1), suggesting that a major RNA replication defect in \(\Delta rtn1\Delta yop1\Delta \) and \(\Delta rtn2\Delta yop1\Delta \) yeast was the failure to form replication compartments.
RHP Roles in Double Membrane Layers. RHPs also were crucial for RNA replication under conditions of high 2a^{pol} expression, which shift 1a-induced replication compartments from vesicles to stacked double-membrane layers (20). RHP depletion in <i>rtn1Δ rtn1Δ yap1Δ</i>, and <i>rtn1Δ yop1Δ yap1Δ</i> yeast progressively inhibited layer formation and deranged layer morphology in parallel with inhibiting RNA replication (Figs. 1 and 4). Just as they stabilize ER tubules, RHPs might help to initiate each new layer by forming arc-like scaffolds to stabilize the positively curved ends (half tubules) where each perinuclear ER layer folds over to begin the next outer layer (Fig. S8A) (20). Moreover, because RHPs were recruited to the intermembrane spaces (Fig. 5D), the self-interacting 1a and RHP proteins (38) might cluster in the concave and convex membrane regions, respectively, neutralizing each other’s induced membrane curvature to yield relatively flat sheets (Fig. S8A). Consistent with this possibility, absence of RHPs produced aberrant single layers with prominent, negatively curved bulges consistent with unbridled 1a-induced curvature (Fig. S8B).

Like excess 1a-interacting 2a^{pol}, GFP fusion to 1a-interacting RHPs inhibited sphere formation and induced membrane layer formation (Fig. S7). This phenotype is consistent with our independent findings that RHPs interact with 1a and localize to sphere and layer interiors (Figs. 4 and 5). As with 2a^{pol} (20), these effects may be due to steric issues or interference with competing 1a interactions, such as certain 1a–1a interactions.

RHPs also might contribute to RNA synthesis in ways beyond membrane shaping. By interacting with 1a, RHPs might modulate 1a conformation, multimerization, or membrane interaction to activate one or more 1a functions required for RNA synthesis, similar to membrane activation of Semliki Forest virus nsP1 capping functions (39). BMV RNA replication also requires high, balanced levels of lipid synthesis (40), many steps of which occur on RHP-stabilized tubular ER (25, 26, 34). However, deleting all three RHPs did not alter fatty acid levels or composition (Fig. S5). Moreover, although RHPs affect vesicular trafficking (41), deleting all three RHPs did not alter ER membrane localization of BMV RNA replication proteins 1a or 2a^{pol} (Fig. S2). It remains possible that RHP deletion might alter the distribution of a host factor required for RNA replication.

Relation to Other (+)RNA Viruses. Several other membrane-associated host factors recently have been implicated in (+)RNA virus replication. BMV and poliovirus RNA replication depend on ER-localized A9 fatty acid desaturase Ole1p and secretory regulating factor GBF1, which is recruited to poliovirus RNA replication sites, although neither factor is required for replication-associated membrane rearrangements (40). Poliovirus also subverts membrane-rearranging autophagosomal pathways, with implications for RNA replication and virion release (42). Additionally, dominant-negative mutants of ESCRT-III proteins reduced tombusvirus RNA replication and the frequency of spheres in infected cells (43). Moreover, entoviroid 71 and poliovirus 2C proteins interact with human reticulon 3 (RTN3), and RTN3 knockdown decreased entoviroid 71 double-stranded RNA synthesis and protein expression (44). Although possible effects on membrane rearrangements were not determined, these results suggest that the BMV-RHP findings here may have implications for other (+)RNA viruses.

Overall, our data show that RHPs interact with BMV 1a and are essential for inducing and/or stabilizing the membrane rearrangements linked to BMV RNA replication. Further understanding of RPH roles in RNA replication by BMV and other viruses should provide additional insights into replication pathways and facilitate use of such host genes as potential targets for antiviral approaches.

