Satellite-based global-ocean mass balance estimates of interannual variability and emerging trends in continental freshwater discharge

Tajdarul H. Syeda,b, James S. Famigliettiac,d,1, Don P. Chambersd, Josh K. Willises, and Kyle Hilburnf

aDepartment of Earth System Science, University of California, Irvine, CA 92697; bDepartment of Applied Geology, Indian School of Mines, Dhanbad 826004, India; cUC Center for Hydrologic Modeling, University of California, Irvine, CA 92697; dCollege of Marine Science, University of South Florida, St. Petersburg, FL 33701; eJet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, and fRemote Sensing Systems, Santa Rosa, CA 95401

Edited* by Anny Cazenave, Centre National d’Etudes Spatiales (CNES), Toulouse Cedex 9, France, and approved August 27, 2010 (received for review March 14, 2010)

Freshwater discharge from the continents is a key component of Earth’s water cycle that sustains human life and ecosystem health. Surprisingly, owing to a number of socioeconomic and political obstacles, a comprehensive global river discharge observing system does not yet exist. Here we use 13 years (1994–2006) of satellite precipitation, evaporation, and sea level data in an ocean mass balance to estimate freshwater discharge into the global ocean. Results indicate that global freshwater discharge averaged 36,055 km3/y for the study period while exhibiting significant interannual variability driven primarily by El Niño Southern Oscillation cycles. The method described here can ultimately be used to estimate long-term global discharge trends as the records of sea level rise and ocean temperature lengthen. For the relatively short 13-year period studied here, global discharge increased by 540 km3/y2, which was largely attributed to an increase of global-ocean evaporation (768 km3/y2). Sustained growth of these flux rates into long-term trends would provide evidence for increasing intensity of the hydrologic cycle.

*Author contributions: T.H.S. and J.S.F. designed research; T.H.S. performed research; D.P.C. and I.K.W. provided data; T.H.S., D.P.C., I.K.W., and K.H. analyzed data; and T.H.S. and J.S.F. wrote the paper.

The authors declare no conflict of interest.

1To whom correspondence should be addressed at: Department of Earth System Science, University of California, Irvine, CA 92697-3100. E-mail: famigli@dsc.edu.

*This Direct Submission article had a prearranged editor.

Freely available online through the PNAS open access option.

www.pnas.org/cgi/doi/10.1073/pnas.1003292107

10.1073/pnas.1003292107

www.pnas.org/cgi/doi/10.1073/pnas.1003292107

www.pnas.org/cgi/doi/10.1073/pnas.1003292107

PNAS Early Edition | 1 of 6
Hemisphere winter. This pattern of variability is intricately linked with the seasonal shifts in the Intertropical Convergence Zone and is also reflected in the peaks of global-ocean mass change during Northern Hemisphere summer (Fig. S2). General agreement between all discharge estimates is evident in their phase and amplitude. Except for a few months, the majority of the monthly discharge estimates fall within one standard deviation of the ensemble mean. Although the lower end members of the global discharge ensemble mostly result from the combination of \(E \) from the Special Sensor Microwave Imager-NASA Energy and Water Cycle Study (NEWS) dataset (SSM/I; 2) and \(P \) from the Climate Prediction Center (CPC) Merged Analysis of Precipitation (CMAP; 22) (averaging \(\sim 22,000 \) km\(^3\)/y), the upper end members are mostly obtained from the combination of \(E \) from the Objectively Analyzed Air-Sea Fluxes (OAFlux; 23) and \(P \) from the Global Precipitation and Climatology Project (GPCP; 24) (averaging \(\sim 48,000 \) km\(^3\)/y). Because \(E \) (\(P \)) contributes positively (negatively) in the global-ocean mass budget solution for \(R \), the lowest (highest) discharge is produced by the combination of the lowest (highest) \(E \) and highest (lowest) \(P \). The average value of global freshwater discharge for the period 1994–2006 is 36,055 km\(^3\)/y, which is similar to a very recent analysis (25) and is in the middle of the range established by a host of previous studies (e.g., 17, 18). Also shown in Fig. 1, as a conservative estimate of error, are the monthly values of mean absolute deviation about the ensemble mean. These values quantify dispersion among the various estimates of discharge on a month-to-month basis, the average of which for the entire study period is 880 km\(^3\)/mo. Table 1 lists the mean and standard deviation of the ensemble mean of the global-ocean mass balance for the length of the study.

Note that one of the primary objectives of this study is to establish a method that addresses some of the major limitations for estimating time variations of observation-based freshwater discharge to the global ocean, particularly for the recent past. In order to establish a robust estimate of global discharge, we have utilized a variety of the most commonly used, currently available datasets for each of the individual components of global-ocean mass balance, many of which do not yet include individual error estimates. The uniqueness of the computed discharge estimates therefore necessitated the quantification of uncertainty as a measure of variance in the estimated monthly global discharge values. Hence instrument errors, those due to changes in sensors and retrieval algorithms over time, and other associated errors, may percolate into the computed discharge estimates and are not explicitly represented by the error bars in Fig. 1. The quantification of instrument- and algorithm-specific errors, though important, is beyond the scope of this study.

Differences among ensemble members in Fig. 1 reflect on the current ability to close the global-ocean mass balance. Some monthly discharge values, mostly those estimated using \(E \) from SSM/I, are negative and thus unrealistic. Nevertheless, the ensemble mean, in our consideration, is the most robust represen-

Table 1. Mean, standard deviation, and the emerging trend in the global-ocean mass balance components

<table>
<thead>
<tr>
<th>Component (data source)</th>
<th>Mean</th>
<th>Standard deviation</th>
<th>Trend</th>
</tr>
</thead>
<tbody>
<tr>
<td>Discharge ((R)) ((\Delta M/\Delta t = E - P))</td>
<td>36,055 km(^3)/y</td>
<td>16,164 km(^3)/y</td>
<td>540 km(^3)/y(^2)</td>
</tr>
<tr>
<td>Evaporation ((E)) (SSM/I, OAFlux, & HOAPS)</td>
<td>409,152 km(^3)/y</td>
<td>10,236 km(^3)/y</td>
<td>768 km(^3)/y(^2)</td>
</tr>
<tr>
<td>Precipitation ((P)) (GPCP & CMAP)</td>
<td>374,220 km(^3)/y</td>
<td>14,221 km(^3)/y</td>
<td>240 km(^3)/y(^2)</td>
</tr>
<tr>
<td>Global-ocean mass change ((\Delta M/\Delta t)) (GMSL minus steric sea surface height)</td>
<td>1,044 km(^3)/y</td>
<td>14,328 km(^3)/y</td>
<td>23 km(^3)/y(^2)</td>
</tr>
</tbody>
</table>

The mean, standard deviation, and the emerging trend estimates for each of the components are based on the ensemble mean of data obtained from varied sources, for the entire study period (1994–2006).
tation of the seasonal cycle of global freshwater discharge currently available, save for 2 mo in 1994–1995 (see Data and Methods for details).

We note here the existence of strong interannual fluctuations in the global hydrological cycle over two consecutive short time periods. We performed a first-order attribution of the variations in global discharge by assessing the coherence of two commonly used climate indices with computed discharge time series. Shown in Fig. 2 is the Bivariate El Niño Southern Oscillation (ENSO) Time series (BEST Index) (26) and the most commonly used Niño 3.4 Index (27). Although the “BEST” index is representative of both the temperature and pressure changes associated with the El Niño and La Niña phases of ENSO cycle in the equatorial Pacific Ocean, Niño 3.4 is only related to sea surface temperature (SST) changes in the region. Positive and negative values of these indices are indicative of an El Niño and a La Niña condition, respectively. Results reveal a strong anticorrelated relationship between R and the ENSO indices. BEST \((R = -0.48, p < 0.001)\) and Niño 3.4 \((R = -0.44, p < 0.001)\), such that El Niño events produce less than normal \(R\), whereas La Niña events produce higher than normal \(R\). However, it is likely that warmer SSTs associated with the 1997–1998 El Niño event (the strongest on record; 12) resulted in the strong increase in evaporation, ultimately fueling terrestrial precipitation and a large increase in \(R\) during 199412–199906 (Fig. 1, Inset).

Previously, estimated trends in discharge into the global ocean were either based on model (time-integrating) simulations (3, 11), combinations of model simulation and observations (12), or on statistical reconstruction of limited gauge-based observations (9, 10). The discharge estimation method presented here will ultimately enable quantification of long-term hydrological trends, in an entirely observation-based framework, as the satellite and in situ data record lengths. Fig. 2 provides short-term examples of piecewise and study-length trends in the ensemble means of terrestrial freshwater discharge \((R)\), \(E\) and \(P\). Here, the magnitudes of the trends are estimated as the slope of the least-squares estimate of best-fit line. We concentrate on the ensemble mean of the various estimates in order to construct a robust time series of global discharge that alleviates some of the discrepancies in each of the six different estimates (see Table S1 for the interannual variations and emerging trends in each of the individual data records). Note that the high frequency variations are removed from each of the time series by using a 12-month moving average filter, prior to trend estimation, to emphasize the interannual variations.