Experimental Procedures

<i>S. cerevisiae Strains and Plasmids.</i> The yeast strains used were as follows: YPH500 (MATα ura3–52 lys2–801 ade2–101 trpl–363 his3–200 leu2–31,1) BY4741 (MATα his3Δ1 leu2–31 met15Δ ura3–3Δ), and NDY257 (BY471 rtn1::kanMX4 rnt2::kanMX4 yop1::kanMX4) (25). The following strains were generated for this work: RM1 (YPH500 rtn1::kanMX4), RM2 (YPH500 rtn2::kanMX4), RM3 (YPH500 yop1::kanMX4), RM4 (YPH500 rtn1::kanMX4 yop1::natMX4), and RM5 (YPH500 rnt2::trpl1::kanMX4). Genomic insertions were made by using amplified KanMX4, NatMX4, or trpl1 cassettes flanked by 5′ and 3′ homologous recombination regions. Strains expressing the chromosomal alleles of RTN1, RTN2, and YOP1 as GFP fusions were obtained from Invitrogen. For endogenous expression of the RHPs, the coding region of the full length protein plus the 300-bp upstream sequences were PCR-amplified from wt yeast DNA with appropriate primers and inserted into a CEN plasmid. A FLAG-tag was added at the C terminus of the RHPs. BMV 1a was generated from the GAL1 promoter by using pB1YT3 (5), 2a^{pol} was generated from pB2CT15 (ADH1 promoter) (14) or pB2YT5 (GAL1 promoter) (5), and BMV RNA3 was expressed from a CUP1 promoter using pB2CUT2 (5), pB2CY3 (5), and BMV RNA3 was expressed from the GAL1 promoter by using pB1YT3 (5), 2a^{pol} and 2a^{pol}-GFP mouse polyclonal antibodies were purchased from Sigma and Molecular Probes, respectively.

Communoprecipitation. Yeast cells were lysed in RIPA buffer (1% Nonidet P-40, 0.1% SDS, 50 mM Tris at pH 8.0, 150 mM NaCl, 0.5% sodium deoxycholate, 5 mM EDTA, 10 mM NaF, 10 mMNaPPi, 2 mM phenylmethylsulfonylf, 5 mM benzamidine, and 10 μg/mL each of chymostatin, pepstatin A, leupeptin, and bestatin) by using glass beads and a bead beater, and the supernatant was collected after centrifugation. For immunoprecipitation, yeast lysates were mixed with Protein A mouse polyclonal antibodies were purchased from Sigma and Molecular Probes, respectively.

Confocal Laser Microscopy. To detect the subcellular localization of BMV proteins in RHP deletion strains, yeast were transformed with plasmids expressing 1a and 2a^{pol} and Sec63-GFP. To detect the localization of RHPs, FLAG-tagged RHPs or strains expressing GFP fusions to the chromosomal alleles of RTN1, RTN2, and YOP1 were transformed with empty plasmids or plasmids encoding 1a and 2a^{pol}. Confocal microscopy was performed on a Bio-Rad 1024 double-channel confocal microscope as described (12).

Electron Microscopy. Conventional and immunolabeling fixation EM was done as described (15). For immunogold labeling, the percentage of relocalized RHPs was calculated by comparing the number of gold particles in or near the perinuclear ER in the absence versus the presence of 1a. Background labeling was determined by using cells lacking FLAG-tagged RHPs. Specific labeling was determined by subtracting the background labeling density. The diameter of >50 spheres was measured with the imaging program ITEM Analysis (Soft Imaging Systems). For additional information, see SI Experimental Procedures.

ACKNOWLEDGMENTS. We thank Benjamin August and Randall Massey of the University of Wisconsin Medical School Electron Microscopy Facility for assistance with EM. Lance Rodenkirch of the W. M. Keck Laboratory for Biological Imaging for assistance with confocal microscopy, and Dr. William Prinz (the National Institutes of Health, Bethesda, MD) for providing the triple-knockout strain. This project was supported by National Institutes of Health Grant GM50702. P.A. is a Howard Hughes Medical Institute investigator. A.D. was supported by National Institutes of Health Predoctoral Grant T32 GM07215.