Trends should be interpreted with caution as the record length, although long for an observation-based global discharge, is relatively short considering the high degree of interannual variability apparent in Fig. 1. The trend magnitudes are specific to the time period specified and can be viewed as emerging with respect to the longer term. The identification of longer-term trends clearly requires the availability of extended global discharge estimates, which the methods presented here can ultimately provide.

An increase in the ensemble mean of \(R\) is evident from 199412–199906 (2.904 km\(^3\) yr\(^{-1}\); \(p < 0.001\)), followed by a decreasing trend \((-756 \text{ km}^3 \text{ yr}^{-1}; \ p < 0.001)\) through the end of the study period (199907–200611). The trend for the entire 199412–200611 study period is 540 km\(^3\) yr\(^{-1}\) (\(p < 0.001\)). The balance of the trends of \(E\) and \(P\) explains the piecewise upward, downward, and overall increasing trend in \(R\). For the 199412–199906 period, the upward trend in \(E\) (2.256 km\(^3\) yr\(^{-1}\); \(p < 0.001\)) is far greater than the decreasing trend in \(P\) \((-720 \text{ km}^3 \text{ yr}^{-1}; \ p < 0.001)\) relative to insignificant growth in \(E\) (396 km\(^3\) yr\(^{-1}\); \(p > 0.001\)). The increasing trend in \(R\) for the entire study period results from the increase in \(E\) (768 km\(^3\) yr\(^{-1}\); \(p < 0.001)\) relative to an insignificant increase in \(P\) (240 km\(^3\) yr\(^{-1}\); \(p < 0.001)\). Although changes in global-ocean water mass \((\Delta M/\Delta t)\) have contributed importantly toward the estimation of monthly \(R\), its contribution to the attribution of an emerging trend in \(R\) is statistically insignificant compared to \(P\) and \(E\) (see Fig. S3). The emerging trends are summarized in Table 1.

The short-term increase in \(E\), and hence \(R\), is primarily attributed to increases in SST, as trends in ocean wind tend to be small (2). Mechanistically, increasing SST leads to increased oceanic evaporation and, consequently, increased precipitation and runoff over land (11). The discharge trend of 540 km\(^3\) yr\(^{-1}\) is one to two orders of magnitude greater than those previously estimated by Labat et al. (9) (60.3 km\(^3\) yr\(^{-1}\)), Gedney et al. (10) (–67 km\(^3\) yr\(^{-1}\)), and Gerten et al. (11) (30.8 km\(^3\) yr\(^{-1}\)) and strongly contradicts those estimated by Dai et al. (12) (–6.96 km\(^3\) yr\(^{-1}\)) and Milliman et al. (28) (no trend). Some of the disagreement stems from the fact that the above-mentioned estimates are based on varied methodology, time span, spatial coverage, and other issues (7, 15). It is also essential to note the holistic nature of our estimates relative to those mentioned above. Because the global observation-based approach used here includes ocean mass change as a component (see Data and Methods), contributions from melting ice sheets and glaciers are implicitly included in our global discharge estimates. As such, they are consistent with recent observations of ice sheet and glacier mass losses (29–31).

Global changes in river discharge impact fresh water availability. They also point to changes in the intensity of the global hydrologic cycle. Given the aforementioned obstacles to comprehensive discharge monitoring, the methods and estimates presented here offer previously undescribed means to characterize freshwater delivery to the global ocean. Furthermore, as the acquisition and precision of geophysical data continues to improve, the method presented here will become more accurate. And as the length of the satellite data record increases, the method can be used to investigate future rates of water cycle acceleration. As the Greenland and Antarctic ice sheets continue to melt, and the remaining cryosphere continues to decay, global river discharge could easily continue to increase, further accelerating current rates of sea level rise. Although human management of the water cycle (e.g., by building reservoirs) may significantly mitigate what may be a much greater increase in discharge (32), our work demonstrates that many of these changes can be characterized and understood by analysis of modern satellite data.

Data and Methods

Changes in global-ocean water mass \((\Delta M/\Delta t)\), time derivative of ocean mass) are balanced by the difference of inflows (i.e., \(P\) and \(R\)) and outflows (\(E\)). In this study, monthly \(\Delta M/\Delta t, P, E\) and \(R\) are used to compute monthly global freshwater discharge as the residual of the global-ocean mass balance \((R = \Delta M/\Delta t + E - P)\). We use satellite altimeter observations of global mean sea level (GMSL) along with gridded global-ocean temperature and salinity data to estimate monthly \(\Delta M/\Delta t\). Satellite altimetry provides the best available estimate of GMSL and is now considered the standard of reference (33). Altimeter observations of GMSL integrate both its steric (temperature- and salinity-driven expansion/contraction) and nonsteric \((R + E - P, \text{ freshwater balance-driven})\) components. Thus, we compute ocean mass changes by removing the steric variations from altimeter GMSL measurements (34, 35). Since the launch of TOPEX/Poseidon (T/P) and its follow-on Jason-1, GMSL has been continuously monitored with unprecedented accuracy at 10-d intervals (33). We use globally averaged monthly data from the (T/P) and Jason-1 altimeters, aggregated from 10-d estimates, from 1994–2006, subsequent to the application of standard and inverted barometer corrections (available at http://sealevel.colorado.edu).

The satellite radar altimeter data and most ocean flux datasets, except for the precipitation estimates and GRACE observations, have near global (66°N–66°S) coverage only. In addition, eva-
poration over the ocean is computed for ice-free ocean areas only. To make a consistent consideration of the surface area, we have aggregated the fluxes and stores for the ocean area extending from 66°N–66°S. This extent covers more than 93%
of the global-ocean area and is representative of the entire global ocean. Chambers et al. (34) and Lombard et al. (36) have shown that the Northern Hemisphere high latitude ocean regions have insignificant contributions to the magnitude and trend in global-ocean mass loss over the global ocean. Although it is difficult to isolate the source of this problem, it is most likely due to errors in the measurements of ocean temperature, though errors in the observations of P and E may also contribute. The subsurface ocean temperature datasets, before the launch of ARGO, are based on the compilation of a myriad of in situ measurements using various instruments and often involved numerous corrections (35). Because of the high negative values of ΔM, the freshwater discharge values estimated for those months were negative. Negative discharge values were corrected by using the study-period mean ΔM instead of the monthly value in the mass balance for the affected months.

To compute global freshwater discharge we used several different datasets of P and E to establish the range of our estimates. Monthly variations of global-ocean precipitation are from CMAP (22) and GPCC version 2 (24). Both CMAP and GPCC merge satellite and surface radar and gauge-based measurements to provide the best available analysis of global precipitation. Beyond 1987, these datasets benefit significantly from microwave data from SSM/I, particularly over the ocean. In spite of the known regional bias issues in the tropical ocean (41), the overall temporal variability of CMAP and GPCC is in good agreement ($R = 0.78, p < 0.01$) (see Fig. S4 for comparison). The magnitude of monthly P from CMAP (averaging $\sim 380,000 \text{ km}^2/\text{y}$) is consistently higher than that of GPCC (averaging $\sim 369,000 \text{ km}^2/\text{y}$) and is comparable to earlier global water cycle studies (18, 41).

Global-ocean evaporation estimates for the period 1994–2006 are obtained from SSM/I (2), OAFlux (23), and the Hamburg Ocean Atmosphere Parameters and Fluxes from Satellite data (HOAPS; 42) version 3, which is available only through 2005. All the evaporation datasets estimate the latent heat flux using the bulk aerodynamic formulation in order to compute ocean evaporation (2). Satellite observations of surface wind speed at the reference height, sea surface temperature and specific humidity of air near the sea surface are the key variables used in the formulation. Despite, the greater variance in the E estimates (see SI Text 2 and Fig. S5), the temporal variability of these datasets is consistent, with all monthly estimates within one standard deviation of their monthly ensemble mean. The average values of global-ocean evaporation ranges between 400,200 $\text{ km}^2/\text{y}$ (for SSM/I) and 415,900 $\text{ km}^2/\text{y}$ (for OAFlux).

Acknowledgments. This work was supported by research grants from the National Aeronautics and Space Administration Interdisciplinary Sciences, NEWS, and Earth System Science Fellowship programs.